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ASYMPTOTIC ESTIMATES OF FOURIER COEFFICIENTS*

DAVID ELLIOTT anp P. D. TUANY

Abstract. Complex variable techniques are used to estimate the Fourier coefficients of functions
expanded in series of Jacobi, Laguerre and Hermite polynomials.

1. Introduction. Let f(x) be a function defined on a real interval (a, b).
Throughout the paper we shall assume that a < b; furthermore the interval
(a, b) may be infinite. Suppose w(x) is a nonnegative function defined on (a, b) such
that the quantities u, = j'; w(x)x" dx exist for all n = 0,1,2, ---. It is well known
(see, for example, Szegd [7]) that one can construct a sequence of orthogonal
polynomials {p,(x)} o, Where p,(x) is of degree n, such that

h,, m=n,

b
(L.1) f w(x)pn(x)pm(x)dx={0, o

for m,n=10,1,2, ---. The “Fourier coefficients” of f(x) are defined by

b
(1.2) a, = [ w0/ P9 dx.

and we shall assume that this integral exists for alln = 0,1,2, --- .

In this paper we shall show first that under certain conditions the real integral
in (1.2) may be replaced by a contour integral. We shall then discuss the evaluation
of the contour integral when p,(x) is any of the classical orthogonal polynomials
(i.e., Jacobi, Laguerre or Hermite polynomials), and the discussion will be
illustrated by considering three examples.

2. Contour integral expression for a,. Let D denote some unbounded domain
of the complex z-plane, where z = x + iy, which is such that it contains the open
interval (a, b). Equation (1.2) requires only that f(x) be defined on (a, b); let us
now assume that the definition of the function f(x) can be extended into D, where
we shall denote it by f(z).

DEerINITION 1. Let g,(z) denote a function such that:

(i) it is analytic in D — M, where M is an open interval of the real axis,
such that M 2 (a, b);

(ii) fora < x < b,

(2.1) gu(x — 0i) — g,(x + 0i) = 27miw(x)p,(x).!

* Received by the editors October 11, 1971, and in revised form August 16, 1972.

t Mathematics Department, University of Tasmania, Hobart, Tasmania, Australia. This paper
is derived in part from the Ph.D. thesis of the second author, who was in receipt of a University of
Tasmania Research Scholarship during the period 1967-1969.

!By g,(x * 0i), we mean lim,_ ¢, g,(x % iy).
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This definition does not define the function ¢,(z) uniquely, since to any
q,(2) satisfying (2.1) we may, for example, add a polynomial and (2.1) will still be
satisfied. We shall later impose extra conditions on ¢,(z) to make it unique (see
Theorem 2, below).

DEerFINITION 2. Let C™ denote a simple continuous piecewise smooth contour
represented parametrically by

x=x(s), y=ys), S <5<s

C~ satisfies the following conditions:

(1) it lies entirely in the intersection of the domain D and the half-plane
Imz <0;

(11) 1t is described in the anticlockwise direction, i.e., from a to b;

(i) limg, g x(s) = a, limg,, y(s) =0, limg, x(s) =b, lim,,, y(s) = 0;

(iv) lim,_,, dy/dx = lim_, dy/dx = 0.

C™* is defined analogously to be a contour contained entirely in the inter-
section of D and the half-plane Im z > 0, and described from b to a.

THeEOREM 1. If f(2) is analytic for all z e D, then a,, given by (1.2), may be
expressed in the form

1
(2.2) i qu(2)f (2) dz,

where 4 = C* U C™.

Proof. We shall start from the contour integral in (2.2) and recover (1.2).
Since the integrand is analytic in D — M, we may deform the contours C* and
C~ within D — M to the open interval (a, b) itself. We may then write (2.2) as

b

1
= 5 ) [4a(x — 0i) — gu(x + 0i)]f(x) dx,

from which we obtain (1.2) on making use of (2.1). The convergence of the contour
integral follows from the assumption that the integral in (1.2) exists.

In equation (2.2), we have chosen the countour % so that f(z) does not
necessarily have to be analytic at the endpoints a and b, nor does the interval
have to be finite. Suppose now that the interval (a, b) i1s finite and that f(z) is
analytic at all points of [a, b]. Let c(a, d) denote the circular arc r = a + & e”,
0 < 0 < 27, and let ¢(b, 5) denote the circular arc r = b + § €, —n < ¢ < m,
where 6 is small compared with (b — a). If lims_, | g,(2)f(z)dz = 0 when the
integral is taken over each of ¢(a, §) and c(b, 9), then the contour ¥ may be chosen
as any simple closed contour in D enclosing the interval [a, b]. This formula for
a, is then well known: see, for example, Whittaker and Watson [8, § 15.41]. The
more general formulation of Theorem 1 does not appear to have been given
explicitly before.

Let ‘us now consider the function g,(z). In order to determine an explicit
representation for this function we shall appeal to the theory of singular integral
equations. In the remainder of this paper we shall restrict our choice of (a, b),
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w(x) and p,(x) to be that of the classical orthogonal polynomials. We distinguish
three cases:
Case 1. Jacobi polynomials, where (a, b) = (—1,1);

wix) = (1 = x)(1 +xf, o f>—1;  plx) = PFPx).
Case 2. Laguerre polynomials, where (a, b) = (0, 00);
wx) = x"e”*, a>~—1;  pJfx) = LPx).
Case 3. Hermite polynomials, where (a, b) = (— 00, 00);
w(x) = exp (= x%);  pu(x) = Hy(x).

THEOREM 2. Let M = (a, b). If q,(z) tends to zero as |z| — oo, then for Cases
1-3,

(2.3) q,(z) = Jb Kg)f—"(tﬁ dt, z¢[a,b].

a

Proof. This follows immediately from the results given by Muskhelishvili [5].
In Case 1, w(t)p,(t) is of class H* on [ —1, 1] and the result follows from [5, § 78].

In Case 2, w(t)p,(t) is of class H on (0, 00), lim,_  w(t)p,(t) = O and for ¢t
large enough |w(t)p,(t)] < A/t* for any « > 0. The result then follows from [5, § 43].
A similar proof holds for Case 3, and the theorem is proved.

From equation (2.3) we find that g,(z) is a hypergeometric function in Case 1,
and a confluent hypergeometric function in the other two cases (see Szegd [7],
and Table 1). It is worth noting that for the Chebyshev polynomials of the first
and second kinds we can represent ¢,(z) in terms of elementary functions. With
(a,b) = (—1,1), w(x) = (1 — x?)” Y2 and p,(x) = T,(x) we have

T
(ZZ _ 1)1/2[2 + (ZZ _ 1)1/2]n’

Again with (a,b) = (—1,1), w(x) = (1 — x*)'/2, p,(x) = U,(x), then

2n
[z + (22 _ 1)1/2]n+1’ z¢[—1,1].

(2.4) 4u(2) =

z¢[—1,1].

(2.3) a4x(2) =

In both cases we choose (z — 1) and (z + 1) so that —n < arg(z + 1) < @

3. Estimates of the coefficients q,. In a recent paper, Donaldson and Elliott
[1] have discussed at some length the evaluation of a contour integral similar
to that given in (2.2). They have shown inter alia that the truncation error R,(f)
in Gaussian quadrature rules based on the classical orthogonal polynomials,
can be written as

1 4x(2)
(3.1) RS = 5 f 1022,

where ¥ = C* U C~. The discussion given in [1, §§ 8, 9] for the determination
of R,(f) is relevant to the evaluation of a,. We shall briefly describe the main
features of the method here ; for further details the reader is referred to [1].
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For a given f(z), we attempt to evaluate the integral in (2.2) by suitable
deformation of the contour ¥ away from the interval (a, b), exploiting where
possible the singularities of f(z). It is, however, seldom possible to find explicitly
the value of the contour integral; in cases where it can be done it is obtained in
terms of hypergeometric or confluent hypergeometric functions. For applications
in numerical analysis, we are often interested in the behavior of a,, for large n.
If we assume that n is large, then considerable simplification of the analysis is
obtained by replacing ¢,(z) in (2.2) by a suitably chosen approximation, which is
asymptotic to g,(z) for large n. Such approximations (see Table 1) are given either
in terms of elementary functions, or at worst, modified Bessel functions. In any
case, the approximations are easier to handle than the exact expressions for
4n(2).

Table 1 has been constructed from the first terms of uniform asymptotic
expansions which are to be found in [2] and [6]. In each of the formulas J1-J3
etc. of the table, the conditions under which the asymptotic expression is valid,
are first stated and are followed by the appropriate expression for g,(z). It should
be noted that to date no explicit expressions for the error in approximating to
4,(2) by the expressions in the table are available.

In the remainder of this section, we shall illustrate the above discussion by
considering, in some detail, three examples.

Example 1. Find the Fourier coefficients a, when the function 1/(x + A),
2 > 0, is expanded in a series of Laguerre polynomials L®(x) on (0, c0).

In this case we can obtain an exact expression for a, in terms of the confluent
hypergeometric function. The function f(z) = 1/(z + A) is the obvious extension
of f(x) into the complex plane. This function has a simple pole at z = — A, with
residue 1. From equation (2.2), and using the explicit expression for g,(z) given
in Table 1, we have

n z.

_ In+ I)J‘ Un+ 1,1 —o;e ")
- 2mi Jy (z+4)

Let p, r, R be positive numbers such that p + r < Aand A + p < R. The contour
C™ is chosen to consist of (i) a line from oo to R along the real axis ; (ii) a semicircle
in Im z > O with center at z = 0,radius R; (iii) a line segment from —Rto — 4 — p;
(iv) a semicircle in Im z > 0 with center at — 4, radius p; (v) a line segment from
—A 4+ p to —r;(vi) a semicircle in Im z > 0 with center at z = 0, radius r; (vii) a
line segment from r to 0.

The contour C~ is defined similarly in Im z < 0. It is readily verified that as
R — o0 and r — 0, the only nonzero contribution to the contour integral comes
from the two semicircles centered on z = — 4. By the residue theorem, we have
immediately that

a,=Tnh+ 1HUmn+ 1,1 —a;4) forn=0,1,2,---.

This result is exact. An asymptotic result valid for n large may be obtained in
terms of modified Bessel functions by using equation L1 of the table.

Example 2. Find an estimate for large n of the Fourier-Jacobi coefficients
of the function (¢ — x)?, where ¢ = 1 but close to 1, and ¢ > — 1 is not an integer.
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We choose the continuation of the function (¢ — x)? to be f(z) = [(z — c)e "],
where 0 < arg(z — ¢) < 2n. The function f(z) is then analytic in the complex
plane cut along the positive real axis from ¢ to co.

Let p, r and R be positive numbers such that p + r <c — 1, r < 1, and
p + ¢ < R. The contour C~ is deformed over Im z < 0 so that it comprises two
semicircles of radius r centered at +1, a semicircle of radius R with center at the
origin, and a semicircle of radius p with center at ¢ together with the appropriate
straight line segments so that the contour is continuous from —1 to +1. The
contour C* is deformed similarly in Im z > 0. Let AB denote the line segment
in Im z < 0 from the point A(R, 0) to the point B(c + p,0); and CD denote the
line segment in Imz > 0 from C(c + p,0) to D(R,0). Since ¢ > —1 and if we
choose n > ¢, then the contributions to a, from the semicircles tend to zero in
the limit as we let » and p tend to zero and R tend to infinity. The value of a,, is
then given by the integrals taken along AB, CD and we find

a, = S0 ?) f (x — o)qux) dx.

Since c is close to 1, we shall replace g,(x) by its asymptotic approximation J2.
Thus for large n, g, is approximated by A, say, where

Ay = = KDL [ (x — 0l = 15+ DK QD) .

provided o = 0. Transforming the integral by putting x = cosh 2{, we obtain

29%3 ksin (ng) (* .
e j [sinh ({

A, = — (¢ — v)sinh ({ + v)]%(sinh {)**1/2

~(cosh [P T 12LN2K (2kL) dC,

where ¢ = cosh 2v. It does not seem possible to evaluate this integral explicitly
in closed form, but for large k the main contribution to this integral will come
from the neighborhood of { = v. Since ¢ is assumed to be close to 1, v will be
“small” and in the integrand let us replace sinh({ + v) by ({ £+ v), sinh{ by {
and cosh { by 1. Then A, will itself be approximated by B, say, where

24%512 sin (ngp)' 12

B, = - fw (I — )KL K (2KD) de

T

Since K, (2k{) = K _,(2k{), this integral may be evaluated in closed form (see
Erdélyi [4, p. 129, (13)]) to give
2¢+2U(¢+a+ 1)
B, = WK¢+41+ 1(2kv).
We take this to be the required asymptotic form of a, for large n, provided a = 0
and n > ¢. If we let ¢ — 1, we obtain

2971 + o + 1)

(32) Bn = 1—~(_¢)k2¢+a+1
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An explicit representation of a, can be found in terms of the hypergeometric
function. If, in equation (1.2), we use Rodrigues’ formula for P{*#(x), and integrate
n times by parts, we find

_ 2Th+oa+ B+ DI — @)
T T(CHren+a+ f+ Dic+ 1y*

(3.3)

2
-zFl(n——qb,n+B+1;2n+cx+ﬁ+2;————).
c+1

Putting ¢ = 1 in (3.3) we obtain for the function (1 — x)? the coefficients

(3.4) (2" + ¢ + 1)} kT(n+ o+ B+ DI(n — ¢) }
‘ " I'(—¢) Tm+a+pf+¢d+2Fn+a+ )|

If we now assume that n (or equivalently k) is large, then on using the result

n+a ., 1
o+ b)) [1 * O(n)}
in (3.4), we recover (3.2).

Example 3. Estimate for large n, the Fourier—Laguerre coefficients for the
function exp (— A/x), where 4 > 0.

