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ASYMPTOTIC ESTIMATES OF FOURIER COEFFICIENTS*

DAVID ELLIOTT AND P. D. TUAN"

Abstract. Complex variable techniques are used to estimate the Fourier coefficients of functions
expanded in series of Jacobi, Laguerre and Hermite polynomials.

1. Introduction. Let f(x) be a function defined on a real interval (a, b).
Throughout the paper we shall assume that a < b; furthermore the interval
(a, b) may be infinite. Suppose w(x) is a nonnegative function defined on (a, b) such
that the quantities/, f w(x)x dx exist for all n 0, 1, 2, It is well known
(see, for example, Szeg6 [7]) that one can construct a sequence of orthogonal
polynomials {p,(x)},% o, where p,(x) is of degree n, such that

{ hn, m n,
(1.1) w(x)p,,(x)p,,,(x) dx

O, m :/: n,

for m, n 0, 1, 2,.... The "Fourier coefficients" of f(x) are defined by

(1.2) a,, w(x)f(x)p,,(x) dx,

and we shall assume that this integral exists for all n 0, 1, 2,
In this paper we shall show first that under certain conditions the real integral

in (1.2) may be replaced by a contour integral. We shall then discuss the evaluation
of the contour integral when p,,(x) is any of the classical orthogonal polynomials
(i.e., Jacobi, Laguerre or Hermite polynomials), and the discussion will be
illustrated by considering three examples.

2. Contour integral expression for a.. Let D denote some unbounded domain
of the complex z-plane, where z x / iy, which is such that it contains the open
interval (a, b). Equation (1.2) requires only that f(x) be defined on (a, b); let us
now assume that the definition of the function f(x) can be extended into D, where
we shall denote it by f(z).

DEFINITION 1. Let q,(z) denote a function such that:
(i) it is analytic in D M, where M is an open interval of the real axis,

such that M (a, b);
(ii) fora<x<b,

(2.1) q,,(x Oi) q,,(x + Oi) 2niw(x)p,,(x).
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This definition does not define the function q,(z) uniquely, since to any
q,(z) satisfying (2.1) we may, for example, add a polynomial and (2.1) will still be
satisfied. We shall later impose extra conditions on q,(z) to make it unique (see
Theorem 2, below).

DEFINITION 2. Let C- denote a simple continuous piecewise smooth contour
represented parametrically by

x x(s), y= y(s), s, < s < sb.

C- satisfies the following conditions:
(i) it lies entirely in the intersection of the domain D and the half-plane

Imz <0;
(ii) it is described in the anticlockwise direction, i.e., from a to b;

(iii) lim_,, x(s) a, lim_.o y(s) 0, lim_ x(s) b, lim_ y(s) 0;
(iv) lim_ dy/dx lim_ dy/dx O.
C + is defined analogously to be a contour contained entirely in the inter-

section of D and the half-plane Im z > 0, and described from b to a.
TI-IEOREM 1. /f f(z) is analytic fi)r all z D, then a,, given by (1.2), may be

expressed in the form

(2.2) a,
2rcih,

q,(z)f(z) dz,

where c(o C + U C-.
Proof. We shall start from the contour integral in (2.2) and recover (1.2).

Since the integrand is analytic in D M, we may deform the contours C + and
C- within D M to the open interval (a, b) itself. We may then write (2.2) as

2rcih,,
[q,,(x Oi) q,,(x + 0i)]f(x)dx,

from which we obtain (1.2) on making use of (2.1). The convergence of the contour
integral follows from the assumption that the integral in (1.2) exists.

In equation (2.2), we have chosen the countour cg so that f(z) does not
necessarily have to be analytic at the endpoints a and b, nor does the interval
have to be finite. Suppose now that the interval (a, b) is finite and that f(z) is
analytic at all points of [a, bl. Let c(a, 6) denote the circular arc r a + 6 ei,
0 < 0 < 2re, and let c(b, 6) denote the circular arc r b + 6 ei, -re < c < rc,
where 6 is small compared with (b- a). If lim6_.o q,(z)f(z)dz 0 when the
integral is taken over each of c(a, 6) and c(b, 6), then the contour Z may be chosen
as any simple closed contour in D enclosing the interval [a, b]. This formula for
a, is then well known: see, for example, Whittaker and Watson [8, 15.41]. The
more general formulation of Theorem does not appear to have been given
explicitly before.

Let’us now consider the function q,(z). In order to determine an explicit
representation for this function we shall appeal to the theory of singular integral
equations. In the remainder of this paper we shall restrict our choice of (a, b),
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w(x) and p,(x) to be that of the classical orthogonal polynomials. We distinguish
three cases:

Case 1. Jacobi polynomials, where (a, b) (-1, 1);

w(x) ( x)( + x), , fl > -1; p,(x) p,.(x).

Case 2. Laguerre polynomials, where (a, b) (0,

w(x) x e -x, > 1; p,(x) L(,)(x).
Case 3..Hermite polynomials, where (a, b) (-v, o);

w(x) exp (- x2); p,(x) H,(x).

THtOR:M 2. Let m (a, b). If q,(z) tends to zero as [.z[--* , then .[or Cases

w(t)p,(t)
(2.3) q,(z) dt, z dd [a, b-].

Proof. This follows immediately from the results given by Muskhelishvili
In Case l, w(t)p,(t) is of class H* on [- 1, 1; and the result follows from [5, 78.

In Case 2, w(t)p,(t) is of class H on (0, ), lim,_ w(t)p,(t)= 0 and for
large enough Iw(t)p,(t)l < A/t for any e > 0. The result then follows from [5, 43].
A similar proof holds for Case 3, and the theorem is proved.

From equation (2.3) we find that q,(z) is a hypergeometric function in Case 1,
and a confluent hypergeometric function in the other two cases (see Szeg6 [73,
and Table 1). It is worth noting that for the Chebyshev polynomials of the first
and second kinds we can represent q,(z) in terms of elementary functions. With
(a, b) (-1, 1), w(x) (1 x2) 1/2 and p,(x) T,(x)we have

(2.4) q,(z)
(z2 1)1/2[z + (z2 1)1/2],,,

z q [- 1, 1].

Again with (a, b) (-1, 1), w(x) (1 x2) 1/2, p,(x) U,(x), then

2re
(2.5) q,(z)

[z + (z2 1)1/2]"+1’
z [- 1, 13.

In both cases we choose (z 1) and (z + 1) so that -rc < arg (z 4- 1) <

3. Estimates of the eoettieients a,. In a recent paper, Donaldson and Elliott
[1] have discussed at some length the evaluation of a contour integral similar
to that given in (2.2). They have shown inter alia that the truncation error R,(f)
in Gaussian quadrature rules based on the classical orthogonal polynomials,
can be written as

(3.1) R,(U) f(z)--7-;, dz,

where (g C + U C-. The discussion given in [1, 8, 9] for the determinat.ion
of R,(f) is relevant to the evaluation of a,. We shall briefly describe the main
features of the method here; for further details the reader is referred to [1
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For a given f(z), we attempt to evaluate the integral in (2.2) by suitable
deformation of the contour cg away from the interval (a, b), exploiting where
possible the singularities of f(z). It is, however, seldom possible to find explicitly
the value of the contour integral;in cases where it can be done it is obtained in
terms of hypergeometric or confluent hypergeometric functions. For applications
in numerical analysis, we are often interested in the behavior of a,, for large n.
If we assume that n is large, then considerable simplification of the analysis is
obtained by replacing q,,(z) in (2.2) by a suitably chosen approximation, which is
asymptotic to q,(z) for large n. Such approximations (see Table 1) are given either
in terms of elementary functions, or at worst, modified Bessel functions. In any
case, the approximations are easier to handle than the exact expressions for
q,,(z).

Table 1 has been constructed from the first terms of uniform asymptotic
expansions which are to be found in [2] and [6]. In each of the formulas J1-J3
etc. of the table, the conditions under which the asymptotic expression is valid,
are first stated and are followed by the appropriate expression for q,,(z). It should
be noted that to date no explicit expressions for the error in approximating to
q,(z) by the expressions in the table are available.

In the remainder of this section, we shall illustrate the above discussion by
considering, in some detail, three examples.

Example 1. Find the Fourier coefficients a, when the function 1/(x + 2),
2 > 0, is expanded in a series of Laguerre polynomials L(,,)(x) on (0, oe).

In this case we can obtain an exact expression for a, in terms of the confluent
hypergeometric function. The function f(z) 1/(z + 2) is the obvious extension
of f(x) into the complex plane. This function has a simple pole at z -2, with
residue 1. From equation (2.2), and using the explicit expression for q,(z) given
in Table 1, we have

F(n + 1) f U(n + 1, e e- i’z)
a,

2rci (z + 2)
dz.

Let p, r, R be positive numbers such that p + r < 2 and 2 + p < R. The contour
C + is chosen to consist of (i) a line from to R along the real axis (ii) a semicircle
in lm z > 0 with center at z 0, radius R (iii) a line segment from R to 2 p
(iv) a semicircle in Im z > 0 with center at -2, radius p; (v) a line segment from
-2 + p to -r; (vi) a semicircle in Im z > 0 with center at z 0, radius r; (vii) a
line segment from r to 0.

The contour C- is defined similarly in Im z < 0. It is readily verified that as
R --, and r 0, the only nonzero contribution to the contour integral comes
from the two semicircles centered on z -2. By the residue theorem, we have
immediately that

a, F(n+ 1)U(n+ 1,1 -e;2) forn=0,1,2,....

This result is exact. An asymptotic result valid for n large may be obtained in
terms of modified Bessel functions by using equation L1 of the table.

Example 2. Find an estimate for large n of the Fourier-Jacobi coefficients
of the function (c x), where c >= but close to 1, and 4 > is not an integer.
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We choose the continuation of the function (c
where 0 < arg (z c) < 2n. The function f(z) is then analytic in the complex
plane cut along the positive real axis from c to

Let p, r and R be positive numbers such that p + r < c- 1, r < 1, and
p + c < R. The contour C- is deformed over Im z < 0 so that it comprises two
semicircles of radius r centered at _+ 1, a semicircle of radius R with center at the
origin, and a semicircle of radius p with center at c together with the appropriate
straight line segments so that the contour is continuous from -1 to + 1. The
contour C + is deformed similarly in Im z > 0. Let AB denote the line segment
in Im z < 0 from the point A(R, 0) to the point B(c + p, 0); and CD denote the
line segment in Im z > 0 from C(c + p, 0) to D(R,O). Since b > -1 and if we
choose n > b, then the contributions to a, from the semicircles tend to zero in
the limit as we let r and p tend to zero and R tend to infinity. The value of a, is
then given by the integrals taken along AB, CD and we find

sin (nc/))
(x c)*q,(x) dx.an rchn

Since c is close to 1, we shall replace q,(x) by its asymptotic approximation J2.
Thus for large n, a is approximated by A say, where

k sin (n4)A. (;-757 (x c)*(x 1)(2a- 1)/4(x + 1)(2/- 1)/4l/2Ka(2k) dx,

provided > 0. Transforming the integral by putting x cosh 2’, we obtain

nsin (nq) [sinh ( v) sinh ( + v)]e(sinh )=+ 1/2

(cosh ) + 1/2112K(2k) d,

where c cosh 2v. It does not seem possible to evaluate this integral explicitly
in closed form, but for large k the main contribution to this integral will come
from the neighborhood of v. Since c is assumed to be close to 1, v will be
"small" and in the integrand let us replace sinh( _+ v) by ( _+ v), sinh by
and cosh " by 1. Then A, will itself be approximated by B, say, where

24+5/2 ksin
/3, -=+ 1/2(2 v2)*(2k)/2K(2k) d.

Since K(2k0- K_(2k), this integral may be evaluated in closed form (see
Erd61yi [4, p. 129, (13)]) to give

24+ 2V(,+ + 1)

S, F(-)k* K,+=+l(2kv).

We take this to be the required asymptotic form of a, for large n, provided z _>_ 0
and n > b. If we let c - 1, we obtain

24+ 1F(b + z + 1)
(3.2) B. C(- b)k2.+=+1
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An explicit representation of a, can be found in terms of the hypergeometric
function. If, in equation (1.2), we use Rodrigues’ formula for P,’l(x), and integrate
n times by parts, we find

(3.3)

2"r(n + +/? + 1)F(n
F(-qS)F(2n + 0 + fl + 1)(c + 1)"-

2Fl{n-dp, n++l’2n+e++2 2

’c+l

Putting c in (3.3) we obtain for the function (1 x)4 the coefficients

(3.4) a, {21+OF(+qS+ 1)}{ kF(n+++ 1)F(n-c/)) }F(-4)) F(n+0+/3+ b+2)F(n++ 1)

If we now assume that n (or equivalently k) is large, then on using the result

in (3.4), we recover (3.2).
Example 3. Estimate for large n, the Fourier-Laguerre coefficients for the

function exp (- A/x), where A > 0.
We choose f(z) exp (-A/z), which is analytic at all points of the z-plane

except at z 0 where it has an essential singularity. To estimate a, for large n,
we first write a, a,+ + G-, where

a.+= fc2rcih,,
q,,(z)f(z) dz,

with a- being defined similarly. In order to evaluate this contour integral we
shall use the saddle-point method (see, for example, de Bruijn [3]). This may
be briefly described as follows. In order to evaluate I J’c g(z) exp [h(z)] dz, where
g(z) is a "slowly varying" function and h(z) frequently depends upon a large
parameter, we first determine the "saddle points," which are such that h’(z) O.
Let Zo be such a point. If/30 is defined by I/3ol 1, arg flo re/2 [arg h"(Zo)]/2,
and if we assume that the major contribution to I comes from the neighborhood
of this saddle point, then

I (2rc)l/2flog(Zo)lh"(Zo)]- 1/2 exp [h(zo)],

approximately. If there is more than one saddle point, the contributions from
each such point are added together.