We choose f(z) = exp (— A4/z), which is analytic at all points of the z-plane
except at z = 0 where it has an essential singularity. To estimate a, for large n,
we first write a, = a, + a, , where

W = s |, W@z

with a, being defined similarly. In order to evaluate this contour integral we
shall use the saddle-point method (see, for example, de Bruijn [3]). This may
be briefly described as follows. In order to evaluate I = [_g(z) exp [h(z)] dz, where
g(z) is a “slowly varying” function and h(z) frequently depends upon a large
parameter, we first determine the ‘“‘saddle points,” which are such that h'(z) = 0.
Let z, be such a point. If §, is defined by |8, = 1, arg B, = =/2 — [arg h"(z,)]/2,
and if we assume that the major contribution to I comes from the neighborhood
of this saddle point, then

I'= (2m)'*Bog(zo) Ih"(20)| ~ ' exp [h(zo)].

approximately. If there is more than one saddle point, the contributions from
each such point are added together.

To return to our particular problem, we shall first replace g,(z) by the asymp-
totic form L3, which is certainly valid for all z in Im z > 0. Then for large n, a,
will be approximated by 4, say, where

(_1)n+121/.2 . z 1/4
—nk(—a_l)/z—f Z( 2z —Z—4k €Xp [h(Z)] dZ,
c* -

A =

and h(z) is given by
hz) = —z/2 — A/z + log [EV*K  5(2kE e™™™)].
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The saddle points are given by those values of z for which

1A — 4k| 112 e KipkE e M)
Wa)= -3+ 4k( z ) {25 (ke )K1,3(2k§e-"")}"0'

In order to solve this equation, let us assume that |2k& e~ ™| is large for k large,
and replace the modified Bessel function and its derivative by their asymptotic
forms for large argument (see [8, Chap. 17]). We then find

Lo LA 1z 4k 1\
o= o 2 ) of gl o

The only solution of this equation that is relevant to our analysis is that given by

AR A
zo = (—) e 4+ O(ks/a)

k 3k

It is readily verified that the value &, of ¢ corresponding to z, is such that ||
= O(1/k*"?), so that our assumption of |2k e~ | large when k is large, is justified.
Since the main contribution to the integral is assumed to come from the neighbor-
hood of the point z,, we shall in the remainder of this analysis approximate to
h(z) by H(z) say, where

H(z) = —§—§+1log(4k) +—+2k:§
Then

H'(zo) = (3k/2A)[1 + O(1/k*7)],
and from consideration of the direction in which C* is described, we shall choose

Bo = —i. Finally we require exp [H(z,)]. If we replace (z, — 4k)'/? by z}/2(1 — 24/22)
in the expression for H(z,), we find after some algebra that

1) 12 exp [ —24z]

exp [H(zo)] = ei"/2(4k W.

Again, for k large, we find that
x\12
exp [H(zo)] = (@) exp [—3(kA4)'3/2] exp i[3\/§(kA)”3/2 — kn + n/2],

approximately. If we observe for this particular problem that a, = 2 Re a,, then
on combining these results we obtain

1 A (x+1)/3
"= Al

n ﬁk_z

approximately for large n.

exp [ —3(kA)'3/2] cos [3./3(kA)"3/2 + m(1 — 2u)/6],

Acknowledgment. The authors wish to thank the referee for pointing out
the existence of the result given in equation (3.3).
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A NOTE ON BIORTHOGONAL POLYNOMIALS
IN TWO VARIABLES*

JOHN W. SCHLEUSNERT

Abstract. The papers.of Konhauser, Preiser and Chai are concerned with the investigation of the
properties of biorthogonal polynomials in one variable. In this paper we give necessary and sufficient
conditions for sets of polynomials in several variables to be biorthogonal. Polynomial expansions
for these sets are also determined. In conclusion a necessary and sufficient condition for sets of func-
tions to be biorthogonal is given.

Introduction. The paper of Krall and Sheffer [7] on orthogonal polynomials in
two variables and the work of Appell [1] suggested the consideration of two sets
of polynomials referred to here as monic and simple polynomial sets. Because of
the difficulty in obtaining a suitable basis for polynomials in two variables, a pair
of sets of vector-valued functions is defined whose index set is not required to be
countable. Upon restricting the index set to be partially ordered, we obtain a
necessary and sufficient condition for this pair of sets of functions to be bi-
orthogonal.

1. Biorthogonal polynomials. The results in this section can be extended to
polynomials on R", but for simplicity they will be given for polynomials restricted
to R%.

DEerINITIONS. The set of polynomials, {P,,(x, )}, n,m = 0,1, -- -, is monic if
every polynomial P,,, has the form

P,.(x,y) = x"y" + terms of lower degree.

In the above expression, n is the highest power of x and m is the highest power of y.

The set of polynomials, {Q,,.(x,y)}, n,m = 0,1, ---, is simple if every poly-
nomial Q,,, is of degree n + m.

The monic polynomials form a basis for the vector space of polynomials in
two variables, and in particular we have the following representation.

THEOREM 1.1. If {P,,.} is a monic polynomial set, then for any monic polynomial
R

nm>

n+m-—1
an = an + z d(l’]’ n’m)Pi

i+j=0

Jj°

where 0 £ i<nand 0 <j < m.
DeriNITION. Let {P,,} and {Q,,.} be monic and simple polynomial sets,
respectively. The polynomial sets are biorthogonal with respect to the bilinear

functional < -, - > provided
0 iffjn—p|l+|m—ql#0,
<ana qu = .
#0 ifn=pand m=gq.

* Received May 27, 1971 and in final revised form October 19, 1972.
+ Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506.

11



12 JOHN W. SCHLEUSNER

Three examples of biorthogonal sets of monic polynomials and simple poly-
nomials are now mentioned. Only a brief outline of the properties of the poly-
nomials is given since an extensive discussion appears in [1].

Example 1.2. Let

an = FZ[—m —n,y + m,V’ + n,y,y',x,y]
and
Emn = FZ[V + V' + m + n, —m, —naV,V'ax’Y]’

where F, is defined in [1, p. 104]. The Appell functions F,,, and E,, are simple

polynomials and monic polynomials, respectively, and are biorthogonal with

respect to the weight function p(x, y) = x”~'y*'~! over the triangular portion of

the x, y-plane given by x 2 0, y 20,1 — x — y = 0. It should be noted that an

important result of Karlin and McGregor [4] applies to polynomials biorthogonal

on this same triangle but with respect to the weight function x*y*(1 — x — y)".
Example 1.3. In [1, p. 318], one finds

(n + m)! —-n—-ml-nl-—-m
__An+tm n,,m o o 2 2
Vnm_2 n'm’ X F3 2 ’ 2 2 s 2 ) n m,l/y ,I/X
and
U _(n+m)!an nml—n1~m1x2+y2—1x2+y2—1
nm — n'm| X 3 2’2’ 2 s 2 s L yz s xz .

On investigating the above Appell functions we see that V,,, are monic polynomials
and U, are simple polynomials. The condition of orthogonality is

ff 0 if [n —pl + |m —q| #0,

|4 =
0 U pg dx dy n(n + m)!

nlm!n + m + 1)

1-x2-y22

ifn=pand m =gq.

Example 1.4 The generating functions
exp [ux 4+ vy — (cu? — abuv + av?)/2s)

and
exp [u(ax + by) + v(bx + cy) — (au® + 2buv + cv?)/2],

where a > 0,¢ > 0 and s = ac — b* > 0, define biorthogonal monic polynomial
sets (see [1, p. 370]). The polynomials defined by both generating functions appear
as finite linear combinations of products of Hermite polynomials.

We now determine necessary and sufficient conditions for monic polynomials
and simple polynomials to be biorthogonal.

THeOREM 1.5. If {P,,} and {Q,,} are biorthogonal sets of monic and simple
polynomials, then

N

@) Ree,p) = X i, )Py, ),

i+j=0
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where R(x, y) is any polynomial of degree N and c(i, j) = Q;;, R>/<Q;j, P;j>;
0 ifs<qorr<p,
#0 ifr=pands=q;

(iii) for any polynomial R of degree N < p + q,<Q,,, R) = 0 if and only if the
coefficient of xPy? is zero,

(IV) Qnm(x’ J’) = Zi+j=n+mc(i7j7n7 m)Pij(x7 )’)»
(V‘) Prs(x7 y) = Zi+j=r+sd(iaj7raS)Qij(xa y)a
(Vi) P, X'V =0ifr +s<n+ m.

(i) <Qpg, x"y*) = {

Proof. (i) The Fourier representation follows immediately, since the monic
polynomials form a basis for the vector space of polynomials in two variables.

(ii) Let r and s be nonnegative integers. By Theorem 1.1, x"y* has the repre-
sentation

r+s—1

Xys=P,.s+ Z d(i,j,r,S)Pij,
i+j=0
with 0 < i < rand 0 £j < 5. The inner product of Q,, and x"y* is
r+s—1
(11) <quaxrys> = <quaPrs> + Z d(iajar7s)<quaPij>a
i+j=0

where 0 S iZ<rand 0 j<s Ifeither 0 <s<g—-—1or0=r=p-—1, the
right-hand side of (1.1) vanishes identically because of the biorthogonality of P,
and Q,,. If r = p and s = ¢, (1.1) reduces to {Q,,, x"y*> = <Q,,, P,,> since the
summation on the right-hand side does not contain a term for (i, j) = (p, q).

(iii) We merely point out that this is a direct consequence of condition (ii)
and will be used as such later.

(iv) As previously observed,

n+m

Qnm = Z C(i’jana m)Pij,

itj=0
and for p and g such that 0 < p + g < n + m, the inner product of Q,, and
Qum i
<qu’ Qnm> = C(p’ q,n, m)<qua qu>~

By part (iii) of this theorem, the inner product of Q,, with any polynomial of
degree <r + s — 1 is zero, and therefore

Qpgs Qumy =0 ifp+qg#n+m.
Thus
0 ifp+q#n+m,
Qpg> Qum)/<Qpgs Ppy> fp+q=n+m,

for all nonnegative integers p, g such that 0 < p + g < n + m, and hence part (iv)
is proved.

cp,g,n,m) = {
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(v) Using the result in (iv), we obtain the system of equations

C01+'m>0>n +’m50) T do>n +m,n +’m90) f%+mﬂ
c(n+m,0,n.+m—1,1) c(O,n+m,n'+m—1,1)
cn+m,0,0,n + m) oo ¢0,n+m,0,n + m) Ponim
Qn+m,0
QO,n+m

Suppose the rank of the coefficient matrix is less than n + m + 1. Then there exist
constants (not all zero) such that the (r + 1)th row, for some r > 0, can be
expressed linearly in terms of the other rows; thus

Qn+m—r,r - Z/ d(l,])QU = 0

i+j=n+m
(' indicates the term Q,, . ,,—,, does not appear in the sum). From this equality we
obtain
<Pn+m—r,r’ Qn+m—r,r> = 0’

which contradicts the biorthogonality of the polynomials. Thus, the matrix is non-
singular and the existence of the coefficients for the polynomial expansion is
guaranteed.

(vi) Let n and m be nonnegative integers. Then by (v),

<xrysa an> = Z d(i>j>n7m)<xrysa Qij>
itj=nt+tm

for nonnegative integers r and s. The result now follows from (iii).

Tueorem 1.6. If {P,,} and {Q,.} are monic and simple polynomial sets,

respectively, and satisfy (i) and (vi) of Theorem 1.5, then they are biorthogonal.
Proof. Case 1. Suppose n < p. Then the polynomial P,,, is given by

an = xnym + Rn+m—17

where R, ,,,_, is a polynomial of degree <n + m — 1 containing no term x'y/
with i > n or j > m and therefore no term of the form x?y’ for j > 0. The inner
product of Q,, and P,,, is

(12) <quaan> = <qu’xnym> + <qu7Rn+m~1>a

and the right-hand side of (1.2) vanishes by (ii) and (iii) of the previous theorem.
Case 2. If m < ¢, then R, ,,_, has no term of the form x’y4, for j = 0, and
again by (ii) and (iii), the right side of (1.2) is zero.
Case 3. Suppose n > p and m = q. Letting

rtaq L
Qplx,y) = Y cli,j,p,qx'y,
i+j=0
we have
' ptq L
(1.3) Pams Qo> = . li 05 q) P> X'y

i+j=0
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Since n + m > p + q = i + j for all nonnegative integers i,j such that 0 < i + j
< p + g, by (vi) the right-hand side of (1.3) is zero.

Case 4. Assuming n = p, we need only consider m = g since the other
possibility has been investigated. For n = p and m > g, n + m > p + q so that
(P> Qpe> = 0 as argued in the previous case. If n = p and m = g, then by (iii),
equation (1.2) becomes

$Qums Pump = {Qpm, X"V
Combining these four cases gives the result

0 ifjn—p|l+Im—gql+#0,
<an5qu>:{ .
#0 ifn=pand m=gq.

2. Biorthogonal functions. We now concern ourselves with sets of biorthogonal
functions {F,}q and {G,}q, each function of which maps some nonempty set X
into the linear space L. The set Q is an infinite set of distinct indices of the form
o = (g, -, 0,), where the a; belong to a totally ordered set.

DerINITION. The sets {F,}, and {G,}, are biorthogonal with respect to the
bilinear functional { -,- > provided

0 ifo#p,

F,.G,> =
Fer G2 {—7&0 ifo = B.

DEFINITION. Let 4 be a finite subset of Q. The set of functions { f,} , is an associ-
ated set of {F,} , if for each o’ € 4

(2.1 F, =Y clo, o) f,, where c(a,a) # 0.
A

Assume now that Q is partially ordered by the relation « < f if and only if
o < B foralli, 1 <i<n,and {f,}, and {g,}, are the associated sets of {F,} ,
and {G,} , respectively, for finite subsets A of Q. Furthermore, for each y e Q we
assume there exists a finite subset A, of Q for which both of the following hold:

(*) ye A, and y is an upper bound of 4,;
(**) property (2.1) with 4 = 4, and

(2.2) G, =Y d,o)g,, whered(', o) #0,

are satisfied for each o' € 4,.

THEOREM 2.1. If {F,}q and {G,}q are biorthogonal, then for each 1 in Q the
following conditions are satisfied :

if o; < A; for some i,1 =i < n,
(23) F, 80 = .
#0 ifiA=a,
if ; < A; for some i, 1 =i < n,
24 G fo» = ,
#0 if A =a;

and conversely, if (2.3) and (2.4) are satisfied, then the sets are biorthogonal.
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Proof. (Necessity). Let u be an element of Q, then there exists a finite subset 4
of Q containing the upper bound u for which (2.2) holds. The biorthogonality of
the sets {F,}q and {G,}, implies each set is linearly independent and therefore a
finite subset of either set will generate the same subspace of L as its corresponding
associated set. Thus we write

(2.5) g = 2 bl p)G, .
A

Let 1 be in Q and suppose 4, > pu, for some k, 1 < k < n. Since A is not in A4, the
inner product of F; and g, is seen from (2.5) to be zero.

Suppose A = u; then by (**) G, may be expressed as
G, =dA, g, + Y dlo, g,
A— 4
To each o in 4 — A there corresponds a finite subset B, of Q containing « as an

upper bound and such that G, = Y5 b(B,a')g, for each o in B,. This implies
g = Y5, (B, a')G, for each o’ in B,,so that

(2.6) G, =d, g, + ) e, "G,
B

where A¢ Band B= U,_, B, 2 A — /. Since A ¢ Band d(4, 4) # 0, on taking the
inner product of F, and G, we ﬁnd in view of (2.6) that {(F;,g,> # 0.

(Sufficiency). Let A and § be in Q; then there exists a subset A of Q containing
f as an upper bound and having the property that

2.7 Gy = d(x, f)g,, where d(B, ) # 0.

If 2, < By for some k, 1 < k < n, then (2.3) and (2.7) show the inner product of
F; and Gy is zero. If 4, > f, for some k, 1 < k < n, interchanging the roles of 4
and f8, F and G, in the above argument leads to the same result.

Assume A = f in (2.7), then the inner product of F; and G, is nonzero, since
d(4, 4) is not equal to zero and the elements in 4 are distinct. This completes the
proof of the theorem.

Theorem 2.1 is now applied to obtain a multiple basic-set analog of a result
due to Konhauser [5]. Let

Qz{(nakl""akp)loékl ++kp§n}$

where the solution of the diophantine inequality is over all nonnegative integers,
ke, -,

Notalt,lon. Let t(x), uy(y,), -, uyy,) be polynomials of degree h in
X, Y1, ", y, respectively; then we shall use [R,,,...x,Jo to denote a set of poly-
nomials of total degree nin #(x), u(y;), 1 < i < p,and of degree k;inuyy;). Similarly,
we will let [S, , ...s,)]o denote a set of polynomials of total degree r in v(x), wi(yy),
1 £i £ p, and of degree s; in w(y;), where the polynomials v(x) and w(y;) are of
degree m in x and y; respectively.

It follows that Ry, ...k, is a polynomial of degree hn in x,y;, -, y,
together and of degree hk; in y;. The polynomial S, .., is of degree mr in
X, Y1, -+, yp together and of degree ms; in y;.
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Referring to the previous definition of biorthogonal functions, for this par-
ticular example we have the condition of biorthogonality of these sets with
respect to -, - > described by

p
0 ifjn—rl+ ¥k — sl #0,
i=1

#0 n=randk; =s;forl £i<p.

<Rn,k1,"‘,kp9 Sr,sl,~-‘,sp> =

Let k = (ky, ---, k,) where k; are nonnegative integers. By the usual iterative
procedure, it can be verified that for a given (n, k) in Q there exist constants

C(p,04, -+, 0,;nk) such that

n P

Ryphy = 2, Y Clpoy, 0,50, K080 s
pP=0gi++0,=0

where g,,‘al‘“.,ap = t(x)p—al—“~~apu¢;1(yl) e uzp(yp) and C(P» 01,5 Op3 N, E) =0
ifo, > k;fori =1,---, p. Thus for each y = (n, k) in Q there exists a finite subset
A, of Q A, = {(m, iy, -, i)lm i, ---,i) <y}, such that for each fe 4,,
Ry, = Y 4, C(o, B)gy with C(B, B) # 0. A similar statement for the polynomials
[S¢51,5,)0 @lso holds, and from Theorem 2.1 we have the next result.

THEOREM 2.2. The polynomial sets [R,,y, ...k, Jo and [S,, ... i, Ja in t(x), u(y;) and
v(x), wiy;), respectively, are biorthogonal with respect to < -,- ) if and only if the
sets satisfy the conditions

(S, sy T 7 TRrudba(y,) - (3,
=0 ifn<rork; <s;forsomei,1 <i=<n,
{#0 ifr=nand k; =s;foralli,1 <i<n,
and
SRy ot VXY 5770w () <o W (V)
{=0 ifr <nors; <k;for somei,1 <i=<n,

#0 ifr=nands; =k, foralli,1 <i<n.

Acknowledgment. The author is indebted to Professor William Simons for
helpful suggestions during the preparation of this material.
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ERROR BOUNDS FOR STATIONARY PHASE APPROXIMATIONS*

F. W. J. OLVER®

Abstract. An error theory is constructed for the method of stationary phase for integrals of the
form

b
I(x) = f e*P0g(t) dt.

a

Here x is a large real parameter, the function p(t) is real, and neither p(t) nor ¢(¢) need be analytic in
t. For both finite and infinite ranges of integration, explicit expressions are derived for the truncation
errors associated with the asymptotic expansion of I(x). The use of these explicit expressions for the
computation of realistic error bounds is illustrated by means of an example.

1. Introduction and summary. The most comprehensive practicable theory of
the method of stationary phase for single integrals of the form

b
(1.1 I(x) = f e*PWg(1) dt

appears to be that of Erdélyi [4], [5]. In this integral a, b, and the function p(t)
are real, and x is a large real parameter. Erdélyi’s first paper concerns the case
in which p(t) and ¢(t) are expansible at a and b in series of fractional powers of
t — aand b — t. The second paper extends the analysis to singularities of logarith-
mic type.*

The main purpose of the present paper is to supply explicit expressions for
the error terms associated with the expansions of [4] from which realistic bounds
are readily computable. The derivations of Erdélyi do not lend themselves readily
to the construction of error bounds owing to the somewhat artificial nature of the
neutralizer functions employed in the analysis. Our approach is based instead on
Hardy’s theory of generalized integrals [7], [8].

A secondary purpose of the present paper is to facilitate the application of
the method of stationary phase to integrals having an infinite range of integration.
These integrals can be treated by combination of results given in [4]. In the present
account, however, they are analyzed directly, and in certain ways results for infinite
integrals are simpler than those for finite integrals. In applications, writers often
shun the method of stationary phase for infinite integrals. Instead, the path is
deformed into the complex plane and the method of steepest descents invoked ;
see, for example, [2, Chap. 4], and [3, Chap. 5]. Such deformations presuppose
that p(t) and g(t) are analytic functions of the complex variable ¢, which is not an

* Received by the editors August 4, 1972, and in revised form November 10, 1972.

T Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, and National
Bureau of Standards, Washington, D.C. This research was supported by the National Science Founda-
tion under Grant GP 20529, and the U.S. Army Research Office, Durham, under Contract DA ARO D
3112471 G133.

! For a brief history of the method of stationary phase, see Jones [10] and another paper by
Erdélyi [6], and for an important correction to [5], see [11].
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inherent feature of the method nor one which is needed in the present theory or
that of Erdélyi.

The paper is arranged as follows. Assumptions are listed and discussed in
§ 2, and the main theorem stated in § 3. This theorem gives the expansion of the
integral (1.1) for large x, complete with explicit error terms. The proof follows in
§§4 and 5. In § 6 the asymptotic nature of the expansion is discussed, including
the derivation of a stationary phase analogue of Watson’s lemma. The same
section also indicates how bounds for the error terms can be obtained. The con-
cluding section, § 7, contains an illustrative example concerning the Anger—Weber
functions.

2. Assumptions. The following conditions and notations are similar to those
adopted for Laplace’s method in [12] and [13]. In (1.1) the limits a and b are
independent of the positive parameter x, a being finite and b (> a) finite or infinite.
The functions p(t) and q(¢) are independent of x, p(t) being real and ¢(t) real or
complex. They have the properties:

() In (a,b), p™*1t) and q™(t) are continuous, m being a nonnegative
integer, and p'(t) > 0.
(i1) Ast — a from the right,

@D P~ p@+ 3 opde—af T g0~ Y gt —ap i
s=0

s=0
where the coefficients p, and g, are nonzero, and p and A are constants such that
(2.2) u>0, (m+1u+1>Rel>0.

Moreover, the first of these expansions is differentiable m + 1 times and the
second m times.
(iii) When p(b) = lim,_,,_ {p(t)} is finite, each of the functions

1 d|fq®) _
(23) PS(I) = {p_/(ij E;} m, S = 0, 1, , m,

tends to a finite limit as t —» b—.
(iv) When p(b) = oo, lim,,,_ {¢(t)/p'(t)} = 0 and each of the integrals

Jei"""’Ps(t)p’(t) dt, s=0,1,---,m,

converges at t = b uniformly for all sufficiently large x.

Remarks. (a) Cases in which x is a negative parameter, or p'(t) is negative,
can be included by changing the sign of i throughout. Cases in which p'(t) has
zeros in (a, b), that is, cases in which the integral (1.1) has interior stationary
points, are treatable by subdividing the range at the stationary points and inter-
mediate points. Similar subdivisions may also be made when b is finite and p(t)
and ¢(t) have expansions at b in fractional powers of b — t of the type (2.1).

(b) Condition (iii) is fulfilled in the common case in which p™*(r) and
q™)(t) are continuous at b and p'(b) # 0.

(c) Condition (iv), with s = 0, implies that the original integral converges
uniformly at its upper limit.
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3. Main result. In consequence of condition (i) there is a one-to-one rela-
tionship between ¢ and the variable v, defined by

(3.1 v = p(t) — pla).

In terms of this variable the integral (1.1) transforms into

b p(b) = pla)
3.2 ixp(t) dt = ¢*P@ ixv d ,
(3.2) f e Pty dt = e fo ™ f(v) dv
in which
(3.3) f() = q()/p'(t) = Po(2).

Again, condition (i) shows that f(v) and its first m derivatives are continuous
when 0 < v < p(b) — p(a). For small v, t — a and f(v) can be expanded in asymp-
totic series of the form

(34 t—a~ Y et f0)~ Y apt AT

s=1 s=0

The coefficients ¢, and a, depend on p, and ¢q,, and may be found by standard
procedures for reverting series. In particular,?

oo b R
LT opie 2T ppdrer
e = do a. = {EI_1 _ (4 + l)quo} 1
° 7 updw ny 12po | p§t

THEOREM 1. Assume the conditions and notation of § 2 and the present section,
and let n be a nonnegative integer satisfying®

(3.9) mu—A<n<m+u—1+1 (A real),

or

(3.6) mu—Red<n<(m+ 1)u—Reld+1 (A complex).
Then

b n—y .
ixp() _ ixpla) (s + mi] _[s+ A a,
J; e*POq(t) dt = P s;o exp{ 2 r P e

(3.7) m=1 |5+
— )y Ps(b)(l) + (X)) = EynlX)
s=0 X

2 With the assumed conditions, p, is necessarily positive. Corresponding expressions for ¢ and
a, are given in [13].
3 The inequalities (2.2) guarantee that at least one value of n can be found.



22 F. W. J. OLVER
if p(b) < o0, or

b
f e*POq(t) dt
a

. n—v (S + l)n[ s + A a. )
__ pixp(a) ;
= ,-ZO P { 2/1, r u X+ + bm,n(x)

if pb) = co. Here v =0 when n = mu — A, and v = 1 in all other cases.* The
error terms are given by

(3.8)

fmalx) = €79 Y exp

= {(HA)} T{(s + A/u)

s= 2 s+ A—m
(3.9) : H {( 1/}
s+
X F{———ﬁ—m ixp(a) — zxp(b)} e
and
i\m pb
(3.10) Bu() = a.f”MQ(’
where®

- - T{(s + A)/u) ay
(311) Qm,n(l) = Pm—l(t) - _\-;0 F{(S + A+ - m#)/#} {p(t) _ p(a)}(mu~s~l)/u'

n (3.9) the incomplete gamma function takes its principal value, that is,

(3.12) Ia, 2z) = f e”'t*" 1 dt,

where the path does not intersect the negative real axis, and t*~! has its principal
value.

4. Preliminary lemmas.
LEMMA 1. When x > 0 and Rea > 0,

0 . anl/Zl—‘
(4.1) lim f e eyl dy = *9)
=0+ Jo X
This may be proved by rotation of the path of integration until it coincides
with the ray phv = tan™! (x/y), the deformation being easily justified by means
of Cauchy’s theorem. On the new path set

v =1/(n — ix),
so that 7 is real and ranges from 0 to co. Then
® 1 ® I
f e e dy = _.__.,_EJ e " N dr = ———(gf)—;.
0 (n —ix)*Jo (n — ix)

Passage to the limit yields (4.1).

G As usual, empty sums are understood to be zero.
*In the case m = 0, P_,(t) is defined to be  q(t) dt, consistent with (2.3).
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The left-hand side of (4.1) is a generalized integral in the sense of Hardy [7],
[8]. Its importance lies in assigning a meaning to Euler’s integral

4.2) f e dv
0

when Riemann’s definition is inapplicable owing to divergence at the upper limit.

In the case 0 < Rewa < 1, (4.2) converges and equals e*™/*I'(x)/x™ In other
words, Hardy’s generalization is consistent with the ordinary definition. This is
a special case of the following result, included in Hardy’s theory.®

LeMMA 2. If ¢(v) is sectionally (piecewise) continuous in (0, c0) and [ ¢(v) dv
converges, then [y e "(v) dv converges for every positive number 1 and tends to
(& ¢pw)ydvasn — 0+.

Lastly we shall need the following result, which is provable in a manner
similar to Lemma 1.