To return to our particular problem, we shall first replace q,(z) by the asymp-
totic form L3, which is certainly valid for all z in Im z > 0. Then for large n, a,+

will be approximated by A,+ say, where

A,+-
(_1).+ 2/2 /4

zk(- ;7
z(- 1)/2 Z

z 4k
exp [h(z)] dz,

and h(z) is given by

h(z) -z/2 A/z + log[1/ZK1/3(2k e-i)].
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The saddle points are given by those values of z for which

A 1(h’(z) =- -- + - + - z 4k)1/21 in)
z 1,2

+ (2k e-

In order to solve this equation, let us assume that 12k e-i=l is large for k large,
and replace the modified Bessel function and its derivative by their asymptotic
forms for large argument (see [8, Chap. 17]). We then find

h’(z) =_ + - + - z
Oo

The only solution of this equation that is relevant to our analysis is that given by

Z0 ei/3 if- - q- 0

It is readily verified that the value o of corresponding to Zo is such that 1o1
0(1/k2/3), so that our assumption of [2k e-i large when k is large, is justified.

Since the main contribution to the integral is assumed to come from the neighbor-
hood of the point Zo, we shall in the remainder of this analysis approximate to
h(z) by H(z) say, where

z A
t- logH(z)

2 z -Then

H"(Zo) (3k/2A)[1 + 0(1/k2/3)-],

and from consideration of the direction in which C + is described, we shall choose

flo i. Finally we require exp [H(zo)3. If we replace (zo 4k) 1/2 by zlo/2(1 2A/z)
in the expression for H(zo), we find after some algebra that

exp [H(z0)] e’/2(rc) 1/2exp[-2A/z]- E(k/AZ)l/3zo-]3,"
Again, for k large, we find that

)1/2exp H(zo) exp -- 3(kA)/3/2 exp i3(kA)1/3/2 k + /2,

approximately. If we observe for this particular problem that a. 2 Re a, then
on combining these results we obtain

a, exp [- 3(kA)1/3/2] cos [3(kA)1/3/2 + (1 2)/6],

approximately for large n.

Acknowledgment. The authors wish to thank the referee for pointing out
the existence of the result given in equation (3.3).
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A NOTE ON BIORTHOGONAL POLYNOMIALS
IN TWO VARIABLES*

JOHN W. SCHLEUSNER

Abstract. The papers, of Konhauser, Preiser and Chai are concerned with the investigation of the
properties of biorthogonal polynomials in one variable. In this paper we give necessary and sufficient
conditions for sets of polynomials in several variables to be biorthogonal. Polynomial expansions
for these sets are also determined. In conclusion a necessary and sufficient condition for sets of func-
tions to be biorthogonal is given.

Introduction. The paper of Krall and Sheffer [7] on orthogonal polynomials in
two variables and the work of Appell [13 suggested the consideration of two sets
of polynomials referred to here as monic and simple polynomial sets. Because of
the difficulty in obtaining a suitable basis for polynomials in two variables, a pair
of sets of vector-valued functions is defined whose index set is not required to be
countable. Upon restricting the index set to be partially ordered, we obtain a
necessary and sufficient condition for this pair of sets of functions to be bi-
orthogonal.

1. Biorthogonal polynomials. The results in this section can be extended to
polynomials on R", but for simplicity they will be given for polynomials restricted
to R2.

DEFINITIONS. The set of polynomials, {P,,m(X, y)}, n, m 0, 1, .-., is monic if
every polynomial P,m has the form

Pnm(X,, y) xny nt- terms of lower degree.

In the above expression, n is the highest power of x and m is the highest power of y.
The set of polynomials, {Q,,,(x, y)}, n, m 0, 1, -.., is simple if every poly-

nomial Q,m is of degree n + m.
The monic polynomials form a basis for the vector space of polynomials in

two variables, and in particular we have the following representation.
THEOREM 1.1. If {Pm} is a monic polynomial set, then for any monic polynomial

Rl’l?H
n+m-1

R,m Pnm -k- E d(i,j, n, m)Pij,
i+j=O

where O <= <= n and O <=j <= m.
DEVINITION. Let {P,,} and {Q,m} be monic and simple polynomial sets,

respectively. The polynomial sets are biorthogonal with respect to the bilinear
functional (.,.) provided

0 if In-pl+lm-qlO,

if n p and m q.

Received May 27, 1971 and in final revised form October 19, 1972.
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Three examples of biorthogonal sets of monic polynomials and simple poly-
nomials are now mentioned. Only a brief outline of the properties of the poly-
nomials is given since an extensive discussion appears in [1].

Example 1.2. Let

and

Fm, FzE-m n,7 + m,7’ + n,7,7’,x,y]

Em, F217 + 7’ + m + n,-m,-n,7,7’,x,y],

where F2 is defined in I1, p. 104]. The Appell functions Fro, and Era, are simple
polynomials and monic polynomials, respectively, and are biorthogonal with
respect to the weight function p(x, y) xv- lyV,- over the triangular portion of
the x, y-plane given by x > 0, y _>_ 0, x y >= 0. It should be noted that an
important result of Karlin and McGregor [4] applies to polynomials biorthogonal
on this same triangle but with respect to the weight function xy(1 x y).

Example 1.3. In [1, p. 318], one finds

2,+re(n__+m)!x,ymF--n --m __1n m

n!m! [_ 72 2 2 2
n m, l/y2, 1Ix2]

and

U,m-
(n + m) m n m

y2n m
xnymF3 2 2 2 x

On investigating the above Appell functions we see that V,m are monic polynomials
and U,m are simple polynomials. The condition of orthogonality is

f O

n

if,n-p,+,m-q,=/=O,

VnmUpqdxdy n(n + m)y2 >_ 0

!m!(n + m + 1)
ifn=pandm=q.

and

Example 1.4 The generating functions

exp [ux + vy -(cb/2 abuv + av2)/2s]

exp [u(ax + by) + v(bx + cy) (au2 + 2buy + cv2)/2],

where a >.0, c > 0 and s ac b2 > 0, define biorthogonal monic polynomial
sets (see [1, p. 370]). The polynomials defined by both generating functions appear
as finite linear combinations of products of Hermite polynomials.

We now determine necessary and sufficient conditions for monic polynomials
and simple polynomials to be biorthogonal.

THEOREM 1.5. If {Pnm} and {Qnm} are biorthogonal sets of monic and simple
polynomials, then

N

(i) R(x, y) , c(i, j)Pij(x, Y),
i+j=O
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where R(x, y)is any polynomial of degree N and c(i,j) (Qij, R)/(Qij, Pij)

0 ifs <qorr <p,
(ii) xrys)

0 if r p and s q

(iii) for any polynomial R ofdegree N <= p + q, (Qpo, R) 0 ifand only if the
coefficient of xPyq is zero;

(iv) Qn,,,(x, y) i+j=,+,,, c(i,j, n, m)Pij(x, y);

(v) Ps(X, ) Y, +-+ a(i, j, r, s)Q,(x, ;);

(vi) (Pm, XrYS) O if r + s < n + m"

Proof (i) The Fourier representation follows immediately, since the monic
polynomials form a basis for the vector space of polynomials in two variables.

(ii) Let r and s be nonnegative integers. By Theorem 1.1, xry has the repre-
sentation

r+s-1

x"Y Ps + d(i, j, r, s)Pij
i+j=O

with 0 =< < r and 0 =< j =< s. The inner product of Qpq and xy is

r+s-1

(1.1) (Qpq, xy) (Qpq, Pr) + d(i,j, r, s) (Qpq, Pij),
i+j=O

where 0 <_ i<_r and 0=<j=<s. If either 0=<s_<_q- or 0=<r__<p- 1, the
right-hand side of (1.1)vanishes identically because of the biorthogonality of
and Q,,,. If r p and s q, (1.1) reduces to {Qpq, Xry) (Q,q, P,q) since the
summation on the right-hand side does not contain a term for (i, j) (p, q).

(iii) We merely point out that this is a direct consequence of condition (ii)
and will be used as such later.

(iv) As previously observed,

n+m

Qnm c(i,j, n, m)Pij,
i+j=O

and for p and q such that 0 < p + q =< n + m, the inner product of
Qnm is

and

<Q,, Q,,> c(p, q, n, m)<Q,q, Pq>.

By part (iii) of this theorem, the inner product of Qs with any polynomial of
degree =< r + s is zero, and therefore

(Qeq, Q,,m) O if p + q # n + m.

Thus

c(p, q, n, m) (, 0
Qnm>/<Qpq, Ppq>

ifp+q#n+m,

ifp+q=n+m,

for all nonnegative integers p, q such that 0 __< p .+ q __< n + m, and hence part (iv)
is proved.
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(v) Using the result in (iv), we obtain the system of equations

c(n + m,O,n + m,O) c(O,n + m,n + m,O) P,+m,O-]
c(n + m,O,n.+ rn 1,1) c(O,n + m,n + rn-- 1,l ]

0c(n + m, O, O, n + m) c(O, n + m, n + m) [_.Po,n+m_]

Suppose the rank of the coefficient matrix is less than n + m + 1. Then there exist
constants (not all zero) such that the (r + 1)th row, for some r >= 0, can be
expressed linearly in terms of the other rows; thus

Q,,+m-r,r ’ d(i,j)Qij 0
i+j=n+m

(’ indicates the term Q, +,,_ r,

obtain
does not appear in the sum). From this equality we

<Pn+rn-r,r, Qn+m-r,r> =0,

which contradicts the biorthogonality of the polynomials. Thus, the matrix is non-
singular and the existence of the coefficients for the polynomial expansion is
guaranteed.

(vi) Let n and rn be nonnegative integers. Then by (v),

(x"Y, Pnm) 2 d(i, j, n, m)<x"y, Qij>
i+j=n+m

for nonnegative integers r and s. The result now follows from (iii).
THOFM 1.6. If {P,,} and {Q,,,} are monic and simple polynomial sets,

respectively, and satisfy (ii) and (vi) of Theorem 1.5, then they are biorthogonal.
Proof Case 1. Suppose n < p. Then the polynomial P,,, is given by

Pnm xny -4- Rn+ 1,

where R,+,,_ is a polynomial of degree __<n + m containing no term xiy
with > n or j > m and therefore no term of the form xPy for j >= 0. The inner
product of Qpq and P,,m is

(1.2) <Qpq, P,,,,> <Qpq, xnym> -+- <Qpq, R,,+,,,_ ,>,
and the right-hand side of (1.2) vanishes by (ii) and (iii) of the previous theorem.

Case 2. If m < q, then R,+,,_ has no term of the form x2yq, for j >= 0, and
again by (ii) and (iii), the right side of (1.2) is zero.

Case 3. Suppose n > p and m >= q. Letting

we have

P+q

Qpq(x, y) c(i,j, p, q)xiy,
i+j=0

P+q

i+j=0

c(i,j,P,q)<P,,,,,,xiyj).
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Since n + m > p + q >= + j for all nonnegative integers i,j such that 0 _<_ + j

=< p + q, by (vi) the right-hand side of (1.3) is zero.
Case 4. Assuming n p, we need only consider m >__ q since the other

possibility has been investigated. For n p and m > q, n + m > p + q so that
(Pnm, Qpq) 0 as argued in the previous case. If n p and m q, then by (iii),
equation (1.2) becomes

(Q,,,, P,,,) (Q,,,,

Combining these four cases gives the result

if In Pl + Im ql 0,

if n p and m q.

2. Biorthogonal functions. We now concern ourselves with sets ofbiorthogonal
functions {F}, and {G},, each function of which maps some nonempty set X
into the linear space L. The set f2 is an infinite set of distinct indices of the form

(1,"’, ,), where the i belong to a totally ordered set.
DEFINITION. The sets {Fn and {G}n are biorthogonal with respect to the

bilinear functional (.,.) provided

0 if fl,

0 if ft.

DEFINITION. Let A be a finite subset of ft. The set of functions fA is an associ-
ated set of {F} A if for each a’ 6 A

(2.1) F, c(a, a’)f, where c(a’, a’) 0.
A

Assume now that fl is partially ordered by the relation a fi if and only if
fl, for all i, 1 n, and {f}A and {g}A are the associated sets of

and {G,}A respectively, for finite subsets A of . Furthermore, for each 7 we
assume there exists a finite subset A of for which both of the following hold"

(*) 7 6 A and 7 is an upper bound of A.;
(**) property (2.1) with A A and

(2.2) G, d(z, a’)g, where d(a’, z’) 0,

are satisfied for each z’e At.

THFORFM 2.1. /f {F}n and {G}n are biorthogonal, then for each 2 in f the
jbllowing conditions are satisfied:

0
(2.3) (Vx, g)

0

(2.4) (Gx,)
0

(0

and conversely, if (2.3) and (2.4) are satisfied, then the sets are biorthogonal.

if ai < 2ifor some i, <= <= n,

if;t=,

if zi < 2i for some i, <_ < n,

if2 =;
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Proof. (Necessity). Let tt be an element of ft, then there exists a finite subset A
of D containing the upper bound tt for which (2.2) holds. The biorthogonality of
the sets {F}n and {G} implies each set is linearly independent and therefore a
finite subset of either set will generate the same subspace of L as its corresponding
associated set. Thus we write

(2.5)
A

Let 2 be in ft and suppose 2 > tt for some k, __< k < n. Since 2 is not in A, the
inner product of Fx and g, is seen from (2.5) to be zero.

Suppose 2 tt; then by (**) Gx may be expressed as

+ Z
A-).

To each in A 2 there corresponds a finite subset B of f containing as an
upper bound and such that G, = b(fi, a’)g for each ,’ in B. This implies
g, c(fl, a’)Ge for each ’ in B,so that

(2.6) G d(2, 2)g + e(,:)G,
B

where 2 q B and B U a- ) Ba A .. Since 2 q B and d(2, 2) 4: 0, on taking the
inner product of Fx and Gx we find in view of (2.6) that (Fx, gx) : 0.