LEMMA 3. When x > O and f > 0,

fe'e) ani/2

(4.3) lim e ey dy = ——T(a, —ixp).
-0+ Jg X
5. Proof of Theorem 1. Write
B = p(b) — pla),
and for each nonnegative integer n, define ¢,(v) by

n—1

(5.1 fw) =3 aptt* =0 4 ¢ (v), 0<v<§,
s=0
so that
(5.2) Do) ~ @AM g A 0y
and

‘ ' n—1 K i
(53) ¢w) = fVv) = ¥ r{(rs{g /Jlr —)%(/u '
=0 S S

Assume first that f is finite. Since
(5.4) fP) = Pf),

conditions (i) and (iii) of §2 show that f(v), ¢,(v), and their first m derivatives
are continuous when v e (0, §]. With n denoting an arbitrary positive number,
we have

v(sﬂl‘u—ju)/u’ ] — 0, 1, cee L m.

(5.5)
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where
ﬂ .
(56) E"(l’], X) = j e—ﬂv+1xv¢"(v) dv,
0
and
n—1 <o)
(5.7) Fn,x) = Z asf oMo ixoy(s A=Wk gy
s=0 p

Letting n — 0 and applying Lemmas 1 and 2, we obtain’

n—1 + j, . + /{ )
(5.8) f f@)dv = ¥ exp {(s - )m}r(s ' )x(: i Edx) — (0,

where

E,(x) = lirgl+ En.x),  Flx)= lirgl+ F,(n, x).
n— n—

By integrating by parts, we have

0 —np+ixp B .
59  Emx=0 e me L f e iR () do.
n—ix n-—ix n—ixJo

Since ¢™\(v) is continuous in (0, 8] the process of partial integration may be
repeated m — 1 times. The conditions of § 2 show that the expansion (3.4) for
f(v) may be differentiated m times, hence the same is true of (5.2). In consequence
of the conditions (3.5) and (3.6), all needed derivatives of ¢,(v) at v = 0 vanish,
except possibly ¢~ )(v); accordingly

d)(r:" - 1)(0) B e—r]ﬁ+ix[j m—1 ¢L})(ﬁ)
(n — ix)" /5o (n — ixy™!

1 B .
+— "‘f e M) du.
(m—ix)"Jo

E,n,x) =
(5.10)

We propose to let.n — 0 in this result to obtain

(5.11) E,(x) = ( ) H™D(0) — P Z ¢;,»(B)(’)m + (i)m f ’ e M (v) dv

0

This step is justifiable by Lemma 2, provided that the integral in (5.11) converges.

Now from the differentiated forms of (5.2) we see that as v — 0, p™(v) is

O{p+ReA=u=mwlut or O{p""™~1} according as n > mu — ReAorn =mu — A In

either event, the integral in question converges absolutely. Thus (5.11) is established.
Next, consider F,(x). Application of Lemma 3 to (5.7) gives

n—1 e(s+/1)1:i/(2u) (S+ j,

F(x) = ¥ a——mnm
s=0 X

, —ixﬁ).

7 In applying Lemma 2, ¢(v) is taken to be ¢*’f(v) when 0 < v < f and 0 when v > B.
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From (3.12) we derive by repeated integrations by parts,

1 ()
F(oc—j)z’ I — m)

Io,z) = e ?z*7 ! Z To — m, z).

Hence

n—-1m-—1 F{(S+).)//l} (i)j+1 o
= e — (s+i=p—ju)iu
(5.12) hilb) = szo JZ T{(s + A — ju)/ui\x g

+e P@g (%),

where ¢, ,(x) is defined by (3.9).

We now substitute in (5.11) by means of (5.3), with v = f, and subtract (5.12).
The double sum cancels, and we are left with

E(x) — Fx) = —¢* ZO f w(ﬂ)(i)jﬂ + (315) m=1)0)

(5.13)
+e7 P POLS, w(X) = EmalX)}
where
\m pp
(5.14) O nl(X) = e""”‘“’(i) f e P (v) dv
0
From (2.3), (3.11), and (5.3), it is verifiable that
(5.15) (V) = Qat)/P'(2),

and thence that (5.14) agrees with (3.10). From (3.5), (3.6) and (5.2) it is seen that
¢™~1(0) vanishes unless A is real and n = mu — 4, in which event it equals
(m — 1)!a,. Combination of (3.2), (5.4), (5.8) and (5.13) yields the first of the
desired results (3.7).

The proof of (3.8) is similar. First, we observe that when 0 < s < m — 1,

ixp(t)

f e*POP(1)p'(t) dt = P(t) — —f PP ((p/(t) dt.

By hypothesis, as ¢t - b—, both integrals converge and p(t) - co. Therefore
P(t) - 0. In terms of v this implies that [* e™f®(v)dv converges when s < m,
and f®@v) > 0whens < m — 1.

In (5.5) and (5.6), B is replaced by oo and the term F,(n, x) is absent. The
convergence of the integrals is assured by Lemma 2 and the convergence of
Iy e™ f(v)dv. From (5.1) and the fact that f(v) - 0 as v — o (condition (iv)),
it follows that e "***¢ (v) — 0 as v — oo. Hence (5.9) becomes

En(n,x)=~—~¢"(0.) + 1, f e~ () dy.
n—ix n—1ixJy

Similarly, in place of (5.10) we have

(m—1) 0
¢ (O) 1 J e~ m + ixvd):'m)(v) dl) .

Edn. x) = m—ix)"  (m—ix)"Jo
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In (5.3) with j = m, all powers of v in the sum have negative real part: this is a
consequence of (3.5) and (3.6). Hence [ €™ ¢ (v) dv converges, and by applica-
tion of Lemma 2 we obtain

20 = [ ar 04 [ [ e an

0

compare (5.11). Combination of this result with (5.8) (again with f = o) leads
to (3.8).
The proof of Theorem 1 is complete.

6. Asymptotic properties and error bounds. From (3.10) we immediately have
) L, v,
) o = 5 | 1 al0) e = T2 2ol

where 7, denotes the total variation of the function within the braces over the
closure of the given interval. Another bound for 4, ,(x), which has the advantage
of being O(x~ ™" ') for large x, may be found by partial integration of (3.10),
using the identity

(6.2) Q)P () = Qv 1,(0)-

Thus

(6.3) 10 nX) = [UQm+ 1.n@] + 1@t 1B + Vo p{ Qs 1O} ],

provided that the right-hand side is finite: in contrast to (6.1), finiteness is not
guaranteed by the conditions adopted in §§ 2 and 3.
Now consider the other error term. For fixed o we have

T, z) ~ e 7% 1

as z — oo in a sector which includes |argz| < =; see [1, §6.5]. Application to
(3.9) shows that

(6.4) Emn(X) = O(x™™7 1), X - 0.

Relations (6.1), (6.3), and (6.4) confirm the asymptotic nature of the expansions
(3.7) and (3.8).
An interesting special case of (3.8) is obtained on taking a =0, b = ©
m = oo, p(t) = t*, q(t) = ut"~'g(*), and subsequently replacing t* by t.
THEOREM 2. Assume that
(1) g(¢) is infinitely differentiable in (0, 00);
(i1)

)

(6.5) glt) ~ Y gualstAmmin t -0+,

s=0
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where Re A and u are positive, this asymptotic expansion being differentiable any
number of times
(it1) Each of the integrals

fe""g(s)(t) dt, s=0,1,---,

converges at t = oo uniformly for sufficiently large x.
Then for large positive values of x, the asymptotic expansion of the integral

J eg(t) dt
0

is obtained by substituting (6.5) and integrating formally term by term in Hardy’s
generalized sense.

Although this theorem can be derived from existing results, for example [9],
it does not appear to have been emphasized in the literature. This is somewhat
surprising since it is the natural analogue for Fourier integrals of Watson’s
lemma for Laplace integrals.

Let us return to Theorem 1 and consider the actual calculation of bounds
for the error terms. For d,,,(x) the inequality (6.1) (or (6.3)) may be used as it
stands. For ¢, ,(x) we make the simplifying assumption that A is real. We may
then apply the inequality

(6.6) T, +iy)| < 2y* 1, a<l1, y>0,

which is itself establishable by deforming the path in (3.12) until it lies along the
imaginary axis and then integrating by parts. Thus we have

"i‘ T{(s + A)/u} lay

LT + 4 — ma)all () = playy e
In the case p(b) = o0, this bound vanishes and only the error term 8, ,(x) survives.

2
©.7)  lema =

7. Example. As a simple example of the calculation of error bounds, consider
the functions of Anger and Weber with equal argument and order:

J(x) = %f cos (xt — x sin t) dt, E. (x) = %f sin (xt — xsin t)dt;
(0] 0

see [14,§ 10.1]. In the notation of §§ 2 and 3 we have
mn{J(x) + iEx)} = J &P dt
0

where
B35
(7.1) p(t) =t —sint =

315 T
Thusa=0,b=mq(t)=1,u=3,and A = 1.

8 Convergence at t = 0 is not required, however, except for s = 0.
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The definition (2.3) gives

1 1 4\ 1
. P(t) = — .
(7.2) (0 PARE (sin2 1t dt) sin? 1t
In particular,
1 cosit 5 —4sin® 3t
(7.3) o) 2sin? 4t 1(0) 4 sin® 3t 2(0) 16 sin® 1t

By reversion of (7.1) we have for small v = p(t),

t = (60)'" + F5(60) + 1d55(60)* + 75350(60)"" + T72dRo00(60) + - ;
compare [14, § 8.21]. Differentiation yields

dt e
_a@r (s—2)/3 .
fo) == 3 a2,

s=0

compare the second of (3.4). In this expansion the coefficients a; of odd suffix
vanish, and

— 1¢£1/3 — 1 1 £5/3 _ 1 7/3 — __ 129 73
=36""7, a, =566, as = 5406, a¢ = 108000 > Az = 172480000 >

Using the asymptotic results of § 6, we derive from (3.7)

. © . Ay, © ' s+1
(7.4 n{J(x) + iEy(x)} ~ Y st Dmlo(Zg +%)x(—233m — e Z s(n( ) .

s=0

Explicitly, the first few terms on the right-hand side are given by

(16 16 2 e\ 1) 1 (67
m/GI—- i el T 51::/61-‘ = e _ 1:1/61-‘ - e
¢ (3)3(x) * ’60(x) e (3)1260(x) ¢ (3) 24300(x)

_i 12 gs+ Sy +
8624000\ x 2x  16x3 '

To evaluate error bounds, we note that the condition (3.5) requires

3m—1<n<3m+ 3.

Therefore from (3.7),
I (x) + iE( Z eSO (35 + %)x(:sl)/s
(75) oom=—1 i s+1
—emx Y Ps(n)(;) + Omn(X) = Emnlx),
s=0

where m is an arbitrary nonnegative integer, and n = 3m, 3m + 1, or 3m + 2.
Suppose, for example, that m = 0 and n = 1, that is, the expansion comprises
the single term e™/%T(3)}(6/x)!/3. Equations (3.11) and (7.3) give

2

(7.6) Q1,100 = 2sin? it - {6(t — sint)}*/3"
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The bound (6.3) yields

1 1 2 1
60,1(x)] = [F) + {5 - W} + Vo,n(QLO];'

Also, from (6.7) we derive
e 1(x)| < 4(6m)~23x L.
Numerical calculation shows that
2(6m)” 23 = 0.28, Vo A01,1) = 012,
to two decimal places, and thence
186, (x)] < 0.44x71, e, 1 (x)] < 0.56x 1.

That the combined bound 1.00x ™' for 6o ,(x)| + leo (x)| is quite realistic can be
seen by comparing it with the first neglected terms of the asymptotic expansion,
given by
i iem’x
10x  2x

Similar results can be obtained for higher error terms, provided that in
calculating the functions Q,,,(t) from expressions of the type (7.6), sufficient
precision is maintained to overcome numerical cancellation for small t.
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ON THE EXISTENCE OF ANALYTIC SOLUTIONS OF SYSTEMS OF
EQUATIONS IF THE JACOBIAN IS ZERO*

G. J. OLSDERTY

Abstract. The well-known implicit function theorem states that the equations f(z,, - -+ , z,; w) =0,
f{0;0)=0,i=1,---,k, have a unique solution z(w), j = 1, ---, k, in a neighborhood of w = 0 if
the Jacobian of the analytic functions f; with respect to the variables z; is nonzero at z; = w = 0. This
is a sufficient, but not a necessary condition for the equations f; = 0 to have an analytic solution.
In this article weaker conditions will be given. As has been noted, the solution is unique if the Jacobian
is nonzero. This is in general not true if only the weaker conditions are satisfied. It is possible in that
case that more than one analytic solution exists. In the proof use is made of the concept of formal
power series.

A theorem of Artin! can also be used to give sufficient conditions under which a system of equa-
tions has analytic solutions. In the proof of his general theorem use was made of the techniques of
algebraic geometry, whereas in the proof presented here only function theoretic aspects appear.

1. Introduction. All variables used in this article are supposed to be complex,
unless stated differently. It is assumed that the reader is familiar with the theory
of analytic functions and formal power series. Formal power series are treated,
for instance, in [2].

In the following we will use formal power series (f.p.s.) as well as convergent
power series (c.p.s.). Though this is not strictly necessary, we will use the symbol
2 for the equality of two f.p.s., implying that all the corresponding coefficients
coincide; for the equality of two c.p.s. the usual symbol = will be used. The
negation of 2 will be denoted by 2. For example, if Zle a;z’ is a f.p.s., then

Y oazi 2 0ea; =0, j=12 .
j=1
The symbol 2 is also used if a f.p.s. is denoted by a letter. So { 2 ) % | a;z’ means
that the f.p.s. is denoted by {. If )°% | a;z/ is convergent, then { will be equal to
the sum of this convergent series.
For the sake of completeness we repeat the following basic theorem, which
can also be found in [2].
THEOREM 1. Let

©
'fi(Zl’ TG w) 2 Z aijl“‘ijrlz'lll Cee W i=1---k,
Jr i+ 1=

be fps.witha,y...o =0,i=1,--- k.

* Received by the editors September 21, 1971, and in revised form July 15, 1972.

1 Department of Applied Mathematics, Technological University “Twente”’, the Netherlands.

'] thank the referee for drawing my attention to this theorem, which was published as theorem
(1.2) in [1]. This theorem-—in the context of this paper-—can be formulated as follows. Suppose that
we try to find zZ(w) = (Z,(w), - - -, Z(w)), where Z(w) = Z;‘;l aijwf are formal power series, which solves
f(z;w) = 0, that is, f(Z; w) = 0. The formal power series Z(w) are substituted in f(.; w) and the result
is a formal power series in w of which the coefficients must be zero. This gives recurrence relations for
a;;- If an integer N exists in such a way that a;;, j = N, are uniquely determined by these recurrence
relations, then the formal power series Z{w) have positive radii of convergence.

30



SYSTEMS OF EQUATIONS 31

If the (k x k) matrix with (i, j)-th element a,y...q1¢...q, the number 1 being the
(j + 1)-th index, is nonsingular, then the equations
(1.1) flzy, Lz w) 20, i=1--,k,

have one and only one solution of the kind
(1.2) z;2 Y bw, i=1,-.k.

In this solution b,y = 0,i =1, ---, k, and the other coefficients are uniquely deter-
mined by recurrence relations. (The f.p.s. (1.2) are said to be a solution of (1.1) if
the f.p.s. obtained by formal substitution of (1.2) in (1.1) are all zero.)

If no danger of confusion exists (z,, - - - , z,) will be abbreviated as z. This
notation will also be used with other variables.

2. The main theorem and its proof.

THEOREM 2 (the main theorem). Suppose the functions fiz;w),j =1, k,
withz = (z, -, z,), are analytic in a neighborhood Q, of z = w = 0 and have the
following convergent power series in Q, :

00

.1 f}(Zp e Zw) = Z aﬁlmikﬂzif Z;‘(kwikﬂq j=1,-.k,
i, ik+1=0
and suppose formal power series
(2.2) Lie ) byw, i=1,---,k,
j=1

are given, which satisfy
@3) SLiw) 20, Ptk

where the formal power series f((;w) has been obtained by formal substitution of
(2.2) in the convergent power series at the right-hand side of (2.1).

Let det [0f (C; w)/0z] be the formal power series which arises if the series (2.2)
are substituted in the Jacobian det [0f (z; w)/0z] of the functions f with respect
toz. If

(2.4) det [-af(-@‘i)-] 20,
0z

then the formal power series (2.2) have positive radii of convergence and hence the
functions {(w) = Y% byw/, i =1, -+ k, analytic in a neighborhood of w =0,
satisfy f{{(w);w)=0,i=1,---, k.

Remark. From (2.2) and (2.3) it follows that f(0;0)=0,i=1,---,k, or
a9...0 = 0, and from (2.4) it follows that fi(z;w) Z 0,i=1,---, k.

Proof of Theorem 2. We assume that for at least one i, infinitely many b;,
j=1,2,---, are nonzero, otherwise the f.p.s. (2.2) are all polynomials in w and
then the convergence is evident.

Suppose first that the coefficient of w° (the constant term) of the f.p.s. repre-
sented by the left-hand side (Lh.s.) of (2.4) is not equal to zero. Then it is easily
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verified that
(2‘5) 6(f19'.'9ﬁ€)

;é 09
6(21, Tt Zk) z=w=0

and the implicit function theorem can be applied which states that f(z,, - - -, z;; w)
=0,j=1,---, k, uniquely determine z,, -- -, z, as analytic functions of w in a
neighborhood of w = 0. Hence, according to Theorem 1, {,, ---, {, represent
these functions. Now Theorem 2 has been proved.

For the remainder of the proof we assume that the L.h.s. of (2.5) is zero. Because
this remainder is rather lengthy, it will be split up into four stages, to be denoted
by I, I, III and 1V. The aims of these stages are, respectively :

Stage 1: to reduce the case 0f(0;0)/0z; =0, i,j=1,---,k, to the case
of(0; 0)/0z; # O for at least one i and j by means of proper changes of variables
(zi > Zi fi = i)

Stage 11: to give the functional matrix [9f/0Z] a specific form.

Stage 111: to reduce the original system (k equations, k + 1 variables) to a
new system (k — 1 equations, k variables).

Stage 1V : to serve as the concluding part.

I. We distinguish two cases:

(1) 9f(0;0)/0z; = Oforalli,j=1,---, k;

(ii) for at least one i and j:9f,(0;0)/0z; # 0.

If case (ii) occurs, a bar is added to all symbols except w, Stage I is omitted and
the proof is continued at Stage 11, where, for notational convenience it is supposed
that 0f,(0;0)/0z, # 0. For the time being we assume that case (i) applies.

Suppose that

(2.6) (2 by, WH 4 by Wt 4 i=1,---,k,

with b, # 0 and b;; = O for j < y; (u; = 1), and define

2 h.. o af: . A~ Vij h vij+1 .. k

( 7) ij = 52_(C, W) = hingjW + ij\’ij+1w + -, i, = 1’ -k,
J

with h;;, . # 0. Possibly {; 2 0 for some i; in this case we take y; = oo. However,
for at least one i we have y; < 0. An analogous situation prevails for h;;. Possibly
some h;; = 0, in which case we again take v;; = oo. However, from (2.4) it follows
that for each i at least one j exists for which v;; is finite.

Taking p = min {y;}, we introduce new variables zf, i =1,---,k, and a
neighborhood Q, of z* = w = 0 in such a way that Q, is mapped into Q, under
the mapping

(2.8a) z; = (q; + zF)wH, i=1,---,k, w=w,
where g; = b;,, if ; = p, otherwise g; = 0. Also new f.p.s. {}* are introduced:
(28b) G2 g+ L, =1k,
where ¢; has been defined above. The new f.p.s. {¥ have the behavior

Gha bW + o if > p,

(2.9) .
Fabyvwt - ifu=p
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Functions fj(z* ;w),j=1,---, k, will now be defined in Q, as

fizt o zEsw) = [l + 2wt (@ + 2wt w)

) k
(2.10) = Y iy, WHEH TR TR IT @ + z5)™,
i, ik+1=0 m=1

j=1-. k.

The functions f(z*;w),j = 1, - - , k, are analytic functions in Q, . A neighborhood
Q¥ < Q, of z¥ = w = 0 exists in such a way that

Q) Jeh W = Y B e, =1k
i1, ik+1=0
For fixed j, each coefficient in this expansion is a function of ﬁnitely many .., .,
and finitely many b,,. It follows that when (¥, i =1, ---, k, are substituted in
(2.11), we obtain
(2.12) (w2 f(Lw) 20, j=1,-,k.
Define
k

(2.13) m = min [min%’ihl + Y i, # O}jl

J t=1

which is the lowest power of w which appears on the right-hand side (r.h.s.) of
(2.10). A reasoning given in Appendix A shows that

(2.14) m > U.

The functions f}(z* ; w) can be divided by w™. The quotient-functions, to be denoted
by f¥(z*; w), are again analytic functions in Qf, where they have the expansions

£
(2.15) of 3%, - zEsw) = ) ak 2w =1k
i, ik+1=0

with a% =d From (2.12) it is clear that

Jir i+ Jir ikl e +me
(2.16) fHC*;w) 20, j=1,-. k.
Moreover, it is easily proved that
f af* Vii—m+ PR
(2.17) h¥ (C*’...’C,’f;w)éhuvuwu Hyo ij=1-,k.
Because
(218) a( T""’f;f)__a(fl»"'7fk)wk(”_.m),

o(zf, -+, zf) B ozys sz
it follows from (2.4) that

(2.19) de t[f*(C ,w)] 2 0.
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To summarize: originally we dealt with the functions f; and the variables
zj, w and {;; after the transformations (2.8), new functions f* were obtained and
the corresponding variables became z¥, w and (¥. The functions f ¥ have the same
properties as the functions f;; they are analytic in a neighborhood Q} of z* = w
= 0, where they have the c.p.s. (2.15). If the f.p.s. {F, i =1,---, k, given in (2.9),
are substituted in the c.p.s. (2.15), then the relations (2.16) are valid. The analogue
of (2.4) is (2.19).

Ifv;; —m + p = 1for all i and j, then

I o) —
(2.20) aZ;k(O,O) =0

for all i and j, and the whole process of performing new transformations of the
kind (2.8) is repeated, until we have, for at least one i and one j,

(2.21) RE* 2 hyy o+ hyy oW e

with hy;, - # 0. For the sake of economy, we will use bars in place of the repeated
index * --. * Thus instead of h¥* we now write h;;. Suppose that after the last

transformation we deal with the functions f; and the variables z = (z,, - - - , Z).

wand { = ({;,---, (). Then we know that f(z;w), j =1, ---, k, are analytic

functions in a neighborhood Q; of z = w = 0, and

(2.22) f(l;w 20, =1k,

where

(2.23) Li= Y byw, i=1 -, k.
j=1

In addition we know that

of .
(2.24) det [J;(C; w)] 2 0,
0z
and that (2.21) is valid for at least one i and one j. In order to simplify the notation
we takei =j = 1.
II. We perform new coordinate transformations of the form

and
(2.26) rafitiw20, 2l i=2--,k

From (2.21), with i = j =1, it follows directly that df;(Z;w)/dz, # 0 at z=w =0,
and hence the implicit function theorem can be applied to the first equation of

(2.25), which results in z, being an analytic function of z¥,z,,---, Z, and win a
neighborhood of z¥ =z, = --- =z, = w = 0;
(2.27) Z, =825 25, -+, Iy w) = 8(Z%;w).

From the lemma in Appendix B it follows that

(228) 51 £ g(?f’ 52’ ) Zk; W) = }:’(Z*,W)
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In (2.27) and (2.28) we have written z* = (z*,---, z¥) and {* = (0%, .-+, ().
Because f,(g8(z*; w), 2%, - - - , ZF; w) = z¥, and hence
ofy o og
22 Jr_ G fe
(2.29) ozr 0z, oz
it follows that

0
(2.30) -a—_g;(f*;W)li*=w=o # 0.
Z1
This result will be needed later on.
We now introduce the functions
(2.31) THEE - W S fEE L w2, L W),
j = 17 DY k7

which are analytic in some neighborhood Q% of 7* = w = 0. For j = 1, definition
(2.31) can be simplified to

(2.32) SreEt L Zgw) =zt
With the aid of (2.22), (2.23) and (2.25) it is easily verified that

(2.33) FHC*;w) 20, j=1,,k.
It will now be proved that if {* is substituted in o(f*, ---, f¥)/o(z*, ---, z¥),
the resulting f.p.s., to be denoted by p, is not equal to zero. Because
PR SEN/ J TR Y O )
a(zT"“?Zl’(k) (‘)(Zla"'azk) a(zT,"',Zf)

it follows that the f.p.s. p is the product of two other f.p.s. in w:

(2.35) p 2 det [f;-f;(z ; W):| ‘é,g;*(f*;W)-
z 0z}

Both of these f.p.s. are 20; the first f.p.s. according to (2.24); the second f.p.s.
starts with a nonzero constant according to (2.30). All f.p.s. in w constitute a ring
without null-divisors [2] and hence p & 0.

I11. Let us now consider the functions

(236) j}(f%:’Zf’w)d;ff;k(o,ztf’,zf’w), j=2,,k
These functions are analytic in a neighborhood of z¥ = ... =zF =w =0.
Moreover,
(2.37) S w2 0, j=2 k.
Because 0f ¥/0zF = 0, ;, where d, ; denotes the Kronecker symbol,

ah'*’,, ’-'* a_'*’ ,’_'*
38) (Tfo ) s JD)

ozt ...z 0Es. L Z)
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and it follows that

o . )
(2.39) det Tf(c*, w1 20,
oz*
where [9f /0z*] denotes the functional matrix of the (k — 1) functions forioo i fi
with respect to z%, - - |, zjf.
To resume, we are now given k — 1 functions,

(2.40) fiz5 Lz w), j=2. k.

analytic in a neighborhood of z% = .- =z = w =0, and we are also given
k — 1fps.;C%, -+, {F If thesef.p.s. are substituted in (2.40), then (2.37) is obtained,
and if these f.p.s. are substituted in the Jacobian of the functions f;, - - -, f, with
respect to z%, -+, z}, a f.p.s. results which is 2 0. Hence our original problem
(k analytic functions and k f.p.s.) has been reduced, after a finite number of steps,
to an analogous problem with k — 1 analytic functions and k — 1 f.p.s.

IV. In this way we continue: the whole process, described in this proof so
far, is repeated until one of the three following situations arises:

(1) t functions and t fp.s. with 1 <t < k remain and these ¢ f.p.s. are all
polynomials in w (that is of each of the f.p.s. only finitely many coefficients are
nonzero). The convergence of these ¢ f.p.s. is evident.

(i) t functions,

(2.41) g1, L s W), j=1-.t,
andtfps.;o;,i=1, .-, t,remain, whichsatisfy g(o,, -+, o,;w)20,j=1,---, 1.
The Jacobian

Agys 1 8)
(2.42) o

a(Sla tee ﬁst)
is nonzero at s; = --- = s, = w = 0, and the implicit function theorem can be
applied. In connection with Theorem 1, this theorem states that ¢,, ---, g, are

analytic functions of w in the neighborhood of w = 0.
(iii) One function, given by

(2.43) g(s; w),

and one f.p.s. o remain. This f.p.s. satisfies

(2.44) glo;w) 20, g—g(a;w) 2 0.

Now Stage I of this proof is applied to the function g and the variables w and o,
which results in

(2.45) ga;w)2 0,

.
(2.46) é(a, w) 2 0,
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where g and & are the transformed function and variable respectively. Because
G is a f.p.s. which starts with a linear term in w, it is easily seen from (2.46) that

N
(2.47) %(0,0) £0.