(Sufficiency). Let 2 and fl be in fl; then there exists a subset A of fl containing
fl as an upper bound and having the property that

(2.7) G d(, fl)g, where d(fl, fi) O.
A

If 2 < fi for some k, =< k =< n, then (2.3) and (2.7) show the inner product of

Fa and
and fi, F and G, in the above argument leads to the same result.

Assume 2 fl in (2.7), then the inner product of Fx and Gx is nonzero, since
d(2, 2) is not equal to zero and the elements in A are distinct. This completes the
proof of the theorem.

Theorem 2.1 is now applied to obtain a multiple basic-set analog of a result
due to Konhauser [5]. Let

n {(n, kl, kp){0 _< k +... q- kp <= n},

where the solution of the diophantine inequality is over all nonnegative integers,
kl,... ,kp.

Notation. Let t(x), Ul(Yl),’’" blp(yp) be polynomials of degree h in
X, Y X, yp respectively’, then we shall use [R,,k,,...,kp]a to denote a set of poly-
nomials of total degree n in t(x), u(y), =< =< p, and ofdegree k in u(y). Similarly,
we will let [S,s,,...,p)a denote a set of polynomials of total degree r in v(x), w(y),

__< __< p, and of degree si in w(y), where the polynomials v(x) and wi(y) are of
degree m in x and y respectively.

It follows that R(,,,,...,,) is a polynomial of degree hn in x, yl,..., Yp
together and of degree hk in y. The polynomial S(,,,...,s)is of degree mr in
x, Y 1,"’, Yp together and of degree ms in y.
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Referring to the previous definition of biorthogonal functions, for this par-
ticular example we have the condition of biorthogonality of these sets with
respect to (.,.) described by

p

0 if In r -]- E ]ki- Si[ :: O,

(Rn,k,,...,kp, Srs, ...,s,)
i=

0 n=randki=sifor <=i<p.

Let (k 1,..., kp) where ki are nonnegative integers. By the usual iterative
procedure, it can be verified that for a given (n, k) in there exist constants
C(p, al, ap; n, k) such that

R,,, .,,,- C(p o’ ap n k)go,,..,,
p=O o’ +’" +ap= 0

where gp,,,,...,, t(x) ’ ""u’(yl)... up (yp) and C(p, a1,..., a, n, ) 0
if ai > k for 1, p. Thus for each ? (n, k) in there exists a finite subset
A, of , A {(m, i, i)](m, i, i) =< 7}, such that for each fl A,
R- a C(, fi)g with C(fl,/3)-# 0. A similar statement for the polynomials

ISr,l,...,s,] also holds, and from Theorem 2.1 we have the next result.
THEOREM 2.2. The polynomial sets [-R,,,...,, and IS,,,...,, in t(x), ui(Yi) and

v(x), w(yi), respectively, are biorthogonal with respect to (.,.) if and only if the
sets satisfy the conditions

(s,,...,, t(x)"- ,u() &O,))
=0 if n < r or ki < sifor some i, < <= n,

=/=0 if r n and ki si for all i, <= <= n,

and

(R,,,,...,, v(x)-s’ w]’(y,) wp(y))
=0 if r < n or si < kifor some i, <= < n,

=0 if r= n and si ki for all i, <= < n.

Acknowledgment. The author is indebted to Professor William Simons for
helpful suggestions during the preparation of this material.
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ERROR BOUNDS FOR STATIONARY PHASE APPROXIMATIONS*

F. W. J. OLVER-

Abstract. An error theory is constructed for the method of stationary phase for integrals of the
form

I(x) eixp(t)q(t)dt.

Here x is a large real parameter, the function p(t) is real, and neither p(t) nor q(t) need be analytic in
t. For both finite and infinite ranges of integration, explicit expressions are derived for the truncation
errors associated with the asymptotic expansion of l(x). The use of these explicit expressions for the
computation of realistic error bounds is illustrated by means of an example.

1. Introduction and summary. The most comprehensive practicable theory of
the method of stationary phase for single integrals of the form

(1.1) I(x) eixp(’)q(t) dt

appears to be that of Erd61yi [4], [5]. In this integral a, b, and the function p(t)
are real, and x is a large real parameter. Erd61yi’s first paper concerns the case
in which p(t) and q(t) are expansible at a and b in series of fractional powers of

a and b t. The second paper extends the analysis to singularities of logarith-
mic type.1

The main purpose of the present paper is to supply explicit expressions for
the error terms associated with the expansions of [4] from which realistic bounds
are readily computable. The derivations of Erd61yi do not lend themselves readily
to the construction of error bounds owing to the somewhat artificial nature of the
neutralizer functions employed in the analysis. Our approach is 15ased instead on
Hardy’s theory of generalized integrals [7], [8].

A secondary purpose of the present paper is to facilitate the application of
the method of stationary phase to integrals having an infinite range of integration.
These integrals can be treated by combination of results given in [4]. In the present
account, however, they are analyzed directly, and in certain ways results for infinite
integrals are simpler than those for finite integrals. In applications, writers often
shun the method of stationary phase for infinite integrals. Instead, the path is
deformed into the complex plane and the method of steepest descents invoked;
see, for example, [2, Chap. 4, and [3, Chap. 5. Such deformations presuppose
that p(t) and q(t) are analytic functions of the complex variable t, which is not an

Received by the editors August 4, 1972, and in revised form November 10, 1972.
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For a brief history of the method of stationary phase, see Jones [10] and another paper by
Erd61yi [6], and for an important correction to [5], see [11].
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inherent feature of the method nor one which is needed in the present theory or
that of Erd61yi.

The paper is arranged as follows. Assumptions are listed and discussed in
2, and the main theorem stated in 3. This theorem gives the expansion of the

integral (1.1) for large x, complete with explicit error terms. The proof follows in
4 and 5. In 6 the asymptotic nature of the expansion is discussed, including

the derivation of a stationary phase analogue of Watson’s lemma. The same
section also indicates how bounds for the error terms can be obtained. The con-
cluding section, 7, contains an illustrative example concerning the Anger-Weber
functions.

2. Assumptions. The following conditions and notations are similar to those
adopted for Laplace’s method in [12] and [13]. In (1.1) the limits a and b are
independent of the positive parameter x, a being finite and b > a) finite or infinite.
The functions p(t) and q(t) are independent of x, p(t) being real and q(t) real or
complex. They have the properties:

(i) In (a, b), p(m+ 1)(t and q(")(t) are continuous, m being a nonnegative
integer, and p’(t) > O.

(ii) As --* a from the right,

(2.1) p(t) p(a) + p(t a)+", q(t) q(t a)+x-1,
s=O s=O

where the coefficients Po and qo are nonzero, and p and 2 are constants such that

(2.2) p>0, (m+ 1)p+ >Re2>0.

Moreover, the first of these expansions is differentiable rn + times and the
second rn times.

(iii) When p(b) =- limt__ {p(t)} is finite, each of the functions

{) d}q(t)
(2.3) e(t) =- -)- p’(t)’

s O, 1,..., m,

tends to a finite limit as --, b-.
(iv) When p(b) oo, limt

_
{q(t)/p’(t)} 0 and each of the integrals

e"(t)p(t)p’(t) s m,dt, O, 1,...,

converges at b uniformly for all sufficiently large x.
Remarks. (a) Cases in which x is a negative parameter, or p’(t) is negative,

can be included by changing the sign of throughout. Cases in which p’(t) has
zeros in (a, b), that is, cases in which the integral (1.1) has interior stationary
points, are treatable by subdividing the range at the stationary points and inter-
mediate points. Similar subdivisions may also be made when b is finite and p(t)
and q(t) have expansions at b in fractional powers of b of the type (2.1).

(b) Condition (iii) is fulfilled in the common case in which p(m+ a)(t) and
q(")(t) are continuous at b and p’(b) :A O.

(c) Condition (iv), with s 0, implies that the original integral converges
uniformly at its upper limit.
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3. Main result. In consequence of condition (i) there is a one-to-one rela-
tionship between and the variable v, defined by

(3.1) v p(t)- p(a).

In terms of this variable the integral (1.1) transforms into

p(b) p(a)

(3.2) eixp(t)q(t) dt e’xp(a) eixvf(v) dr,
0

in which

(3.3) f(v) q(t)/p’(t) Po(t).

Again, condition (i) shows that f(v) and its first m derivatives are continuous
when 0 < v < p(b) p(a). For small v, a and f(v) can be expanded in asymp-
totic series of the form

(3.4) a cv/", f(v) av(+ -")/".
s=l s=0

The coefficients cs and as depend on Ps and qs, and may be found by standard
procedures for reverting series. In particular,2

p
C p/U’ C2 /*p + (2/.)’

{; }1qo (2 + 1)plqo
P(o 1)/."/*p)/.’ al /*2po

THEOREM 1. Assume the conditions and notation of 2 and the present section,
and let n be a nonnegative integer satisfying3

(3.5) m/* 2 < n < (m + 1)/*- 2 + 1 (2 real),

or

(3.6) m/, Re ). < n < (m + 1)/*- Re 2 + (2 complex).

Then

(3.7)

eixp(’)q(t)dt eixp(a) exp
(s + 2)hi F --s 2 as

s=o 2/, x(s+

m-1

--eiXp(b) E Ps(b)
s--o

+ (m,.(X) g’m,.(X)

With the assumed conditions, Po is necessarily positive. Corresponding expressions for c3 and
a are given in [13].
The inequalities (2.2) guarantee that at least one value of n can be found.
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if p(b) < , or

if p(b)= c,. Here v 0 when n mkt- 2, and v in all other cases.4 The
error terms are given by

(3.9)

and

where

G,,,(x) eiXV(a)
.=o

exp -/ ,j F{(s + 2 mtt)/tt

V{-s+2-mtt ixp(a)-ixp(b)}it x(S + a )/,

(,,,,(x) eiXpmQ’,,,,(t) dr,

n-1 F{(S + /)///] a
(3.11) Qm,,(t) Pm-l(t)- F{(S + 2 + tt m#)/#} {p(t)- p(a)}(mu--s-x)/’"

In (3.9) the incomplete gamma function takes its principal value, that is,

(3.12) F(, z) e-’t dt,

where the path does not intersect the negative real axis, and has its principal
value.

4. Preliminary lemmas.
LEMMA 1. When x > 0 and Re e > 0,

(4.1) lim e-,O eiXVv-1 dv
rl-* 0 +

This may be proved by rotation of the path of integration until it coincides
with the ray ph v tan-1 (x/q), the deformation being easily justified by means
of Cauchy’s theorem. On the new path set

v r/(q ix),

so that z is real and ranges from 0 to oo. Then

1
rT- 1-’(00

e -" eX"v=- dv
( ix)=

e- dr
( ix)

Passage to the limit yields (4.1).
As usual, empty sums are understood to be zero.

In the case m 0, P__ (t) is defined to be q(t) dt, consistent with (2.3).
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The left-hand side of (4.1) is a generalized integral in the sense of Hardy [7],
8]. Its importance lies in assigning a meaning to Eulcr’s integral

(4.2) eiX,v dv

when Riemann’s definition is inapplicable owing to divergence at the upper limit.
In the case 0 < Re 0 < 1, (4.2) converges and equals ei/2F(e)/xL In other

words, Hardy’s generalization is consistent with the ordinary definition. This is
a special case of the following result, included in Hardy’s theory. 6

LEMMA 2. If (V) is sectionally (piecewise) continuous in (0, ) and ) c/)(v) dv
converges, then o, e-,V4)(v) dv converges .for every positive number r and tends to

f, ,/,() d, ,s , - 0 +.
Lastly we shall need the following result, which is provable in a manner

similar to Lemma 1.
LEMMA 3. When x > 0 and fl > 0,

(4.3) lim e.--,v eiXv dv
q-0+

5. Proof of Theorem 1. Write

fl - p(b)- p(a),

and for each nonnegative integer n, define 0,(v) by

s=O

so that

(5.2) ,(v) a,v(’+-")/" + a,+ xv("+1+-")/" + ..., v - O+,

and

"’- r{(s + )/,} . . ,,/.(5.3) b(,,)(v) f)(v)
,=o r{(s + 2 j#)/It}

av(’+ j O, ..., m.

Assume first that fl is finite. Since

(5.4) f’)(v) Pj(t),

conditions (i) and (iii) of 2 show that f(v), dp,(v), and their first m derivatives
are continuous when v e (0, fl]. With r/ denoting an arbitrary positive number,
we have

7, p. 51]. It is important to notice that j’ 4)(v)dv need not converge absolutely at either limit.



24 F.W.J. OLVER

where

(5.6)

and

E,,(rl, x) e -"v+ ixv,,(v) dr,

(5.7) F,(q, x) a e-"+iXv(+ x-u)/" dr.
s=O

Letting

f: nl {(S+ ,g/} S+ )a(5.8) eXf(v) dv exp r
=0 2p p x(,+ x)/,

where

E,(x) lim E,,(rl, x), F,,(x) lim F,,(r/, x).
rt+O+ q+O+

By integrating by parts, we have

qg,(0) e
(5.9) E,(r/, x) q5,(/3) +

rl ix r ix
fq e-V+ixvdp’n(V) dr.

1 ix 30

Since 4,")(v) is continuous in (0, fl] the process of partial integration may be
repeated m- times. The conditions of 2 show that the expansion (3.4) for
f(v) may be differentiated m times, hence the same is true of (5.2). In consequence
of the conditions (3.5) and (3.6), all needed derivatives of ,(v) at v 0 vanish,
except possibly q,’- 1)(v); accordingly

E,,(r x)
(r ix)"

e-. +,xa

j= O (rl ix) +1

(r ix)m
e-"+’Xcp.(v) dr.

We propose to let, r/--+ 0 in this result to obtain

(5.11) E.(x) 4)}7’- )(0) e’x cbtj)(fl)
j=O

This step is justifiable by Lemma 2, provided that the integral in (5.11) converges.
Now from the differentiated forms of (5.2) we see that as v--+ O, dpm)(v) is
O{v(’+Re’-"-’")/"} or O{v1/")-1} according as n > mp Re 2 or n mp 2. In
either event, the integral in question converges absolutely. Thus (5.11 is established.