Now Theorem 1 can be applied to (2.45) and (2.47), which states that & is an analytic
function of w in a neighborhood of w = 0.

In each of the three situations a straightforward calculation, in which we
perform the inverse transformations, shows that the f.p.s. {,, - - -, {; have positive
radii of convergence, which had to be proved.

3. Some examples. Consider the functions
(3.1 flzy zyiw) = 2z) — 2 + w? =0, j=12

It is easily seen that the Jacobian of the equations (3.1) with respect to z, and z,
at z; =z, = w = 0 is equal to zero and hence the implicit function theorem
cannot be applied. We will show that Theorem 2 can be applied in order to prove
that (3.1) has analytic solutions. By the elementary procedure of elimination it
can be seen that (3.1) has two different analytic solutions z,(w) and z,(w).

The existence of two analytic solutions of (3.1) is also obtained with the aid
of Theorem 2. To this end we substitute the f.p.s.

g

(3.2) S Z awl, (2 ) Bw

j=1

in (3.1) and try to determine «; and B, in such a way that f({,,{,;w) £ 0,i = 1,2
Substitution of (3.2) in (3.1) and equating these f.p.s. to zero yields

(3.3) 2Y aw = Y Bw + w20,
=1 i=1
0 ) 2 0 2
(3.4) 2( Y ajwi) - ( ﬁjwj) +w?20.
j=1 j=1

In order that f,({,,{,;w) £ 0, it follows from (3.3) that
(3.5) 20, — B; + 0, =0, j=123 -,

where 0, ; denotes the Kronecker symbol. In the same way, it follows from (3.4)
that

(3.6) 20 — B3 +1=0, (coefficient of w?),
(3.7) 4oy, — 2B1B, =0, (coefficient of w?),
(3.8) doo; + 203 — 2B, B3 — B2 =0, (coefficient of w*),

and so on. The quantities o; and f, can be solved from (3.5) for j = 1 and (3.6)
(two different solutions: ff; = 20, = iﬁ). Once o, and B, are known, «, and
B, can be solved from (3.5) for j = 2 and (3.7). The determinant of the required
system matrix equals —4f, + 4o;, which is nonzero because 2o, = ff; # 0.
Once «;, B, .o, and B, are known, a3 and ff; can be obtained from (3.5) for j = 3
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and (3.8); these equations again constitute a linear system of which the system
matrix equals the one we dealt with when determining a, and §,.

In general, to determine o, and 8, we need the coefficients of w'*?~! in
fili,¢,;w)y as well as a;, f;, i=1,---, p— 1. We make use of the following
lemma.

LEMMA 1. In the coefficient of w2~ in f((,.,{,;w) only terms appear which
are functions of o, fi,i=1,---,p—1, except one term, viz., t20" ‘o, — pi'B,).

Proof. All terms of the coefficient of w'*?~! are of the kind

(3.9) U e B g e
ﬂl!...’uq! 1 q 1
with
q q
(3.10) Yuij=t+p—1. Y =t
o) P

for all possible positive integers g (here 1 or 2). Quantities i, and g, are positive
integers with i, # i,., if k # k'. Suppose it is possible that i; = p for some j,
say j = q. Then it follows from (3.10) that
q—1
f—ﬂq—zﬂj—z pp=1t+p—1 -l

from which

These latter inequalities are only possible for u, = 1 and i, = p, which proves
the lemma.

It is now clear that o, and 8, can be determined from two linear equations,
of which the system matrix is nonsingular.

In order to prove that the f.p.s. (3.2), of which the coefficients are now known,
have positive radii of convergence, it remains to be shown that (2.4) is valid, or
that?

3.11 dt[z _qA4 20
(3.11) € &, 2, 24, —§) =0.

This is true because the coefficient of w in the f.p.s. ({, — {;) equals (8, — o),
which is not equal to zero. Now Theorem 2 can be applied and hence the f.p.s.
(3.2), with known coefficients, have positive radii of convergence and are analytic
solutions of (3.1) in the neighborhood of w = 0.

Let us now consider another example, a generalization of (3.1), in which the
analyticity of the solution is less trivial:

n—1
(B12) flzy, - zyyw) =2 Y {(—1Y7 12 + (=12 + (= 1w =0,
j=1
t=1,---,n.

% Note that when the theorem of Artin is applied in order to prove that the system has analytic
solutions, this last part is not necessary.
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The Jacobian of these equations with respect to the variables z,,---, z, at
z, = -+ =z, =w= 0 is equal to zero and hence we will apply Theorem 2 in
order to prove that (3.12) has an analytic solution. To this end we will substitute
the f.p.s.

0

(3.13) La Y aw, i=1,---.n,

j=1
in (3.12) and show that the coefficients a;; can be determined in such a way that
frCl"”’ ",W)__Ot——-] (>

The coefficient of w' in f({;, - - -, {,; w), which must be zero, equals
n—1
(3.14) 2 ) (=1l (=1 gy + (=16, =0, t=1,---,n.
j=1

The equations (3.14) constitute a system of n nonlinear equations with n unknowns

o;,i =1, -+, n. With the aid of some trigonometrical manipulations, it can be
shown that
4 in
(3.15) oy sin? —, i=1,---,n,

B " 4n 2n’
is a solution of (3.14).
To show that we can also determine a;,, i =1, .-, n, we consider the
coefficient of w'* ' in fi({;, -+, {;w), t =1, n;

n—1
(3.16) {2 2 A=Y T el g} (1) oy anz} + (=1)6,,-1 =0,

=1
J t=1,---,n.

Equations (3.16) constitute a system of n linear equations with the unknowns

%y, I =1, -+, n. Because the system matrix, to be denoted by A, which has as
(i, j)th element
(3.17) i2 =6, =1y~ 'ai7!

has a Vandermonde character and is nonsingular on account of a;; # «;; for
i # j, the unknowns «;, can be solved.

In this way we continue. To determine o3, i = 1, -+, n, we consider the
coefficient of w'*2in fi({y, -+, {;w),t=1,--- . n

)

n—1
{2 Z (—1)Y o o 0‘,3 (=1 oy 0‘”3} + (=1)"0,,—2
j=1

(3.18)

+gt(a11"”’anl;aIZ"“’anZ):O’ t=1,-~~,n,

where g, are known functions of known variables, which can be proved with
techniques similar to those used in Lemma 1. The equations (3.18) again constitute
a system of n linear equations with the unknowns a;5,i = 1, - - -, n. which can be
solved because the system matrix of this system equals the matrix 4, which is
nonsingular.

By proceeding this way, we find that all coefficients «;; can be determined.
In order to prove that the f.p.s. found have positive radii of convergence, it must
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be shown that (2.4) is valid, which in our case requires that det [B] & 0, where
B is the n x n matrix of which the (i, j)th element is given by

(3.19) (2 — &, )i(—1y~ '

Det [B] is a f.p.s. in w, and it is easily shown that the coefficient of w""~ 12 equals
the determinant of the matrix 4. Because A is nonsingular it follows that the
coefficient of w*®~ /2 is not equal to zero, which proves det [B] & 0.

Hence we have found that the system of equations (3.12) has at least one
analytic solution zf(w) in the neighborhood of w = 0. Because z,,z5,z5, -
appear symmetrically in equations (3.12), as do z,, z,, z¢, - - - , it is clear that the
solutions of z; and z;,, (i £ n — 3) can be interchanged. These solutions are not
equal (the coeflicients of the first term of the expansions, a;; and «; . , ; , are differ-
ent) and this shows that the equations (3.12) have more than one analytic solution.

Appendix A. In this appendix we will prove the inequality (2.14). The quantity
m has been defined in (2.13). Suppose that this minimum m is achieved fori; = - -
= i, = 0 and some i, ; (Which is equal to m) and some j, say j*. The power series
for /, in (2.10) has the term o ,...o,W™, With &jug...om # 0.

Since for this j* quantity mis achieved fori; = --- = i, = 0, misalso achieved
for this j* and an i, # O for at least one t with 1 < ¢ < k. Otherwise it would be
impossible that f'j*(C* ;w) & 0, which is shown as follows. Suppose the contrary:

the minimum m is only achieved for j = j*, i; = --- =i, =0, iy, = m. In this
case
(A1) fiz*; W) = @juq...0mw™ + higher powers of w.

Because fj*(C* ;w) 2 0, the coefficient of w™ must be zero in the f.p.s. fj*(Z,’* ;W).
However, if we substitute the f.p.s. {* = ({%,---, {¥) in (A.1), the coefficient of
w™ in the f.p.s. f({*; W) is @}s...p- Which is nonzero.

So we know that for j = j* the minimum m is achieved for an i, # 0 with
1 £t < k. This holds for all j with 1 £j < k and hence m = p. Suppose next
that m = p and that this is the case if j = j*. Apart from the possibility (j = j*,
iy =+ =1i,=0,i,, = m) this can only be realized for (j = j*,i,= --- =1i,_,
=i, = =0l =1Isy, =00 =1) for some ¢t with 1 £t £ k. However, this
implies that @ jug...010...0 # 0, where the number 1 is the (t + 1)th index. In Stage I
of the proof, where this Appendix is used, df(z;w)/0z, =0 at z=w =0, or
@jxo...010--0 = 0, and a contradiction has been obtained. Hence m > p.

Appendix B.

LeEMMA. We are given a function f(z, -+, z;; W), f(0;0) = 0, represented by
the (absolutely) convergent power series

Q0
(B.1) f= Y Qi iy, 21 00 W
i, ik+1=0
in a neighborhood Q of z, = --- =z, =w = 0. Hence f is analytic in Q. We
suppose that a,q... # 0. According to the implicit function theorem, the equation
f(zy, -+, zx;w) = 0 can be solved with respect to z, in terms of the remaining
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variables
ol .
(B.2) zZ, = g(zz’ el zk;W) = Z cil"'ik+12122 Cee gyl
2, ik+1=0
where g is an analytic function in some domain containing the point z, = --- = z,

= w = 0. Inthe power series expansion of g on the right-hand side of (B.2), ¢q... = 0.
If f.p.s. are given,

(B.3) iz Y byw, i=1.-- .k,
j=1

which satisfy f({,, -+, {;w) 2 0, then

(B.4) Gragls, s Gaw).

Proof. Suppose that g({,, -- -, {i; w) is given by the f.p.s.
(B.5) gy, Gsw) 2 Z

Then (B.4) states that b,; = d; for all i = 1. Suppose (B.4) is not true and hence
b,; # d, for some i. Define

(B.6) N = min {ilb,; # d;,i 2 1},
N

(B.7) {i= Y by, i=2-, k.
i=1

The functions {;,2 < i < k, are analytic in w. By the implicit function theorem,
the function {,(w) is uniquely defined by

(B.8) SGw). Lw), - Llw)sw) = 0,

and is an analytic function of w in a neighborhood of w = 0. Now ,(w) satisfies

def

(B9) Liw) = glyw), -+, Lw); w) = Z byw'

It is easily seen that b,; = d,; for 1 £ i < N. If we can prove that b,; = b,;, 1 < i
< n, then a contradiction has been obtained, because from (B.6) it follows that
b,y # dy = b,y. Thus (B.4) is true.

It remains to be proved that b,; = b;; for 1 £ i < N. For that purpose
consider

def © .
(B.10) filzgsw) = f(z, 0, -, Gsw) & Z e;ziw,
i,j=0
def _ _ .
(B.11) fizgsw) = f(z0,Cpy o, Lsw) = Y &ziw,
i,j=0

It is clear that e;, = €;¢ = a,..c # 0 and that ¢;; = ¢;; for all i and those j which
satisfy 0 < j < N.
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The f.ps. {; 2 Y2, byw' is uniquely determined by f;({,;w) 2 0 and the
cps. {; =Y, by;w is uniquely determined by f,({;; w) = 0. Hence the coeffi-
cients b, ; are functions of the coefficients e;;. and b, ; are functions of &;.

Let us consider the dependence of b, ; on the coefficients e;; in detail. By substi-
tution of {; 2 )  b,;w' in the f.p.s. (B.10) we get a new f.p.s. in w of which all
coefficients are zero. The coefficient of w gives

elo'b“ +e01 =0, (B.12)
from which it follows that b, is uniquely determined as a function of e,, and
ey, . The coefficient of w? gives

o bia + exo-bty + ey by + ey =0,

from which it follows that b,, is uniquely determined as a function of e, e;,,
eo, and b, and hence of e, e, €y, and ¢,; . In this way we continue. It is easily
seen that by, is a function of b;;, 1 £ j<m—1l,ande;, 0 S i<m 0 j<m.

Hence the coefficients b,,, b,,, - -, b,y are all uniquely determined by the
quantities e;;, 0 i < N,0<j < N.

The coefficients b,;.b,,, -+, b,y depend on ¢;;,, 0 < i< N,0<,j< N, in
exactly the same way as the b;;,b;,,---, b,y depend on ¢;;. Because ¢;; = ¢;
for all i and j £ N, we have proved that b;; = b,;,i=1,---, N.

Acknowledgment. 1 am indebted to Dr. M. L. J. Hautus for the discussions
that set me on the road eventually leading to this article.
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ON GENERALIZED HEAT POLYNOMIALS*

G. G. BILODEAU*Y

Abstract. The concept of a heat polynomial defined earlier by Rosenbloom and Widder is extended
and the polynomials are characterized using integrals of Poisson type. One particular class of poly-
nomials is examined in detail and leads to expansions of solutions of the problem

U, = uy, u(x,0) = f(x).

which are different from those obtained by Rosenbloom and Widder. In the last section some applica-
tions of polynomials to heat equation problems are given. In most results, much use is made of the
close relationship between these polynomials and Hermite polynomials.

1. Introduction. Following Rosenbloom and Widder[7], we say that u(x, ?) is
in H on a region D if it has continuous second partial derivatives on D and there
satisfies the heat equation

(L.1) U = Uy

Of particular interest are the polynomials defined by the generating function

n

(12) Y v, t)i' = exp [zx + z2t].
n=0 n!

These polynomials, appearing in Appell’s work [1], were called heat polynomials
by Rosenbloom and Widder who studied their properties in great detail. One can
write

. ) =(— n/ZHn —x~:——), Hn —(=1) xzD,, )_xz,
(1.3) vx, 1) = (=1 (2\/—_t (x) =(=1)"e"D"e
where H,(x) is the Hermite polynomial of degree n.

In this paper we broaden this concept by saying that u(x, t) is a generalized
heat polynomial, abbreviated GHP, if it is a polynomial in x and ¢t which is in H
for —o0 < x < 00, —o0 <t < oo. It is not difficult to characterize such poly-
nomials, and this is the subject of § 2. In § 3 we introduce a special class of such
polynomials which are simply related to the heat polynomials v,(x, t). They bear a
relationship to v,(x, t) similar to that of the Hermite polynomials to x" in the sense
that expansions of nonanalytic functions are possible (at ¢ = 0). Finally in §4
we give examples of the application of polynomials to the solution of some prob-
lems of heat conduction.

2. Generalized heat polynomials. We begin with a characterization of general-
ized heat polynomials. Define

(2.1) k(x,t) = (dmt)™ /2 = ¥/40,

* Received by the editors August 3, 1972.
T Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167.
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THEOREM 2.1. The following two conditions are each necessary and sufficient
that u(x, t) be a GHP.
(a) There exists a polynomial P(x) so that for —oo x x x o0, 0 < ¢,

u(x,t) = k(x, t)* P(x) = f_ k(x — y,t)P(y)dy.

(b) There exists a polynomial Q(x) so that for —o0 < x < o0, t < 0,

u(x, 1) = f Ky + ix, —000) dy.

Moreover, P(x) = u(x, 0), Q(x) = u(ix,0).
Proof. Let u(x,t) be a GHP. Then it is easy to see that for —o0 <a <t
< b < o0,

+

+ o0 o
[ kosb = oy, o1y = [y, Dt/b = ey, 01 dy S Ma, b
where M(a, b) is a constant depending on a, b. A result of Rosenbloom and Widder
[7; p. 248] is that

0

u(x,t) = ZO ap,(x,1), nla, = D"u(0,0).

n=

Since u(x, t) is a polynomial in x, @, = 0 for n > N for some N. Also, [7; pp. 222
and 227],

(2.2) va(x, t) = k(x, t)* x", t >0,
and

+ oo
2.3) b, 1) = j Ky + ix, —0)(iy) dy, (<0,

so that in the former case,

u(x, 1) = i anu,(x, t) = k(x, 1) * P(x),

n=0

where P(x) = Y N_, a,x" = u(x,0) and in the latter case,
+ o
wx0 = | Ky ix —000) dy,

where Q(x) = Y N_¢ a,(ix)" = u(ix, 0).
Conversely, let (a) hold. Then u(x, t) is in H for —o0 < x < o0, 0 < ¢t from
[5; p. 181]. Moreover, by a change of variable,

+ 0
u(x,t) = n“”zj e ’P(x — y\/It) dy,

0

from which we can easily see that u(x, t) is a polynomial in x, t and that u(x,0+)
= P(x). For part (b), let the representation in (b) hold. Then we can apply the
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formula in (2.3) to get, for —o0 < x < 00, t <0,

N
u(x, ) =y aw,x,1),
n=0
where we assume that
N
0(x) = Y aix)".
n=0

Thus u(x, t)is a polynomialin xand tand isin H for —o0 < x < 00, —00 < t < o0
since this is true for v,(x, t). Also

N
u(x,0) = Z a,v,(x,0) 2 O(—ix).

This completes the proof of the theorem.
From (2.2), we see that v,(x, t) is the special case corresponding to P(x) = x".

Another case of interest occurs when P(x) = H,(x/2). Then the corresponding
GHP is

Z(x,t) = k(x, t)* H(x/2) = k(x,t)*v,(x, —1)

- ont—1)=( - t)"/ZH,,(#)
21—t

using the fact that v,(x, t) satisfies the Huygens property (see [7; p. 249] and § 4
of this paper). Although this analysis is valid only for ¢t > 0, it is easy to see that it
holds for all ¢ by analytic continuation.

3. A new class of GHP. In this section we will concentrate on the GHP
Z,(x, t) introduced at the end of § 2. The reason for this choice is based on the
following argument. If a solution of the heat equation (1.1) with u(x, 0) = f(x) is
represented by

0

u(x,t) =Y au,x,?),

n=0

then

9

u(x,0) = f(x) = Y au,x,0) = i a,x"
n=0

n=0

and thus a typical result (Theorem 5.5 of [7]) has f(x) an entire function of some
class. With the choice made here, we will obtain instead

o)

(3.1 ux,0) = f(x) = Y, a,H,(x/2).

n=0

The theory of expansions in Hermite polynomials does not require analyticity so
that different results can be expected.
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THEOREM 3.1. Let k(x, r) f(x) be in L(— o0, 00) for every r < 2. Then the series

0 + o
Y azx0.  Znla, = [ Ky, DHG2S0)
n=0 —
converges to a function Z(x,t) in H on —o0 <x < 00, 0 <t < 1. Moreover
Z(x,0+4) = f(x) for almost all x and, in particular, at points of continuity.

Proof. The series in question can be written as

o0

(32) ¥ all - o (

2\/%)

and in this form is a recognizable series from the theory of Abel summability of
Hermite series. Thus this series under the given conditions converges for 0 < t <1
and moreover the sum of the series, Z(x, t), can be written as [3; pp. 450 and 453]

20,0 = [k = y.0f0)dy.

Now we obtain the conclusions that Z(x,t)isin H for —o0 < x < 00,0 <t < 1,
and Z(x,0+) = f(x) almost everywhere with an application of known results, for
example, [5; pp. 181 and 189].

It is not true under the general conditions of this theorem that

0

3.3) flx) = ZO a,Z,(x,0) = ZO a,H,(x/2).
For example, let f(x) = x e¥”/®. Then the conditions of the theorem hold, but the
series in (3.3) does not converge for any x # 0, a result mentioned by Szegd
[8; p. 243]. To correct this situation, we impose slightly stronger conditions.
THEOREM 3.2. Let k(x,2) f(x) be in L(— oo, c0). Then the series (3.2) converges
att =0 and
Z(x,04) = Z(x,0) = f(x)

at points in a neighborhood of which f(x) is of bounded variation and at which

() = flx+) + f(x—).

Proof. Clearly the conditions of Theorem 3.1 are satisfied and hence Z(x, ¢) is
in Hfor —o0 < x < 00,0 <t <1,and Z(x,0+) = f(x) for almost all x and, in
particular, at points where 2f(x) = f(x+) + f(x—). Also the series in (3.3) will
represent the expansion of f(x) in the series of Hermite polynomials H,(x/2).
From known results [8; p. 240], this series will converge to f(x) if f( )is of bounded
variation in a neighborhood of x and 2f(x) = f(x+) + f(x—). Thus Z(x,0+)
= Z(x,0) = f(x). This completes the proof.

The conditions of these theorems are severe on the behavior of f(x) in the
neighborhood of + co. We can relax these by a simple device.

THEOREM 3.3. Let f(x) be integrable in every finite interval and let f(x) = 0(e*")
as x — + oo for some ¢ > 0. Then there exists an a > 0 such that the series

i a "?eu(x,t —a), 2'nlc, = Jj k(y, 1) ( )f(fy)dy

n=0
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converges to a function v(x,t) in H for —o0 < x < o0, 0 <t <a. Also v(x,0+)
= v(x,0) = f(x) at the points indicated in Theorem 3.2.

Proof. We observe that f (\/sz) = O(¢***) and that if we choose 0 < a < (8¢) ™!,
then f (\/sz) satisfies the conditions of both Theorems 3.1 and 3.2. Thus there
exists u(x, t) in H in the strip 0 < t < 1 defined by the series in Theorem 3.1, with
the coefficient (replacing a, by ¢,)

mle, = j ks DH/D(ay) d

Also u(x,0+) = u(x,0) = f(\/ax) at the points mentioned. Let

v(x,t) = u(i,i)
\/;1 a

Then v(x, t) is in H in the strip 0 < t < a and v(x, 0+ ) = v(x, 0) = f(x) at suitable
points. Moreover,

w5 oz 5

and this can be simplified since

%!*
N

Q|H
sl

t
Z,,(L —) =a "*v(x,t — a).

9
Ja'a

4. Applications. Our first application will be to a problem initiated by Appell
[1] and partially solved by a number of authors. We state the problem as follows.
Given an entire function h(x), what are sufficient conditions on h(x) that there
exist a T> 0 and a function u(x,t) in H for —o0 < x < 00, 0 <t < T with
u(x, T) = h(x)? In effect then, h(x) is to be the result of a cooling process from some
temperature u(x, 0). Using heat polynomials, we will essentially obtain the solution
found by Blackman [2] and Oseen [6].

THEOREM 4.1. Let h(z) be an entire function for which for some o > 0,

lh(x + iy)l < K(B) e

for —oo < y < o0, and |x| £ Bforany B > 0. Then there existsa T > 0 and a func-
tion u(x,t) in H in the strip 0 < t < T with u(x, T) = h(x).

Proof._Set h(x + iy) = h(2i,/Tw) = gw), T>0 to be chosen and
w= 1/2f)(y — ix) = ¢ + iv. Then

lgw)l = K(B) exp [4aTo?].

Now choose T'so that 4aT < 1/2, and we apply a result of Hille [4] on the expan-
sion of functions in Hermite polynomials in the complex plane. This theorem
asserts the conclusion that for any w in the complex plane,

o + o
= ¥ a0, 2na, = [ e g0 dr,
n=0 -
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and for every f§ > 0, there is a constant A(f) so that
(41) la,) < AB)(2n!)™ "2 e,

Letting y = 0, we may write

- f a,,H,,( 'ix) = i a,(—T) " (x, T).
n=0

We now form the function
@.2) u(x,t) = i —T) "?p,(x,1).
Clearly u(x, T) = h(x). From the inequality [7; p. 226],

lo,(x, )] = (1 + 5) 1/2[2n(t + )]1/2 o7 I2 p¥?I40

holding for0 < t < 00, —00 < x < 00,and any § > 0, we conclude that the series
in (4.2) is dominated by

43) K(l + 5’)” e Z ((t + 6))"’2e b

Since 6 > 0 is arbitrary, it follows that the series in (4.2) converges for 0 <t < T.
A similar argument using the inequality in [7; p. 227] for v,(x, t) with ¢t < 0 shows
that the series converges also for —T <t < 0. We conclude [7; p. 233] that
u(x, t) is in H in the strip |t| < T and moreover u(x, T) = h(x). The function
u(x, t) in (4.2) is thus a solution to the problem. It is of interest to observe that h(x)
can thus be considered the result of cooling from an initial temperature u(x, 0)
which is an entire function (we use here the fact that v,(x, 0) = x").

As a second application, we will examine solutions of (1.1) which are analytic
in both x and ¢ (see also [9]). It has long been known that any solution of (1.1) in
the strip —o0 < x < 90, 0 < t < r has the form

2n+1

44 t) = (¢ ()

4.4) ulx, 1) = Zg()—+n20 Do s D

so that any solution is entire in x and infinitely differentiable (not necessarily
analytic) in ¢. In addition,

(4.5) u0,1) = g(t), ul0,1) = h(r).
THEOREM 4.2. Let u(x,t) be a solution of (1.1) in the strip 0 < t < r with
u(0, t), u,(0, t) analytic for t in (0,r). Then for any t, in (0,r),

d Uy, t — t
4.6 ) = (g)P2nX: L = fo)
(4.6) u(x, ) n;)g (o) (on)!
holding in the strip |t — to| < a for some a > 0.
Proof. We use the representation

Uaps (X, 8 — 1
+ Z h(n)(o 2 2-21(+1)' 0)

xn—2k tk

U"(X, t) =n! Z (}fl—-zk)'ﬁ’

2k=n
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which comes from (1.3). Now the first series in (4.4) becomes

w 0 (t _ to)k_" xZn
uy(x,t) = ®to)—— ——.
0= 2 2 8T G
The convergence of this double series is a consequence of the fact that |g®)(z,)]
< Mk!/d* for some constants M and a with a > 0. Also absolute convergence
holds for —o0 < x < 00, |t — ty] < a. Then

k x2n (t _ to)k—n

2,800 X o Tk = i

u(x,t)

il vyu(x, t — o)
— (k) t 2K\ 0 ,
kgo g 0)—(2k)!
and this is the first series in the theorem. The second follows in the same way. This
proves the theorem.
It is a consequence of [7; p. 250] that the conclusion of Theorem 4.2 implies
that u(x, t) satisfies a Huygens principle expressed by

A7) ulx, 1) = kx, 1y — £) % u(x, 1) = f Kx — . 1> — touly, 1) dy

for any —o0 <x < 0, tg —a <ty <t, <ty+ a This relationship merely
expresses the desirable physical property that the temperature u(x,t,) can be
obtained from a knowledge of u(x, ) at a prior time ¢t = t,. A partial converse is
also true. If (4.7) holds in the stated interval, then the same holds for u(x, t + t,)
in the interval |t| < a and hence, from [7; p. 250],

o0

u(xat + tO) = Z a,,Un(X, t)
n=0

for —o0 < x < o0, |t| < a, or equivalently

0

u(x, t) = Z anvn(xat - tO)
n=0

for —o0 < x < o0, |t — tg| < a. Moreover,

W00 = Y 40,6 —to) = ¥ a2 (e — top
n=0 n=0 n:
so that u(0, t) is analytic at t = t,. Similarly u(0, t) is analytic at t = t,. We have
thus proven the following result.

THEOREM 4.3. Let u(x, t) be in H inthe strip0 < t < r. A necessary and sufficient
condition that u(0, t), u (0, t) be analytic at t = t is that u(x, t) satisfy the Huygens
principle expressed by (4.7) in some strip |t — to] < a,a > 0.