Next, consider F,,(x). Application of Lemma 3 to (5.7) gives

e(S + 2)ti/(2u)

V,,(x) a +
0 x(S

s+2
F

In applying Lemma 2, qg(v) is taken to be ei"Vf(v) when 0 < v _<_//and 0 when



STATIONARY PHASE APPROXIMATIONS 25

From (3.12) we derive by repeated integrations by parts,

F()
F(e, z) e-z

j=o F(e -j) z
--F( m,z).
F( m)

Hence

F,(x) eixe asF{(s + 2- jl)/p}s=0 j=0.2)
+ e-ixp(a)m,n(X),

where ,(x) is defined by (3.9).
We now substitute in (5.11) by means of (5.3), with v fl, and subtract (5.12).

The double sum cancels, and we are left with

E,(x) F,(x) eie f(J)() + -)(0)
j=O(.3)

+ e-i,(a){6m,,(X) em,,(X)},
where

(5.14) tm,n(X eixp(") eixv4t,m)(v) dr.

From (2.3), (3.11), and (5.3), it is verifiable that

(5.15) qS,")(v) Q’m,,(t)/p’(t),

and thence that (5.14) agrees with (3.10). From (3.5), (3.6) and (5.2) it is seen that
the, 1)(0) vanishes unless 2 is real and n mp- 2, in which event it equals
(m- 1)!a,. Combination of (3.2), (5.4), (5.8) and (5.13) yields the first of the
desired results (3.7).

The proof of (3.8) is similar. First, we observe that when 0 N s N m 1,

f eixp"’es(t)p’(t at eiXp(t’Ps(t)ix -txl f eip(,,e+ l(t)p,(t dr.

By hypothesis, as b-, both integrals converge and p(t) . Therefore
R(t) 0. In terms of v this implies that j eif(s(v)dv converges when s N m,
and f((v) 0 when s m 1.

In (5.5) and (5.6), is replaced by and the term F,(,x) is absent. The
convergence of the integrals is assured by Lemma 2 and the convergence of

eif(v)dr. From (5.1) and the fact that f(v) 0 as v (condition (iv)),
it follows that e-"+i(v) 0 as v . Hence (5.9) becomes

qv+E,(q, x)
,(0) e- i’,(v) dr.

ix ix

Similarly, in place of (5.10) we have

(nm- 1)(0)
.(, x) +(r --ix)

1

(? ix)m
e ixv(/)(nm)(v
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In (5.3) with j m, all powers of v in the sum have negative real part: this is a

eiXV4(,m)(v)dv converges, and by applica-consequence of (3.5) and (3.6). Hence
tion of Lemma 2 we obtain

e.(x) }" eiXVck(.=)(v) dv

compare (5.11). Combination of this result with (5.8) (again with fl c) leads
to (3.8).

The proof of Theorem is complete.

6. Asymptotic properties and error bounds. From (3.10) we immediately have

(6.1) 16,,,,(x)] <
1. ff /,b{Q,,,,(t)}
x" IQ,,,(t)] dt

where ,b denotes the total variation of the function within the braces over the
closure of the given interval. Another bound for 8,,(x), which has the advantage
of being O(x -"-1) for large x, may be found by partial integration of (3.10),
using the identity

(6.2) Q’m,n(t)/P’(t) Qm+ 1,n(t)

Thus

(6.3) 15m,n(X)l [IQm+ 1,n(a)l + IQm+ 1,n(b)l + a,{Qm+ ,.,n(t)}]X-m- 1,

provided that the right-hand side is finite: in contrast to (6.1), finiteness is not
guaranteed by the conditions adopted in 2 and 3.

Now consider the other error term. For fixed 0 we have

r(e, z) e-

as z --. in a sector which includes larg zl =< n; see [1, 6.5]. Application to
(3.9) shows that

(6.4) :,,,,(x) O(x-"- ), x --+

Relations (6.1), (6.3), and (6.4) confirm the asymptotic nature of the expansions
(3.7) and (3.8).

An interesting special case of (3.8) is obtained on taking a 0, b
m oo, p(t) t", q(t) latu- g(t"), and subsequently replacing t" by t.

THEOREM 2. Assume that
(i) g(t) is infinitely differentiable in (0,

(ii)

(6.5) g(t) gstc+a-u)/u, --+ 0+,
s=0



STATIONARY PHASE APPROXIMATIONS 27

where Re 2 and la are positive, this asymptotic expansion being differentiable any
number of times;

(iii) Each of the integrals

eix’g(S)(t) dt, O, 1,...,s

converges at oo uniformly for sufficiently large x. s

Then for large positive values of x, the asymptotic expansion of the integral

o’
eiX’g(t) dt

is obtained by substituting (6.5) and integrating formally term by term in Hardy’s
generalized sense.

Although this theorem can be derived from existing results, for example 9],
it does not appear to have been emphasized in the literature. This is somewhat
surprising since it is the natural analogue for Fourier integrals of Watson’s
lemma for Laplace integrals.

Let us return to Theorem 1 and consider the actual calculation of bounds
for the error terms. For 6m,,(X) the inequality (6.1) (or (6.3)) may be used as it
stands. For ,,,,(x) we make the simplifying assumption that 2 is real. We may
then apply the inequality

(6.6) IF(c,+iy)l <= 2y-1, < 1, y > O,

which is itself establishable by deforming the path in (3.12) until it lies along the
imaginary axis and then integrating by parts. Thus we have

2 n_.l F{(S + 2)//} la,I
(6.7) I,,.(x)l

s=O IF{(s + 2- m/)/#}l {p(b)- p(a)}(mu+’-s-

In the case p(b) , this bound vanishes and only the error term 6m,,(x) survives.

7. Example. As a simple example ofthe calculation oferror bounds, consider
the functions of Anger and Weber with equal argument and order:

cos (xt x sin t) dr, E,,(x) sin (xt x sin t) dr;

see [14, 10.1]. In the notation of 2 and 3 we have

where

r{J(x) + iEx(x)} ff eixp(t) dt,

3 7

(7.1) p(t) sin 3!- 5!
+ 7!

Thusa-0, b=t,q(t)= 1,/t= 3, and2= 1.

Convergence at 0 is not required, however, except for 0.
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The definition (2.3) gives

(7.2) Ps(t) sin 1/2t sin2 1/2t"
In particular,

1 cos 1/2t 5 4 sin2 1/2t
(7.3) Po(t)

2 sin2 1/2t’ Pl(t) -4 sin 1/2t’ Pz(t)
16 sin8 1/2t

By reversion of (7.1) we have for small v p(t),

43000(6/))3 -k-"’"t= (6V) 1/3 + o(6V)+ ---6(6v)5/3 + 2500(6v)7/3 + 17248

compare 14, 8.21]. Differentiation yields

f(v)
dv

asv(S 2)/3.

s=O

compare the second of (3.4). In this expansion the coefficients a of odd suffix
vanish, and

___!_65/3 o67/3, 2-18-9ooo63,ao--1/261/3, a2=6, a4 8o a6--100 08 17

Using the asymptotic results of 6, we derive from (3.7)

(7.4)
a2rC{Jx(x) + iEx(x)} e(2+ ),i/6F(_]s + 1/2)X(2-])/3

s=O
e"i" P(rc)

s=O

Explicitly, the first few terms on the right-hand side are given by

en 6F -- + ---d129
-i8624000

+ eSi/6F ) i,2160( 5/3

eni/61_.( 241300( 7/3

1
+ +

To evaluate error bounds, we note that the condition (3.5) requires

3m- <_ n < 3m+ 3.

Therefore from (3.7),

(7.5)

n-1 asn{Jx(x + iE,,(x)} e(+ 1)ni/6F(1/2s -at- -})x(s+ 1)/3
s=O

e’ Ps(rc)
s-O

+ am,.(x)-

where m is an arbitrary nonnegative integer, and n 3m, 3m + 1, or 3m + 2.
Suppose, for example, that m 0 and n 1, that is, the expansion comprises

m/6the single term e F((6/x) /3. Equations (3.11) and (7.3) give

2
(7.6) Q1,1(t)

2 sin2 1/2t {6(t sin t)} 2/3"
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The bound (6.3) yields

+
2 (67Z)2/3

q- o,n(Ql,1)

Also, from (6.7) we derive

[eO,l(X)[ < 4(6rt)- 2/3x- 1.

Numerical calculation shows that

2(6zt) -2/3 0.28, Uo,(Ql,1) 0.12,

to two decimal places, and thence

16o,1(x)1 < 0.44x-1 [eo,a(X)[ < 0.56x-1

That the combined bound 1.00x-1 for 16o,(x)[ + [eo,(x)[ is quite realistic can be
seen by comparing it with the first neglected terms of the asymptotic expansion,
given by

eix

10x 2x

Similar results can be obtained for higher error terms, provided that in
calculating the functions Q,,,,(t) from expressions of the type (7.6), sufficient
precision is maintained to overcome numerical cancellation for small t.
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ON THE EXISTENCE OF ANALYTIC SOLUTIONS OF SYSTEMS OF
EQUATIONS IF THE JACOBIAN IS ZERO*

G. J. OLSDER?

Abstract. The well-known implicit function theorem states that the equations f(z 1, ", Zk W) 0,
f(0; 0) 0, 1, ..., k, have a unique solution zj(w), j 1, -.., k, in a neighborhood of w 0 if
the Jacobian of the analytic functions f with respect to the variables zj is nonzero at zj w 0. This
is a sufficient, but not a necessary condition for the equations f 0 to have an analytic solution.
In this article weaker conditions will be given. As has been noted, the solution is unique if the Jacobian
is nonzero. This is in general not true if only the weaker conditions are satisfied. It is possible in that
case that more than one analytic solution exists. In the proof use is made of the concept of formal
power series.

A theorem of Artin can also be used to give sufficient conditions under which a system of equa-
tions has analytic solutions. In the proof of his general theorem use was made of the techniques of
algebraic geometry, whereas in the proof presented here only function theoretic aspects appear.

1. Introduction. All variables used in this article are supposed to be complex,
unless stated differently. It is assumed that the reader is familiar with the theory
of analytic functions and formal power series. Formal power series are treated,
for instance, in 2].

In the following we will use formal power series (f.p.s.) as well as convergent
power series (c.p.s.). Though this is not strictly necessary, we will use the symbol

for the equality of two f.p.s., implying that all the corresponding coefficients
coincide for the equality of two c.p.s, the usual symbol will be used. The
negation of - will be denoted by _. For example, ifj aJzJ is a f.p.s., then

ajzJ=O,,a,i=O, j= 1,2,....
j=l

The symbol is also used if a f.p.s, is denoted by a letter. So ( = j ajzJ means
that the f.p.s, is denoted by (. If j--- ajzi is convergent, then ( will be equal to
the sum of this convergent series.

For the sake of completeness we repeat the following basic theorem, which
can also be found in [2].

THEOREM 1. Let

ji(Zl,.-.,zk; w) Z aijl...j+lzi zwJ+, i= 1, k,
Jl,’",jk =0

be fp.s. with ao...o O, l, k.

* Received by the editors September 21, 1971, and in revised form July 15, 1972.

" Department of Applied Mathematics, Technological University "Twente", the Netherlands.
thank the referee for drawing my attention to this theorem, which was published as theorem

(1.2) in [1]. This theorem--in the context of this paper---can be formulated as follows. Suppose that
we try to find (w) (l(w), ..., k(W)), where i(w) i= aijw are formal power series, which solves
f(z w) 0, that is, f(; w) 0. The formal power series (w) are substituted in f(. w) and the result
is a formal power series in w of which the coefficients must be zero. This gives recurrence relations for

aij. If an integer N exists in such a way that ai, j >= N, are uniquely determined by these recurrence
relations, then the formal power series (w) have positive radii of convergence.

30
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If the (k x k) matrix with (i, j)-th element aio...olo...o, the number being the
(j + 1)-th index, is nonsingular, then the equations

(1.1) f/(z1," zu; w) O, 1, ..., k,

have one and only one solution of the kind

(1.2) z : bijwj, 1, k.
j=l

In this solution bio O, 1,..., k, and the other coefficients are uniquely deter-
mined by recurrence relations. (The fp.s. (1.2) are said to be a solution of (1.1) if
the fp.s. obtained by formal substitution of (1.2) in (1.1) are all zero.)

If no danger of confusion exists (z 1,..., Zk) will be abbreviated as z. This
notation will also be used with other variables.

2. The main theorem and its proof.

THEOREM 2 (the main theorem). Suppose the jhnctions f(z; w), j 1,... k,
with z (Zl, Zk) are analytic in a neighborhood 1 ofz w 0 and have the
following convergent power series in f2x

(2.1) j)(zl, zk;w) ajil...ik+lz’ "k ,V’ik’A’i+l, j= ..., ,k,
il,’",lk+ =0

and suppose jbrmal power series

(2.2) i = bow, i= 1,...,k,
j=l

are given, which satisfy

(2.3) f./(; w) = 0, j 1,..., k,

where the jbrmal power series j)(" w) has been obtained by jbrmal substitution of
(2.2) in the convergent power series at the right-hand side of (2.1).

Let det [cf({ w)/cz] be the jbrmal power series which arises ij’ the series (2.2)
are substituted in the Jacobian det [f(z; w)/z] of the junctions f with respect
to z. lf

[cf( w)1(2.4) det [_-

_
0,

then the Jbrmal power series (2.2) have positive radii of convergence and hence the
junctions (i(w) 1 biawa, 1,..., k, analytic in a neighborhood of w 0,

satisf,v f/(((w); w) 0, 1, ..., k.
Remark. From (2.2) and (2.3) it follows that ji(0;0)= 0, i= 1,..., k, or

aio.., o 0, and from (2.4) it follows that ji(z; w) 0, 1, ..., k.

Proof of Theorem 2. We assume that for at least one i, infinitely many bia,
.j 1, 2, .-., are nonzero, otherwise the f.p.s. (2.2) are all polynomials in w and
then the convergence is evident.

Suppose first that the coefficient of w (the constant term) of the f.p.s, repre-
sented by the left-hand side (1.h.s.) of (2.4) is not equal to zero. Then it is easily
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verified that

(2.5)
((Zl,""", Zk)

and the implicit function theorem can be applied which states that ji(zl, ..., zk; w)
0, j 1, ..., k, uniquely determine z l, ..., zk as analytic functions of w in a

neighborhood of w 0. Hence, according to Theorem 1, ,..., represent
these functions. Now Theorem 2 has been proved.

For the remainder of the proof we assume that the 1.h.s. of (2.5) is zero. Because
this remainder is rather lengthy, it will be split up into four stages, to be denoted
by I, II, III and IV. The aims of these stages are, respectively"

Stage I" to reduce the case f(O;O)/cz O, i,j 1,..., k, to the case
cf/(O; O)/c?zj - 0 for at least one and j by means of proper changes of variables
(Zi i’ fi "-- fi)"

Stage II’to give the functional matrix [cf/c] a specific form.
Stage III" to reduce the original system (k equations, k + 1 variables) to a

new system (k equations, k variables).
Stage IV’to serve as the concluding part.
I. We distinguish two cases"

(i) cf(0; 0)/cz 0 for all i,j 1,..., k;
(ii) for at least one i/ndj’f(0;0)/czj : O.

If case (ii) occurs, a bar is added to all symbols except w, Stage is omitted and
the proof is continued at Stage II, where, for notational convenience it is supposed
that cfl(0; 0)/CZl - 0. For the time being we assume that case (i) applies.

Suppose that
+1(2.6) i bi#iw#i -[- biui+ wui nt- 1, k,

with biu 0 and bij 0 for j < Pi (Pi 1), and define

(2.7) hi w) = hij .wTM -+- hij + wvij+ AI.. i,j k
iJ ij

with hijv,j - 0. Possibly i 0 for some i; in this case we take fii 00. However,
for at least one we have fig < oo. An analogous situation prevails for hij. Possibly
some hij - 0, in which case we again take vij oc. However, from (2.4) it follows
that for each at least one j exists for which Vii is finite.

Taking p min {p/}, we introduce new variables z’, i= 1,..., k, and a
neighborhood of z* w 0 in such a way that 2 is mapped into under
the mapping

(2.8a) zi (qi nt- Z)wu, i= 1,..., k, w w,

where qi biu, if Pi ]A, otherwise qi O. Also new f.p.s. ’ are introduced"

(2.8b) i = (qi -l- )W", 1,..., k,

where qi has been defined above. The new f.p.s. ’ have the behavior

bilaiwli-" -1
I- if fli > P,

(2.9)
.*, - biu,+l W + if#i P.
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Functions f,i(z* w), j 1, k, will now be defined in ’-2 as

* *’w) fj((q + z)w" (q, + z,)w "w).Ij(Z1, Zk .1

(2.10) Z aji,...ik+, wik+’+"(i’++‘) 1-I (qm + z)i,
i,’",ik+ =0

j= 1,...,k.

The functions fj(z* w),j 1, ..., k, are analytic functions in 2. A neighborhood
2 of Z* W 0 exists in such a way that

Z* *" W) aji,...iu+,Z*(2.11) (,...,z, ...z’w’+ j=l,...,.
i,’",ik+ :0

For fixed j, each coefficient in this expansion is a function of finitely many aj...
and finitely many bt. It follows that when , i= 1,..., k, are substituted in
(2.11), we obtain

(*. w) = f(. w) = 0 j ,.(2.12)

Define

(2.13) m min min i,,+1 -t-- 12 itlaji,...i,+ :/: 0
t=l

which is the lowest power of w which appears on the right-hand side (r.h.s.) of
(2.10). A reasoning given in Appendix A shows that

(2.14) m > 12.

The functions f(z* w) can be divided by w". The quotient-functions, to be denoted
by f’(z* w), are again analytic functions in f’, where they have the expansions

(2.15) C*Cz* *’w)J j, 1 Zk

with aj’,...6,+, aji,...i,i,+, +m. From (2.12) it is clear that

(2.16) f’(* w) 0,

Moreover, it is easily proved that

(2.17) h - -Z(, ;W) - hijv,wv’-m+" -t- "’’,

Because

j=l,...,k.

i,j= 1,...,k.

(2.18)
(f 1, "’", f’) (f," "", f) w(.-,.)
(z’,...,z) (z,...,z0

it follows from (2.4) that

(2.19) det
[_3z,

(*; w)
_

O.
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To summarize" originally we dealt with the functions and the variables
zj, w and j; after the transformations (2.8), new functions .ff were obtained and
the corresponding variables became zf, w and . The functions f have the same
properties as the functions j.); they are analytic in a neighborhood ’ of z* w

0, where they have the c.p.s. (2.15). If the f.p.s. , 1, ..., k, given in (2.9),
are substituted in the c.p.s. (2.15), then the relations (2.16) are valid. The analogue
of (2.4) is (2.19).

If vi.j m +/ __> for all and.j, then

(2.20) 0

for all and j, and the whole process of performing new transformations of the
kind (2.8) is repeated, until we have, for at least one and one j,

(2.21) h* hi,j + hi.iij+lw + ...,
with his; :/= 0. For the sake of economy, we will use bars in place of the repeated
index * *. Thus instead of h* we now write h. Suppose that after the last
transformation we deal with the functions j) and the variables (’1, "’", 5),
w and (= ((, ..., k)" Then we know that f(; w), j 1, ..., k, are analytic
functions in a neighborhood fl of 5 w 0, and

(2.22) f/(; w) -- 0, j 1, ..., k,

where

(2.23) 2 )iJWj’ 1,’’’, k.
j=l

In addition we know that

(2.24) det I-(; w)l _0,

and that (2.21) is valid for at least one and onej. In order to simplify the notation
we takei =j= 1.

II. We perform new coordinate transformations of the form

(2.25) 2,’ L( W) , Zi, 2,’’’, k,

and

(2.26) ’ f,(;w)0, ’ i, i=2,..-,k.

From (2.21), with i-=j 1, it follows directly that ,f(Y; w)/gE 0 at Y w
and hence the implicit function theorem can be applied to the first equation
(2.25), which results in E being an analytic function of 5,T, ’2, "’", Ya and w in
neighborhood of ; 52 k W 0;

(2.27) 1 ’(Y]’, 2, "’", ’; w) ,(* w).

From the lemma in Appendix B it follows that

(2.28) ’(, 2, "’", ; w) - (* w).
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In (2.27) and (2.28) we have written if*= (2,’, ..., zk) and *= (’, ..., ’).
Because fl(/,’(if*"w),, if, zk,-*’w) if’, and hence

(2.29) 8- 8 8Y
1,

it follows that

(2.30) Sift(if*; w)le,=w=o :/: 0.

This result will be needed later on.
We now introduce the functions

ZkZk
j= ,...,k,

which are analytic in some neighborhood of * w 0. For j 1, definition
(2.31) can be simplified to

(2.32) r** -*.w) .J l l Zk

With the aid of (2.22), (2.23) and (2.25) it is easily verified that

(2.33) f(* w) 0 j k

It will now be proved that if * is substituted in 8(f]’, ....,j*)/8(z,-* z)-*
the resulting f.p.s., to be denoted by p, is not equal to zero. Because

it follows that the f.p.s, p is the product of two other f.p.s, in w:

(2.35) p det [(;w)l "(8,-*;w).
Both of these f.p.s, are _0; the first f.p.s, according to (2.24); the second f.p.s.
starts with a nonzero constant according to (2.30). All f.p.s, in w constitute a ring
without null-divisors [2 and hence p

_
0.

III. Let us now consider the functions

(2.36) f(-* -*’w) def f( -*’W) j 2 kZ2, Zk O, Z, Z

These functions are analytic in a neighborhood of if zk w 0.
Moreover,

(2.37) *fi(z, ,w) O, j= 2,... k

Because cf;/85’ 61,i, where i51,i denotes the Kronecker symbol,

(f,..., f) (f, .,)f*
(2.3s)

(, ..., ) (, ..., ),
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and it follows that

(2.39) det I8-,(, , ’ w _0,

where [c?f/c5*] denotes the functional matrix of the (k 1) functions f2,’" ", fk
with respect to ,...,zk.-*

To resume, we are now given k functions,

-*’w) j =2,’" k(2.40) f/(,..., z
analytic in a neighborhood of z w 0, and we are also given
k f.p.s. , ..., . If these f.p.s, are substituted in (2.40), then (2.37) is obtained,
and if these f.p.s, are substituted in the Jacobian of the functions f2, "", f with
respect to ,, -*z, a f.p.s, results which is _0. Hence our original problem
(k analytic functions and k f.p.s.) has been reduced, after a finite number of steps,
to an analogous problem with k analytic functions and k f.p.s.

IV. In this way we continue’ the whole process, described in this proof so
far, is repeated until one of the three following situations arises"

(i) functions and f.p.s, with < < k remain and these f.p.s, are all
polynomials in w (that is of each of the f.poS, only finitely many coefficients are
nonzero). The convergence of these f.p.s, is evident.

(ii) functions,

(2.41) gj(sl,".,s,;w), j= 1,...,t,

and f.p.s. o-i, 1, .-., t, remain, which satisfy gj(O"
The Jacobian

(2.42)
(gl’ gt)
(s,, ..., s,)

a,;w) - 0,j 1,... t.

is nonzero at S s, w 0, and the implicit function theorem can be
applied. In connection with Theorem 1, this theorem states that rl,-.., r are
analytic functions of w in the neighborhood of w 0.

(iii) One function, given by

(2.43) g(s w),

and one f.p.s, c remain. This f.p.s, satisfies

#g
(2.44) g(a;w) - 0, s(a;w) = 0.

Now Stage of this proof is applied to the function g and the variables w and r,
which results in

(2.45) g,(ff; w) = 0,

(2.46) -_(, w)
_

0,



SYSTEMS OF EQUATIONS 37

where g, and ry are the transformed function and variable respectively. Because
ry is a f.p.s, which starts with a linear term in w, it is easily seen from (2.46) that

(2.47) c9--- (0,0):/: 0.

Now Theorem can be applied to (2.45) and (2.47), which states that ry is an analytic
function of w in a neighborhood of w 0.

In each of the three situations a straightforward calculation, in which we
perform the inverse transformations, shows that the f.p.s. 1, "’", k have positive
radii of convergence, which had to be proved.

3. Some examples. Consider the functions

(3.1) fj(zl, z2 ;w) 2z z{ + W2 0, j l, 2.

It is easily seen that the Jacobian of the equations (3.1) with respect to z and z2
at Zl z2 w 0 is equal to zero and hence the implicit function theorem
cannot be applied. We will show that Theorem 2 can be applied in order to prove
that (3.1) has analytic solutions. By the elementary procedure of elimination it
can be seen that (3.1) has two different analytic solutions Zl(W) and z2(w).

The existence of two analytic solutions of (3.1) is also obtained with the aid
of Theorem 2. To this end we substitute the f.p.s.

(3.2) 1 ---/ E (XJWj’ 2:/x E jWj
j=l j=l

in (3.1) and try to determine aj and j in such a way that Ji(l, ’2 w) - 0, 1, 2.
Substitution of (3.2) in (3.1) and equating these f.p.s, to zero yields

(3.3) 2 jw- jwJ+ w 0,
j=l j=l

2 2

(3.4) 2 ojw jw + w2 O.
j=l j=l

In order that f1(1, {2; w) O, it follows from (3.3) that

(3.5) 2zj- j 4- (j,2 -’-0, j 1, 2, 3, ...,
where 6,,i denotes the Kronecker symbol. In the same way, it follows from (3.4)
that

(3.6) 201 fl 4- 0, (coefficient of

(3.7) 41a2 2flf12 0, (coefficient of w3),

(3.8) 40a03 + 202 2flail3 f122 0, (coefficient of w4),

and so on. The quantities 1 artd fl can be solved from (3.5) for j and (3.6)
(two different solutions" fll 21 _+x/). Once al and 1 are known, 0( 2 and

J2 can be solved from (3.5) for j 2 and (3.7). The determinant of the required
system matrix equals -4 + 41, which is nonzero because 2 fil -Y: 0.
Once 1, ill, (Z2 and J2 are known, 3 and/33 can be obtained from (3.5) for j 3
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and (3.8); these equations again constitute a linear system of which the system
matrix equals the one we dealt with when determining 0{ 2 and f12.

In general, to determine % and fly we need the coefficients of w’ +v-1 in
ft((, (2;w) as well as 0{i, i, i--- 1,..., p- 1. We make use of the following
lemma.

LEMMA 1. In the coefficient of w +p- in f,(l, (2; w) only terms appear which
are jinctions of oi, fli, i= 1,..., p- 1, except one term, viz., t(20(1-

Proof. All terms of the coefficient of wt+ P- are of the kind, + +
(3.9) Iiq

A1 ].lq
{2’ oiq

with

(3.10) /,2i2 + p- 1, P2 t,
j=l 2--

for all possible positive integers q (here or 2). Quantities ik and #k are positive
integers with i #- i,, if k 4: k’. Suppose it is possible that >__ p for some j,
say j q. Then it follows from (3.10) that

q-1 q-1

t-- ]Aq-- Z ij Z i2la2 + p- --iq]Aq,
j=l j=l

from which
p-1

p-1 <=iq- <=

These latter inequalities are only possible for pq and iq p, which proves
the lemma.

It is now clear that % and fly can be determined from two linear equations,
of which the system matrix is nonsingular.