Unfortunately we may not in general extend this result to having u(0, t),
u,(0, t) analytic in (0,r) and have at the same time u(x, t) satisfying (4.7) in the
strip 0 < t < r. Rosenbloom and Widder show that the function

u(x,t) = k(x,t + a)

with 4a)™' =1+ iis in H for —o0 <x < o0, —o0 <t < o0. Moreover it
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is clear that, since a is not on the real axis, u(0, t) and u,(0, t) are analytic for
each t in (— o0, 00). However u(x, t) does not satisfy the Huygens principle for
—0 <X <00, —0<t<ow,[7;p. 242].

Actually the above argument shows that the Huygens principle in the strip
0 < t < rimplies the analyticity of u(0, t), u,(0, ¢) for the same . It is the converse
of this which is not true in general.
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AN EXPANSION IN ULTRASPHERICAL POLYNOMIALS
WITH NONNEGATIVE COEFFICIENTS*

CHARLES F. DUNKL*t

Abstract. It is shown that the following expansion has nonnegative coefficients :
SPEPRX 1) P )
Pl S TP

for n,m,p=0,1,2,--- and 2 < m £ n + 2. The proof involves harmonic analysis on the unitary
group.

By geometric reasoning, we show that the following expansion has non-
negative coefficients:

Pin,p)(2x2 . 1) p+2k Cgm/z)*l(x)
X ey = & % emai g
Pk (1) s=0 Cs (1)
forn,mp=0,1,2,---and 2 < m < n + 2. We will use the notation of Szegd [7]
for Jacobi and ultraspherical polynomials, and the notation of [4] for harmonic
analysis on compact groups.

The idea is this: if H is a closed subgroup of a compact group G, and f'is a
continuous positive definite function on G, then f|H is a positive definite function
on H. Further, if f'is bi-invariant for some closed subgroup K of G, then f|H is
bi-invariant for K N H. If H/K ( H is multiplicity-free, then any bi-invariant
positive-definite function on H is a nonnegative linear combination of the spherical
functions of H/K N H (see [4, p. 105]).

Let U(n) be the unitary group on C",n = 2. A typical element is an n x n
unitary matrix u = (u;;); ;- , . Let K be the subgroup {ue U(n):u;; =1} ~ U(n — 1).
For the irreducible representation of U(n) with highest weights (7,0, ---, 0, —k), j, k
> 0, the spherical function for U(n)/K is

[Py 277M]~ P27 2Quy, | = Duy 7 forj 2 k,

g PO b
" [P~ 2k=(1)] 7 PO 200l 12 — 1y, ¥ forj < k.

(Note: to verify that these are the spherical functions, it is enough to check their
homogeneity and harmonicity properties; see Boyd [3], [4, Chap. 10], or Ikeda
(51.)

For the subgroup H we will take SO(m) (the rotation group on R™) with
m < n, embedded into U(n) by (symbolically)

SO(m) 0
H z[ 0 I,._m]'

* Received by the editors August 14, 1972.
+ Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903. This work
was supported in part by the National Science Foundation under Grant GP-31483X.

51



52 CHARLES F. DUNKL

We see that H (1 K ~ SO(m — 1). The spherical functions for SO(m)/SO(m — 1)
are well known (see for example [4, p. 109]) to be

Y@ = [C27H ]I (g ),

geS0(m),s =0,1,2,--- . (For m = 2 the limiting case ¥ (g) = T{(g,,) = cos sb,
where cos 6 = g,,, is not spherical for s > 0 since it decomposes into ¢** and
e~ but in our application the cosine series suffices.)

We now restrict ¢, to H ~ SO(m) to obtain

i- kP(n—ZJ k)(2g Jjtk C(m/2)— l(g )
&11 P;(H“ZJ k)(l) = Z aS C(m/2)—l(1)

with o, = 0, by our previous remarks. Replace g,, by x, nbyn + 2,jby k + p
to obtain the previously stated expansion.

Schoenberg [6] and Askey [1] have previously used the restriction idea in
similar situations. See Askey’s survey paper [2, pp. 64-85] for more examples of
expansions with nonnegative coefficients.

REFERENCES

[1] R. ASKEY, Jacobi polynomial expansion with positive coefficients and imbeddings of projective spaces,
Bull. Amer. Math. Soc., 74 (1968), pp. 301-304.

[2] ———, Orthogonal polynomials and positivity, Studies in Applied Mathematics, no. 6, Society for
Industrial and Applied Mathematics, Philadelphia, 1970.

[3] J. BoYD, Orthogonal polynomials on the disc, M.A. thesis, University of Virginia, Charlottesville,
1972.

[4] C. DUNKL AND D. RAMIREZ, Topics in Harmonic Analysis, Appleton-Century-Crofts, New York,
1971.

[5] M. IKEDA, On spherical functions for the unitary group (I, I, IIT), Mem. Fac. Engrg. Hiroshima
Univ., 3 (1967), pp. 17-75.

[6] 1. SCHOENBERG, Positive definite functions on spheres, Duke Math. J., 9 (1942), pp. 96-108.

[71 G. SzeGO, Orthogonal Polynomials, Colloquium Publications, no. 23, American Mathematical
Society, Providence, 1959.



SIAM J. MATH. ANAL.
Vol. 5, No. 1, February 1974

CERTAIN RATIONAL FUNCTIONS WHOSE POWER SERIES HAVE
POSITIVE COEFFICIENTS. IT*

RICHARD ASKEYYt

Abstract. Dunkl’s recent expression of a certain Jacobi polynomial times a simple polynomial as
a sum of ultraspherical polynomials with nonnegative coefficients is translated into a result between
Jacobi polynomials of the same argument and then applied to prove that
1
A=A =1 =1 =NA =)0+ D)+ =rNA+s0 =0+ 1 +r)(1—s)( —g)jervr?

has nonnegative power series coefficients for o = 0, 1,2, -- - .
1. Introduction. A fascinating class of problems was initiated when Friedrichs
and Lewy conjectured

1 —_ - ksmn
=1 =+ =rd—=0+1—=s(1—-1) k‘m‘%:o A",

Agmn >0, k,mn=20,1,---,

(1.1)

and Szegd not only proved (1.1), but extended it to the following.

THEOREM A. Let f(x) = (x — x;)---(x — x;). Ifa = —%, then

1
(1.2) et = 2 A e m X X,
(P = 2 A

with A5 ... = 0.

Szego’s proof used Bessel functions; another proof which uses Jacobi and
Laguerre polynomials was given by Askey and Gasper [3]. The next result of
this type was

1
(=711 -=5R2+D+1 -nNR+s)1 —t)+ 2+ —s)(1 — t)**!
(1.3) = i Bk, m, n)rks™t",
k,mn=0

with B*k,m,n) > 0 when o = [—5 + (17)*/?]/2 = a, unless & = a, and k = m
= n = 1, when the coeflicient is zero. See [4].

Equation (1.3) was motivated by consideration of Laguerre polynomials,
since the coefficients B* are a positive multiple of

(14) [ LiwrsoLion e 2 ax,
0
and the coefficients in (1.2) are a positive multiple of

(1.5) on LY(x)L%(x)LY(x)x* e 3~ dx

0
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when f(x) has three roots. From this point of view, it is easy to see that (1.3) is
much deeper than (1.2), a fact which is far from clear when just these two expan-
sions are considered. A third result can now be obtained, in as yet an imperfect
form.
THEOREM 1. If o = 0, 1,2, ---, then
1

(=00 =90 = 0f0 =0 =94 04 (=l 4 (1 0
+ (1 + (1 —s)(1 — [)]}(az+1)/2

=Y C*k,m,nyrks™t",

with C*(k, m, n) = 0.

Theorem 1 is probably true for o = 0, but the proof rests on an interesting
recent result of Dunkl about Jacobi polynomials [5], and his proof is group
theoretic and thus only valid for integer values of the parameters.

2. Dunkl’s expansion. The Jacobi polynomial, P*#)(x), can be defined by

—1)
2.1 (1 = x)(1 + x)!PrP(x) = L Sl = X)L+ X,
2"n! dx"
o, f> —1.
Gegenbauer polynomials, Cj(x), are connected with Jacobi polynomials by

Cix) _ Py 11213

22 Ci(l) ~ PYTIRATIE(1)
where

(23) Ca(1) = (24),/n!,
(2.4) PeP(1) = (¢ + 1),/n!,

and (@), = ala + 1)---(a + n — 1) = T'(n + a)/T'(a). There is a second connection
given by

PEA(x) P& HP2x? — 1)

- PEAN) T PR
(2 6) P(Zap;all(x) _ Psvaz,l/Z)(zxz - 1)
| PEALM) T PR

See Szego [8] for all of the results on orthogonal polynomials which are stated
without reference. Dunkl [5] proved

2.7 x”-I)——————~£'a!,‘1)(2x2 — = B3 o ————Cg‘m/Z):Lx)

PP(1) o arrTay
with o, = 0 when o, B, m = 0,1, ---, and 2 < m < a + 2. The usual convention
C? (cos 0)/C2(1) = cos nf

is taken, even though C2(1) and C?(cos 0) are zero, n = 1,2, --- . The essential
case in (2.7) is m = a + 2; the others follow from this case and Gegenbauer’s
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formula
Ci n ( )
Cil ; O"”‘cul)
On,=0 whend>puz=0 [1].

(2.8)

Use of m = a + 2 and (2.2) in (2.7) gives
P(az ﬁ)(zx ) 2n+p P;‘(ah 1)/2,(a—1 )/2}(.\.)

(29) P(az li)(]) = = ak'ﬁ;‘(?:T)WE’:»"i')7ii('”f}' :

Consider separately the cases in which f is even and B is odd. When f is even,
(2.5) and the change of variables 2x? — 1 =y gives

1+ J p@.2)) n+tj P((a»n/z ~1/2)
(2.10) WEheTw N B )
2 p(na,lj)(l) o p((a 1)/2, 1/2)(1)

a0, j=0,1,--, 0,20, k=0,1,---,n+j.
When f is odd, (2.6) and a simple calculation gives

1 + y jPilaz,Zj*-l)(y) n+j P((a—l)/Z 1/2)(y)
( 2 ) PRI T, ke B

2.11) .
a,j:()al””’ a2k+lgoy k=0,la""n+.]'

These results are new for j > 0; for j = 0, (2.10) was proven in [1] and (2.11) was
proven in [2].

3. Power series with nonnegative coefficients. Dunk!’s result in the form (2.10)

leads to a new nonnegative integral of Jacobi polynomials.
THEOREM 2. If o, j = 0,1, --- | then

1
(3.1) J P2 (p)P 2 (p)PE(p) (1 + p)> (1 — p)= 21 + y)7 12 dy 2 0,
~1
k,m,n=0,1,.-
Proof. Multiply (2.10) with n replaced by n, m, k, and use

|
(3.2) f PP (x)PEB(x)PEP(x) (1 — x)*(1 + x)Pdx = 0,
—-1

and Dunkl’s result that the coefficients in (2.10) are nonnegative.
Lety = 1 — (z/j), change variables in (3.1), and use

(3.3) lim PP(1 — (2x/B)) = Li(x),

B0
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to obtain

f LY (z)L2(z)LY(z)z* = V2 73212 4z > (),

(3.4)
«=0,1,---, kykm,n=0,1,..-.

The details of a similar argument are given in [3,§ 5].

The polynomials L¥(x) are orthogonal,

(3.5) f Lix)L%(x)x* e *dx = 0, m# n,

0
(3.6) J:O [LYx))*x*e *dx = T(n + a + 1)/T(n + 1),

and can be obtained from the generating function

e—xr/(l r)

37 = L¥x

( ) ( r)a+ (1 _ e+l Z

Multiply (3.4) by r"s™t*, sum, and then integrate using

(3.8) f P~ le " dt = T(B)c™*
0

to obtain

C((e + 1)/2)

o oz 2: r S t E @+ 1)/2
{(1 r)*(1 — s)“(1 t)[l—r+1—s+1—t+2]}

(3.9) .
= 3 L¥(z)L3(z)Li(z)z %~ V12 e 73212 dzpns™ik
k,m,n=0 JO
so these coeflicients are nonnegative for o« = 0, 1, - - - . The left-hand side can be

simplified to

(o + 1)/2)2+ 102
(A =rA =s)(1 =1 —r)(1 =s)A + 1)+ (1 —r)(1 + s)(1 — 1)
(3.10) + (1 + 1) = s)(1 — )]+,

This proves Theorem 1, which was stated in the Introduction.

If an analytic proof of Dunkl’s result could be found, it would probably
extend to a = 0, a real, and not just o« = 0, 1, - - - . This was shown in [2] in the
case j = 0. If Dunkl’s result could be proven for all real @ = 0, then Theorem 1
would also be true for all o = 0.

Using the orthogonality of L(x), we see that

_(a+l)/2La(x La Z ﬂkLa Bkgo’ 0(20,1,'“ ,

or

(3.11) Pa(X)Pr(x) Z Brpi(x) Pix) = x~ T L)
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Statement (3.11) can be iterated, but it doesn’t lead to anything useful. However,
(3.2) could have been iterated to obtain

1
(3.12) f PEPx) - PR — (1 + xfdx 20, azfz -3,
1

as was pointed out in [3], and this leads to
(3.13) f L2 (x) - Lz (x)x*™ 2 e k2 dx > 0, a=0,1,---.
0

This in turn leads to a generalization to k variables of Theorem 1, which will be
left to the reader.
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SOME ABSOLUTELY MONOTONIC AND
COMPLETELY MONOTONIC FUNCTIONS*

RICHARD ASKEY+t anp HARRY POLLARDY

Abstract. The functions (1 — r)~21*(1 — 2xr + r?)~* are shown to be absolutely monotonic, or
equivalently, that their power series have nonnegative coefficients for —1 < x < 1. One consequence
is a simple proof of Kogbetliantz’s theorem on positive Cesaro summability for ultraspherical series, [7].

1. Ultraspherical polynomials and absolute monotonicity. Certain power series
occur so often that their coefficients acq<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>