In order to prove that the f.p.s. (3.2), of which the coefficients are now known,
have positive radii of convergence, it remains to be shown that (2.4) is valid, or
that2

i 2 --1] 4(2--1) 0.(3.11) det
41 2’2

This is true because the coefficient of w in the f.p.s. ({2 ) equals (fl 01),
which is not equal to zero. Now Theorem 2 can be applied and hence the f.p.s.
(3.2), with known coefficients, have positive radii of convergence and are analytic
solutions of (3.1) in the neighborhood of w 0.

Let us now consider another example, a generalization of (3.1), in which the
analyticity of the solution is less trivial"

n-1

(3.12) j(z,...,z,;w)=2 y’, {(-1)2-1z5} +(-1)"-lz.+(-l’)"w"=0,
j=l

t=l,...,n.

Note that when the theorem of Artin is applied in order to prove that the system has analytic
solutions, this last part is not necessary.
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The Jacobian of these equations with respect to the variables z1, ..., z at
z z, w 0 is equal to zero and hence we will apply Theorem 2 in
order to prove that (3.12) has an analytic solution. To this end we will substitute
the f.p.s.

(3.13) i 2 (XijWj’ 1,’’’, n,
j=l

in (3.12) and show that the coefficients ij can be determined in such a way that
J;(l, n; W) -- 0, 1,

The coefficient of w’ in J(l, "’", , w), which must be zero, equals
n-1

(3.14) 2 (- 1)J+ let )n-1 )njl +(-1 ,a +(-1 .b,,, 0, 1,.. ,n
j=l

The equations (3.14) constitute a system of n nonlinear equations with n unknowns
aia, 1, ..., n. With the aid of some trigonometrical manipulations, it can be
shown that

4
(3.15) aia , sin2

2n
n,

is a solution of (3.14).
To show that we can also determine i2, i= 1,..., n, we consider the

coefficient ofwt+l inj(l,... ’,; w), 1, n;

(3.16) 2 Z {(- 1)i-’ ’-l(j2 + (- 1)n-1 t- 0(Xjl nl 1.2 -" (-- 1) lt,
j=l

1,..., n.

Equations (3.16) constitute a system of n linear equations with the unknowns
ei2, 1, ..., n. Because the system matrix, to be denoted by A, which has as
(i, j)th element

(3.17) i(2 (j,n)(-- 1)j-lj]-i
has a Vandermonde character and is nonsingular on account of ei aj for- j, the unknowns i2 can be solved.

In this way we continue. To determine ei3, i= 1,..., n, we consider the
coefficient of w’+ 2 in L(I, "’", , ;W), 1, "’", g/;

{.+/-12 (__|)j-I(]-I(xj3 q_ (__l)n-1 t-1
(Xnl an3

j=l(3.8)
-Jl-gt(l "’’, nl ;(X12, "’’, (Xn2) 0, t= 1,...,n,

where gt are known functions of known variables, which can be proved with
techniques similar to those used in Lemma 1. The equations (3.18)again constitute
a system of n linear equations with the unknowns i3, 1, ..., n. which can be
solved because the system matrix of this system equals the matrix A, which is
nonsingular.

By proceeding this way, we find that all coefficients aj can be determined.
In order to prove that the f.p.s, found have positive radii of convergence, it must
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be shown that (2.4) is valid, which in our case requires that det [B]
_

0, where
B is the n n matrix of which the (i,j)th element is given by

(3.19) (2 6,,)i(- 1)-1(} 1.

Det [B] is a f.p.s, in w, and it is easily shown that the coefficient of w"t"- 1)/2 equals
the determinant of the matrix A. Because A is nonsingular it follows that the
coefficient of w""-1)/2 is not equal to zero, which proves det [B]

_
0.

Hence we have found that the system of equations (3.12) has at least one
analytic solution zi(w) in the neighborhood of w 0. Because zl,z3,zs,
appear symmetrically in equations (3.12), as do z2, z4, z6, ..., it is clear that the
solutions of zi and zi+ 2 (i n 3) can be interchanged. These solutions are not
equal (the coefficients of the first term of the expansions, eil and ei+ 2,1, are differ-
ent) and this shows that the equations (3.12) have more than one analytic solution.

Appendix A. In this appendix we will prove the inequality (2.14). The quantity
m has been defined in (2.13). Suppose that this minimum m is achieved for

ik 0 and some ik+ (which is equal to m) and some j, say j*. The power series
for f, in (2.10) has the term ej,o...omwm, with ej*o...om - 0.

Since for thisj* quantity rn is achieved for il i 0, m is also achieved
for this j* and an it 4:0 for at least one with =< __< k. Otherwise it would be
impossible that fj,(* w) - 0, which is shown as follows. Suppose the contrary"
the minimum m is only achieved for j j*, i 0, i+ m. In this
case

(A.1) fi,(z* w) a,o...o,,w + higher powers of w.

Because j,(* w)- 0, the coefficient of w" must be zero in the f.p.s, f,(* w).
However, if we substitute the f.p.s. * (’,-.., ’) in (A.1), the coefficient of
w in the f.p.s. 3,(* w) is a,o...o,, which is nonzero.

So we know that for j j* the minimum m is achieved for an it 0 with
__< __< k. This holds for all j with __< j __< k and hence m _>_ . Suppose next

that m =/ and that this is the case if j j*. Apart from the possibility (j j*,
i 0, ik+l m) this can only be realized for (j j*, it_

it+l i i+1 0, i 1) for some with 1 __< =< k. However, this
implies that a,o...oo...o 0, where the number 1 is the (t + 1)th index. In Stage I
of the proof, where this Appendix is used, c3),(z; w)fi?zt 0 at z w 0, or

a,o...olo...o 0, and a contradiction has been obtained. Hence m >

Appendix B.
LEMMA. We are given a function f(zl, z; w), f(0; 0) 0, represented by

the (absolutely) convergent power series

(B.1) f
i,’",ik+ =O

in a neighborhood of z zk w O. Hence f is analytic in . We
suppose that a ao...o O. According to the implicit function theorem, the equation
f(zl,’", Zk" W)= 0 can be solved with respect to z in terms of the remaining
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variables"

(B.2) Z g(z2, "", Zk;W)= Ci2...ik +,z,22... Z,kkW,+
i2,’",i =0

where g is an analytic function in some domain containing the point z2
w O. In the power series expansion of g on the right-hand side of (B.2), Co...o 0.
Iffp.s. are given,

(B.3) i = bijwj, 1,"’, k,
j=l

which satisfy f((1, (k; W) - 0, then

(B.4)

Proof. Suppose that g(2, k; w) is given by the f.p.s.

(B.51 g((z,’’’,(k;W) diwi.
i=1

Then (B.4) states that b li di for all => 1. Suppose (B.4) is not true and hence
bli va di for some i. Define

(B.7)

(B.6) N min {ilbli :/: di, > 1},
N

i bijwj, 2,..., k.
j=l

The functions (i, 2 __< _< k, are analytic in w. By the implicit function theorem,
the function (l(W) is uniquely defined by

(B.8) f((I(W)’ 2(W), (k(W) W) O,

and is an analytic function of w in a neighborhood of w 0. Now l(W) satisfies

(B.9) (l(w) g((z(W), , k(W) W) df 1iWi"
i=1

It is easily seen that 1i d for __< __< N. If we can prove that 1i bli, <=
=< n, then a contradiction has been obtained, because from (B.6) it follows that
bin - dn bin. Thus (B.4) is true.

It remains to be proved that bai-- bai for 1 =< =< N. For that purpose
consider

def

(B.10) fl(Zl ;W) f(zl, 2’ (k’ W) eijzlwJ,
i,j=O

def

(B.11) fl(zl ;w) f(zl,(z, (k;W) 8ijziwj,
i,j 0

It is clear that e lO ’1o a lo...o
& 0 and that eij ij for all and those j which

satisfy 0 =< j __< N.
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is uniquely determined by fl(l w) = 0 and theThe f.p.s. _,_ b liW

c.p.s. 1 /=1 liw’ is uniquely determined by J]( w) 0. Hence the coeffi-
cients bj are functions of the coefficients eij, and blj are functions of ’.

Let us consider the dependence of b on the coefficients e. in detail. By substi-
in the f.p.s. (B.10) we get a new f.p.s, in w of which alltution of Zc= b W

coefficients are zero. The coefficient of w gives

eo" bll + Co1 0, (B.12)

from which it follows that b ll is uniquely determined as a function of e lo and
eo. The coefficient of w2 gives

eo" ba2 + e20" b2 + e bl + Co2 0,

from which it follows that b2 is uniquely determined as a function of eo, e,
Co2 and b and hence of eao, e, Co2 and Co1. In this way we continue. It is easily
seen that bm is a function of b.i, =< j __< m 1, and %, 0 <= <__ m, 0 <= j <= m.
Hence the coefficients b l, ba2,’", bN are all uniquely determined by the
quantities e.i, 0 <= <__ N, 0 <= j <= N.

The coefficients b, b2, .’., bN depend on ’i2, 0 =< __< N, 0 __< j __< N, in
exactly the same way as the b,ba2, ..., bn depend on ei.i. Because
for all andj __< N, we have proved that b bi, 1,..., N.

Acknowledgment. I am indebted to Dr. M. L. J. Hautus for the discussions
that set me on the road eventually leading to this article.
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ON GENERALIZED HEAT POLYNOMIALS*

G. G. BILODEAU’

Abstract. The concept of a heat polynomial defined earlier by Rosenbloom and Widder is extended
and the polynomials are characterized using integrals of Poisson type. One particular class of poly-
nomials is examined in detail and leads to expansions of solutions of the problem

Uxx u,, u(x, O) f(x),

which are different from those obtained by Rosenbloom and Widder. In the last section some applica-
tions of polynomials to heat equation problems are given. In most results, much use is made of the
close relationship between these polynomials and Hermite polynomials.

1. Introduction. Following Rosenbloom and Widder [7, we say that u(x, t) is
in H on a region D if it has continuous second partial derivatives on D and there
satisfies the heat equation

(1.1) ut Uxx.

Of particular interest are the polynomials defined by the generating function

Z
(1.2) v,(x t) exp [zx + zZt]

0 -These polynomials, appearing in Appell’s work [1], were called heat polynomials
by Rosenbloom and Widder who studied their properties in great detail. One can
write

(1.3) v,(x, t) (-t)"/2H. H,(x) (- 1) eX2D" e-

where H,(x) is the ttermite polynomial of degree n.
In this paper we broaden this concept by saying that u(x, t) is a generalized

heat polynomial, abbreviated GHP, if it is a polynomial in x and which is in H
for -v < x < o, -v < < . It is not difficult to characterize such poly-
nomials, and this is the subject of 2. In 3 we introduce a special class of such
polynomials which are simply related to the heat polynomials v,(x, t). They bear a
relationship to v,(x, t) similar to that of the Hermite polynomials to x" in the sense
that expansions of nonanalytic functions are possible (at 0). Finally in 4
we give examples of the application of polynomials to the solution of some prob-
lems of heat conduction.

2. Generalized heat polynomials. We begin with a characterization of general-
ized heat polynomials. Define

(2.1) k(x, t) (47rt) -1/2 e -x2/(’t).

* Received by the editors August 3, 1972.
]" Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02167.
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THEOREM 2.1. The following two conditions are each necessary and sufficient
that u(x, t) be a GHP.

(a) There exists a polynomial P(x) so that for - x x x , 0 < t,

u(x, t) k(x, t) * P(x) k(x y, t)P(y) dy.

(b) There exists a polynomial Q(x) so that for -c < x < , < O,

u(x, t) k(y + ix, t)Q(y) dy.

Moreover, P(x) u(x, 0), Q(x) u(ix, 0).
Proof. Let u(x, t) be a GHP. Then it is easy to see that for - < a <

<b< o,

k(y, b t)lu(y, t)l dy k(y, 1)lu t)l dy <__ M(a, b),Y,

where M(a, b) is a constant depending on a, b. A result of Rosenbloom and Widder
[7;p. 248] is that

u(x, t) a,v,(x, t), n!a, Du(O, 0).
n=O

Since u(x, t) is a polynomial in x, a, 0 for n > N for some N. Also, 7 pp. 222
and 227],

(2.2)

and

v,(x, t) k(x, t) t>O,

(2.3) v,(x, t) k(y + ix, -t)(iy)" dy,

so that in the former case,

N

u(x, t) a,v,(x, t) k(x, t)* P(x),
n--O

where P(x) ,u= o a,x" u(x, 0) and in the latter case,

u(x, t)= k(y + ix,- t)Q(y) dy,

where Q(x) =0 a,(ix)" u(ix, 0).
Conversely, let (a) hold. Then u(x, t) is in H for - < x < , 0 < from

[5;p. 181]. Moreover, by a change of variable,

u(x, t) - / e-P(x y dy,

from which we can easily see that u(x, ) is a polynomial in x, and that u(x, 0 +)
P(x). For part (b), let the representation in (b) hold. Then we can apply the

t<0,



GENERALIZED HEAT POLYNOMIALS 45

formula in (2.3) to get, for -v < x < , < 0,
N

u(x, t) a.v.(x,
n=0

where we assume that
N

Q(x) a.(ix)".
n=0

Thus u(x, t) is a polynomial in x and and is in H for v < x < ,
since this is true for v,(x, t). Also

N N

u(x, O) a,v,(x, O) a,x" Q(-ix).
n=0 n=0

This completes the proof of the theorem.
From (2.2), we see that G(x, t) is the special case corresponding to P(x)

Another case of interest occurs when P(x)= H,(x/2). Then the corresponding
GHP is

Z,(x, t) k(x, t) * H,(x/2) k(x, t)* v,(x, 1)

v,(x, 1) (1 t)"/2H.
2x//1 t

usin the fact that G(x, t) satisfies the Huyens property (see [7; p.
of this paper). Although this analysis is valid only for > 0, it is easy to see that it
holds for all by analytic continuation.

3. A new class of GHP. In this section we will concentrate on the GHP
Z,(x, t) introduced at the end of 2. The reason for this choice is based on the
following argument. If a solution of the heat equation (1.1) with u(x, O) f(x) is
represented by

u(x, t) 2
n=0

then

u(x, O) f(x) a,v,(x, O)
n=O n--O

and thus a typical result (Theorem 5.5 of [7]) has f(x) an entire function of some
class. With the choice made here, we will obtain instead

(3.1) u(x, O) f(x) a,H,(x/2).

The theory of expansions in Hermite polynomials does not require analyticity so
that different results can be expected.
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THEOREM 3.1. Let k(x,r)f(x) be in L(-av, c) for every r < 2. Then the series

Z a.Z.(x, 2"n !a, k(y, 1)H,(y/2)f(y) dy

converges to a function Z(x,t) in H on - < x < c, 0 < t< 1. Moreover
Z(x, 0 +) f(x) for almost all x and, in particular, at points of continuity.

Proof The series in question can be written as

(3.2) ,=o a,(1 t)"/2H.
2x/c

and in this form is a recognizable series from the theory of Abel summability of
Hermite series. Thus this series under the given conditions converges for 0 < <
and moreover the sum of the series, Z(x, t), can be written as [3 pp. 450 and 453]

Z(x t) k(x y, t)f(y) dy.

Now we obtain the conclusions that Z(x, t) is in H for - < x < o, 0 < < 1,
and Z(x, 0 +) f(x) almost everywhere with an application of known results, for
example, [5 pp. 181 and 189].

It is not true under the general conditions of this theorem that

(3.3) f(x) a,Z,(x,O)= a,H,(x/2).
n=0 n=0

For example, let f(x) x ex2/s. Then the conditions of the theorem hold, but the
series in (3.3) does not converge for any x 4 0, a result mentioned by Szeg6
[8;p. 243]. To correct this situation, we impose slightly stronger conditions.

THEOREM 3.2. Let k(x, 2)f(x) be in L(- o, c). Then the series (3.2) converges
at 0 and

Z(x, 0 +) Z(x, O) f(x)

at points in a neighborhood of which f(x) is of bounded variation and at which

2f(x) f(x +) + f(x ).

Proof Clearly the conditions of Theorem 3.1 are satisfied and hence Z(x, t) is
in H for -c < x < oo, 0 < < 1, and Z(x,O+) f(x) for almost all x and, in
particular, at points where 2f(x) f(x +) + f(x-). Also the series in (3.3) will
represent the expansion of f(x) in the series of Hermite polynomials H,(x/2).
From known results [8; p. 240], this series will converge tof(x) iff(x) is of bounded
variation in a neighborhood of x and 2f(x) f(x+) + f(x-). Thus Z(x, 0+)

Z(x, O) f(x). This completes the proof.
The conditions of these theorems are severe on the behavior off(x) in the

neighborhood of +_ c. We can relax these by a simple device.
THEOREM 3.3. Letf(x) be integrable in everyfinite interval and letf(x) O(ecx2)

as x --+ +_ oo for some c > O. Then there exists an a > 0 such. that the series

a-"/2c,v,(x, a), 2"n !c, k(y, 1)H, y) dy
n-’O
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converges to a function v(x, t) in H for -c < x < c, 0 < < a. Also v(x,O +
v(x, O) f(x) at the points indicated in Theorem 3.2.
Proof We observe thatf(xx) O(ec"x2) and that ifwe choose 0 < a < (8c)- 1,

then f(xfx) satisfies the conditions of both Theorems 3.1 and 3.2. Thus there
exists u(x, t) in H in the strip 0 < < defined by the series in Theorem 3.1, with
the coefficient (replacing a, by c,)

2"n c, k(y, 1)H,(y/2)f( y) dy.

Also u(x, 0 +) u(x, O) f(x) at the points mentioned. Let

v(x, t) u ,

Then v(x, t) is in H in the strip 0 < < a and v(x, 0 +) v(x, O) f(x) at suitable
points. Moreover,

and this can be simplified since

4. Applications. Our first application will be to a problem initiated by Appell
[1 and partially solved by a number of authors. We state the problem as follows.
Given an entire function h(x), what are sufficient conditions on h(x) that there
exist a T > 0 and a function u(x, t) in H for -c < x < c, 0 < < T with
u(x, T) h(x)? In effect then, h(x) is to be the result of a cooling process from some
temperature u(x, 0). Using heat polynomials, we will essentially obtain the solution
found by Blackman [2] and Oseen [6].

THEOREM 4.1. Let h(z) be an entire function for which for some > O,

Ih(x + iy)l <= K()ey:
jbr c < y < oc, and Ixl fijbr any fl > O. Then there exists a T > 0 and afunc-
tion u(x, t) in H in the strip 0 < < T with u(x, T) h(x).

Proof Set h(x + iy)= h(2ix/-v g(w), T > 0 to be chosen and
w (1/2x//-f)(y ix) a + iv. Then

Ig(w)l K(fl)exp [4oTa:.
Now choose T so that 4aT < 1/2, and we apply a result of Hille [4] on the expan-
sion of functions in Hermite polynomials in the complex plane. This theorem
asserts the conclusion that for any w in the complex plane,

g(w) a,H,(w), 2"n!a, re- 1/2 j e-’2H,(t)g(t) dt,
O
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and for every fl > O, there is a constant A(fl) so that

(4.1) la, _-< A(fl)(2"n!) -1/2 e-.
Letting y O, we may write

h(x) aH

We now form the function

a(- T)-"/v(x, T).
n=0

(4.2) u(x, t) an(- T)-n/2vn(x, t).
n=O

Clearly u(x, T) h(x). From the inequality [7;p. 226,

Ivn(x, t)] =< + [2n(t + b)]n/2 e-n/2 e,/4

holding for 0 __< < , < x < , and any 6 > O, we conclude that the series
in (4.2) is dominated by

1/2 (t + b) ,/2

ex2/40 e-(4.3) K + 3 Z Tn=0

Since 6 > 0 is arbitrary, it follows that the series in (4.2) converges for 0 N <
A similar argument using the inequality in [7"p. 227] for v,(x, t) with < 0 shows
that the series converges also for -T < < 0. We conclude [7" p. 233 that
u(x, t) is in H in the strip It[ < T and moreover u(x, T)= h(x). The function
u(x, t) in (4.2) is thus a solution to the problem. It is of interest to observe that h(x)
can thus be considered the result of cooling from an initial temperature u(x, O)
which is an entire function (we use here the fact that v,(x, O) x").

As a second application, we will examine solutions of (1.1) which are analytic
in both x and (see also [9]). It has long been known that any solution of (1.1) in
the strip - <x < ,0< t<rhastheform

x2n 2n +

(4.4) u(x,t) 2 gt")(t)( + h(,(t
x

,=o 2n). ,=o (2n + 1)’.

so that any solution is entire in x and infinitely differentiable (not necessarily
analytic) in t. In addition,

(4.5) u(0, t) g(t), ux(O, t) h(t).

TORZM 4.2. Let u(x, t) be a solution of (1.1) in the strip 0 < < r with
u(O, t), u(O, t) analytic for in (0, r). Then for any to in (0, r),

(4.6) u(x, t) gt")(to)v2,(x, to)
+ ht,)(to)v2,+ (x, to)

,=o (2n) ,=o ( ; [
holding in the strip It to] < a for some a > O.

Proof We use the representation
X 2k

v,(x, t) n Z, (n 2k) k ’
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which comes from (1.3). Now the first series in (4.4) becomes

o)k-
Ul(X t) Z g)(to) (t X2n

o k=. (k n)! (2n)!"
The convergence of this double series is a consequence of the fact that
<= Mk!/a for some constants M and a with a > 0. Also absolute convergence
holds for - < x < o, It to] < a. Then

-, x2" (t- to)-"
u(x, t) g(to)

(2n) (k )k=0 n=0

g)(to)v2(x, to),
=o (2k)

and this is the first series in the theorem. The second follows in the same way. This
proves the theorem.

It is a consequence of [7; p. 250] that the conclusion of Theorem 4.2 implies
that u(x, t) satisfies a Huygens principle expressed by

(4.7) u(x, t) k(x, t t) * u(x, t) k(x y, t t)u(y, t) dy

for any - <x< , t0-a < t < t <to +a. This relationship merely
expresses the desirable physical property that the temperature u(x, t)can be
obtained from a knowledge of u(x, t) at a prior time t. A partial converse is
also true. If (4.7) holds in the stated interval, then the same holds for u(x, + to)
in the interval Itl < a and hence, from [7; p. 250,

u(x, + to) anv,(x t)
n=0

for - < x < , It[ < a, or equivalently

U(X, t) Z anOn(X’ to)
n=0

for - < x < , It to] < a. Moreover,

(2n)
u(O, t) a.v.(o, to) a.(t to

=0

so that u(0, t) is analytic at to. Similarly ux(O, t) is analytic at to. We have
thus proven the following result.

THeOReM 4.3. Let u(x, t) be in H in the strip 0 < < r. A necessary and sufficient
condition that u(O, t), ux(O, t) be analytic at o is that u(x, t) satisfy the Huygens
principle expressed by (4.7) in some strip [t to[ < a, a > 0.

Unfortunately we may not in general extend this result to having u(0, t),
ux(O, t) analytic in (0, r) and have at the same time u(x, t) satisfying (4.7) in the
strip 0 < < r. Rosenbloom and Widder show that the function

u(x, t) k(x, + a)

with (4a)-1= +i is in H for - <x < , - < t< . Moreover it
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is clear that, since a is not on the real axis, u(0, t) and ux(O, t) are analytic for
each in (-, o). However u(x, t) does not satisfy the Huygens principle for- <x < , - < t< v,[7;p. 242].

Actually the above argument shows that the Huygens principle in the strip
0 < < r implies the analyticity of u(O, t), ux(O, t) for the same t. It is the converse
of this which is not true in general.
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AN EXPANSION IN ULTRASPHERICAL POLYNOMIALS
WITH NONNEGATIVE COEFFICIENTS*

CHARLES F. DUNKL-

Abstract. It is shown that the following expansion has nonnegative coefficients"

xpPn’P)(2x2 1) .a, cm/2)- a(x
P(kn’P)(l) s=00Scm/2) 1(1)

for n, m, p 0, 1, 2,... and 2 < m < n + 2. The proof involves harmonic analysis on the unitary
group.

By geometric reasoning, we show that the following expansion has non-
negative coefficients"

x,P("’P)(2x2 1) p2k cm/2)- I(X
scm/2)_l(1

for n, m, p 0, 1,2,... and 2 __< m __< n + 2. We will use the notation of Szeg6 [7]
for Jacobi and ultraspherical polynomials, and the notation of [4] for harmonic
analysis on compact groups.

The idea is this" if H is a closed subgroup of a compact group G, and./is a
continuous positive definite function on G, then fill is a positive definite function
on H. Further, iff is bi-invariant for some closed subgroup K of G, then fill is
bi.-invariant for K f"l H. If H/K f-I H is multiplicity-free, then any bi-invariant
positive-definite function on H is a nonnegative linear combination of the spherical
functions of H/K f’l H (see [4, p. 105]).

Let U(n) be the unitary group on C", n >= 2. A typical element is an n n
unitary matrix u (uij)7,j= 1. Let K be the subgroup {ue U(///)’H11 1}

_
U(n 1).

For the irreducible representation of U(n) with highest weights (j, 0, ..., 0, k), j, k
>_ 0, the spherical function for U(n)/K is

forj k,

forj < k.

(Note’to verify that these are the spherical functions, it is enough to check their
homogeneity and harmonicity properties;see Boyd [3], [4, Chap. 10], or Ikeda
[53 .)

For the subgroup H we will take SO(m) (the rotation group on Rm) with
m =< n, embedded into U(n) by (symbolically)

SO(m) 0 ]H
0 In_
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We see that H K
_
SO(m 1). The spherical functions for SO(m)/SO(m 1)

are well known (see for example [4, p. 109]) to be

I[Is(g) ECrn/2)- 1(1)] lcm/2)- l(gl 1),

g SO(m), s 0, 1, 2,.... (For m 2 the limiting case Os(g) Ts(gl 1) cos sO,
where cos 0 g11, is not spherical for s > 0 since it decomposes into eis and
e -is, but in our application the cosine series suffices.)

We now restrict bk to H
_

SO(m) to obtain

with % _>_ 0, by our previous remarks. Replace gll by x, n by n + 2, j by k + p
to obtain the previously stated expansion.

Schoenberg [6] and Askey [1] have previously used the restriction idea in
similar situations. See Askey’s survey paper [2, pp. 64-85 for more examples of
expansions with nonnegative coefficients.
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CERTAIN RATIONAL FUNCTIONS WHOSE POWER SERIES HAVE
POSITIVE COEFFICIENTS. II*

RICHARD ASKEY"
Abstract. Dunkl’s recent expression of a certain Jacobi polynomial times a simple polynomial as

a sum of ultraspherical polynomials with nonnegative coefficients is translated into a result between
Jacobi polynomials of the same argument and then applied to prove that

{(1 r)(1 s)(1 t)[(1 r)(1 s)(1 + t) + (1 r)(1 + s)(1 t) + (1 + r)(1 s)(1 t)]}+ )/2

has nonnegative power series coefficients for 0, l, 2,

I. Introduction. A fascinating class of problems was initiated when Friedrichs
and Lewy conjectured

A vksmt
k,m,n(11)

(1 -r)(1 -s)+(1-r)(1 t)+(1-s)(1 t) k,m,n O

Ak,, > 0, k,m,n O, 1,

and Szeg6 not only proved (1.1), but extended it to the following.
THEORE A. Let f(x) (x x)... (x x). If -, then

n ,nuX1 Xk

>0.with A,...,
Szeg6’s proof used Bessel functions; another proof which uses Jacobi and

Laguerre polynomials was given by Askey and Gasper 3]. The next result of
this type was

[(1 r)(1 s)(2 + t) + (1 r)(2 + s)(1 t) + (2 + r)(1 s)(1 t)]+l

(1.3) B(k, m, n)rksmt",
k,m,n 0

with B(k,m,n) > 0 when => [-5 + (17)1/2]/2 0 unless o and k m
n 1, when the coefficient is zero. See [4].
Equation (1.3) was motivated by consideration of Laguerre polynomials,

since the coefficients B" are a positive multiple of

-2x(1.4) L(x)L(x)L,(x)x e dx,

and the coecients in (1.2) are a positive multiple o

(1.5) L(x)L(x)L(x)x e- 3 dx

Received by the editors October 31, 1972.
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when f(x) has three roots. From this point of view, it is easy to see that (1.3) is
much deeper than (1.2), a fact which is far from clear when just these two expan-
sions are considered. A third result can now be obtained, in as yet an imperfect
form.

THEOREM 1. If 0, 1, 2,..-, then

/ (1 / r)(1 s)(1 t)]} (’+ 1)/2

Ca(k, m, n)rksmt",
with Ca(k, m, n) >= O.

Theorem is probably true for => 0, but the proof rests on an interesting
recent result of Dunkl about Jacobi polynomials [5], and his proof is group
theoretic and thus only valid for integer values of the parameters.

2. Dunkl’s expansion. The Jacobi polynomial, P,’)(x), can be defined by

(2.1) (1 x)(1 + a (.)., (- 1)" d"
x) p (, ;,! /x[( x)+ +

,fi> -1.

Gegenbauer polynomials, C(x), are connected with Jacobi polynomials by

(2.2)
C(x) p--i/2,2- 1/2)(X)
C(1) P-’/e’a-’/2)(I)’

where

(2.3). C,(1) (22),/n!,

(2.4) p,,t)(1) (a + 1),,In!,

and (a), a(a + 1)... (a + n 1)= F(n + a)/F(a). There is a second connection
given by

(2.5)
P;,)(x) P’- 1/2)(2X2 1)
P;)(1) P(.’ 1/2)(1)

/9(,a) /2)(2X2 1)
(2.6) -2,+ l(X) p,l

P,i 1(|) P7’1/2)(1)
See Szeg6 [8] for all of the results on orthogonal polynomials which are stated
without reference. Dunkl [5] proved

Pn’/)(2x 2 1) 2.+fl C/2)-l(x
(2.7) xl (,1) o, C,,/2)_ 1(1),P, (1) =o

with a > 0 when o, fl, m 0, 1, ..., and 2 =< m =< o + 2. The usual convention

C, (cos O)/C,(1) cos nO

is taken, even though C,(1) and C,(cos 0) are zero, n 1, 2,.... The essential
case in (2.7) is m a + 2; the others follow from this case and Gegenbauer’s
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formula

(Zk,C2(1) k=O C(1)
>0(Zk, when2 >/ >__0 [1].

Use of m z + 2 and (2.2) in (2.7) gives

(2.9) xt Pt,’t)(2x2 1)
P, (1)

2.+/ p(-,)/2,(-l)/2)(xYO= O{k P--(k(---i)/2:i-- -’-
Consider separately the cases in which fl is even and fl is odd. When fi is even,
(2.5) and the change of variables 2x2 1 y gives

(2.o)
2j)(y) .-+-a pk(-1)/2,-I/2)(y)y JP(n,

P(na’2J)(1) Yo= 02kp(-1)/2’-1/2)(1)
,j=O,l,..., O{2k

When fl is odd, (2.6) and a simple calculation gives

k--O, 1,...,n+j.

0,j 0, 1,..., t2k+l 0, k 0, 1,..., n + j.

These results are new for j > 0; for j 0, (2.10) was proven in [1] and (2.11) was
proven in [2].

3. Power series with nonnegative coefficients. Dunkl’s result in the form (2.10)
leads to a new nonnegative integral of Jacobi polynomials.

THEOREM 2. If ,j 0, 1, ..., then

(3.) j
--1

p(n,2j)(y)p,2j)(y)p(k,2j)(y)( + y)3J(1 y)(a-1)/2(1 + y)-1/2 dy >= O,

k,m,n O, 1,

(3.2)

Proof. Multiply (2.10) with n replaced by n, m, k, and use

(/) (,/) (,/)P,, (X)Pm (X)Pk (x)(1 x)(1 + x) dx => 0,
-1

>=l>= --1/2- [6],

and Dunkl’s result that the coefficients in (2.10) are nonnegative.
Let y (z/j), change variables in (3.1), and use

(3.3) lim (")P. (1 (2x/fl)) L(x),
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to obtain

(0e )/2 3z/2L,(z)Lm(z)Lk(z)z e dz >__ O,

(3.4)
cz 0, 1, ...,

The details of a similar argument are given in [3, 5].
The polynomials L(x) are orthogonal,

(3.5) L,(x)L,(x)x e dx O,

(3.6) [L(x)2x e dx F(n + + 1)/F(n + 1),

and can be obtained from the generating function

e xr/( r)

(3.7)
(I r)a+l E L(x)r".

n=o

Multiply (3.4) by r"smt, sum, and then integrate using

;o(3.8) [fl e c, dt F()c

to obtain

k,m,n =0,1,

mn,

(3.9)

(1 r)2(1 s)2(1 t)2 I___r s
+ --- +

-t
+

(0+ 1)/2

mn (e- 1)/2 3z/2Ln(z)Lm(z)L(z)z e dzrnsmt

so these coefficients are nonnegative for 0 0, 1,
simplified to

The left-hand side can be

r((0 + 1)/2)2+ 1)/2

{(l r)(l s)(l t)[(l r)(l s)(l + t) + (I r)(l + s)(l t)
(3.]0) + ( + r)(] s)( )]}+’/
This proves Theorem l, which was stated in the Introduction.

If an analytic proof of Dunkl’s result could be found, it would probably
extend to a >= 0, a real, and not just cz 0, 1, This was shown in [2] in the
case j 0. If Dunkl’s result could be proven for all real 0 => 0, then Theorem
would also be true for all cz > 0.

Using the orthogonality of L(x), we see that

X (or + )/2 EL,(x)L,(x) flL(x), flk >- O, o O, 1,...
k=O

or

(3.11)
k=O

q)(X) X (or + 1)/2L,(x).
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Statement (3.11) can be iterated, but it doesn’t lead to anything useful. However,
(3.2) could have been iterated to obtain

(3.12) ’) x ’) x, () .P. ()(1-x)(+x)/x>0, >/>-1/2,
-1

as was pointed out in [3], and this leads to

(3.13) L,,(x) L(x)x-/ e-/ dx >__ O, O, 1,....

This in turn leads to a generalization to k variables of Theorem 1, which will be
left to the reader.

REFERENCES

[1] R. ASKEY, Jacobi polynomial expansions with positive coefficients and imbeddings of projective
spaces, Bull. Amer. Math. Soc., 74 (1968), pp. 301-304.

[2] R. ASKEY AND G. GASPER, Jacobi polynomial expansions of Jacobi polynomials with non-negative

coefficients, Proc. Cambridge Philos. Soc., 70 (1971), pp. 243-255.
[3] , Certain rational functions whose power series have positive coefficients, Amer. Math.

Monthly, 79 (1972), pp. 327-341.
I4] , Convolution structures for Laguerre polynomials, J. Analyse Math., to appear.
[5 C. F. DUNKL, An expansion in ultraspherical polynomials with nonnegative coefficients, this Journal,

5 (1974), pp. 51-52.
[6] G. GASPER, Linearization of the product of Jacobi polynomials, I, Canad. J. Math., 22 (1970), pp.

171-175.
[7] G. SZEG6, (Jber gewisse Potenzreihen mit lauter positiven Koeffizienten, Math. Z., 37 (1933), pp.

674-688.
[8] --., Orthogonal Polynomials, vol. 23, rev. ed., Colloquium Publications, AMS, New York,

1959.



SIAM J. MATH. ANAL.
Vol. 5, No. |, February 1974

SOME ABSOLUTELY MONOTONIC AND
COMPLETELY MONOTONIC FUNCTIONS*

RICHARD ASKEYt AND HARRY POLLARD{

Abstract. The functions (1 r)-21;tl(1 2xr + r2) are shown to be absolutely monotonic, or
equivalently, that their power series have nonnegative coefficients for =< x =< 1. One consequence
is a simple proofofKogbetliantz’s theorem on positive Cesfiro summability for ultraspherical series, [7].

1. Ultraspherical polynomials and absolute monotonicity. Certain power series
occur so often that their coefficients acquire names. One such is

(1.1)
(1 2xr + r2) C"(x)r"’

n=0

where C,(x) is a polynomial of degree n. These polynomials are either called
Gegenbauer polynomials, since Gegenbauer discovered most of their deep
properties, or ultraspherical polynomials, because they can be used to construct
the spherical harmonics on spheres of arbitrary dimension. For 2 > -1/2, C,(x)
are orthogonal:

Cn(x)Cm(X)(1 x2)2-1/2 dx 0, m :/: n,

z1/z(2).),F(2 + 1/2_) z[CnX(X)]2(1 X2),-1/2 dx
(n + 2)n’r(2)

h,,
-1

with (a), F(n + a)/F(a) a(a + 1)-.. (a + n 1). When 2 0 we will sub-
stitute

+ c. i os 0) { . o,-- cos nO, n= 1,2,....

In this section we shall always assume -1 __< x _< 1, and will not repeat this
condition except in the statement of Theorem 1.

With the formal expansion

(1.2)
f(x) a,C,(x),

n=0

lfl f(x)(1 x2)2- 1/2 dx,
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we associate the Poisson sum

f(x) a,,r"C2(x) f(y)P(x, y)(1 y)x- / dy,
n=O -1

where

r C,(x)C,(y)/h,.
n=O

The integrated form of the addition formula,

C,(cos 0)C,(cos q) C,(cos 0 cos + sin 0 sin cos z)C2(1)(sin Z)2x- dz,; (sin X)2-1 dz >0,

[2, 3.15.1 (20)] gives

L(cos 0)

(1.3)
; ;f(cos o)P(cos 0 cos + sin 0 sin p cos , 1)(sin O)2X(sin g)2x- do dg.

Since

(sin Z)2a- dz

,(1 r2)
(1.4) P(x, 1)

(1 2xr + r2)a+ ’ 2 > 0,

it is clear that the operator Tf(x) j(x)is a positive operator (see [1, (2.5)3 and
references given there). For 2 0 and 2 1/2, Fej6r [3], [4] proved the deeper
result that certain CesS.ro means, (C, 1) for 2 0 and (C, 2) for 2 1/2, were already
positive. Later Kogbetliantz [7] proved that the (C, 22 + 1) means are positive,
but this result has not become well known. Szeg6 only mentioned this result in
passing in [10], and he clearly would have included it if a simple proof had existed,
since he mentions that the result has important consequences. One of these
consequences is an analogue ofthe P61ya-Fej6r theorem that the Fourier transform
of an even convex function (or cosine series with convex coefficients) is non-
negative. This will be given in a later paper.

Before giving an elementary proof of Kogbetliantz’s result let us recall the
definition of the Cesflro means of order 7. For the formal series ,= o a, define

n! @ (7 + 1).-k
"--(7 + 1).k:O (n-k)’.

ak,

and call {a,} the Cestro means of order 7. We shall only be concerned with
positivity, and so may instead consider

k=O2" (n-k)! ak.

The z, may be defined by the following alternative procedure" Set

fI) Y
n=O
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and consider

(1 -r)--lf(r)= o(7 + 1).r"
n 2 a.r"= Z "c.r""

n=0 n=0

Thus to prove Kogbetliantz’s theorem that the (C, 22 + 1) means of (1.2) are
positive if f(x) >= 0, it is sufficient to prove that

re
(1.5) g2(r)

(l-r)22 +e(1 -2xr+r2)2 +1

has nonnegative power series coefficients, or to phrase it another way, g2(r) is
an absolutely monotonic function.

Since

g2(r) go(r)"
(1 r)22(1 2xr + r2)2’

the product of absolutely monotonic functions is absolutely monotonic, and
go(r) is absolutely monotonic because of Fej6r’s theorem on the positivity of the
(C, 1) means for Fourier series, it is sufficient to prove that the second factor is
absolutely monotonic.

THEOREM 1. For -1 =< x cos 0 < 1, and 2 > O, the functions (1 r)-24
(1 2xr + r2)- 2

Proof. Let

Then

are absolutely monotonic.

h(r) log [(1 r)-2(1 2xr + r2) 1]

-2 log (1 r)- log (1 2r cos 0 + r2).

2 2 cos 0 2r 2 e-iO eiO
io + eiOh’(r)

-r 2rcos0+r2 1 -r 1 -re- 1-r

[2 + ei(n+ 1)0 + e-i(n+ 1)Orn
n:0

[2 + 2 cos(n + 1)0Jr".
n:0

Therefore h’(r) is absolutely monotonic, and since h(0) 0, so is h(r). But

1
e2h(r)__ - 2"[h(r)]"

(1 r)22(1 2xr + r2)2 ,=o nl.

and this completes the proof.
COROLLARY 1 (Fej6r [5]). (1 r)-l(1 2xr + r2) -2 has positive power series

coefficients for 0 < 2 <_ 1/2, -1 < x <__ 1.

Proof. Use Theorem 1 and (1 r)-1 (1 r)-1+22(1 r)-24.
In addition to Corollary 1, Fej6r [5] obtained the same conclusion for 2 -7,

and Szeg6 [9] extended this result to -1/2 < 2 < 0. A stronger theorem follows.
THEOREM 2. For -1 <= x <= 1 and 2 < O, the functions (1 r)-2121(1 2xr

+ re) 2 are absolutely monotonic.
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The only change in the proof from the proof of Theorem 1 is that h’(r) is now

h’(r)= [2-2cos(n+ 1)0Jr".
n=0

COROLLARY 2 (Szeg6 [9]). (1 r)-1(1 2xr + r2)4 has positive power series

coefficients for 0 < 2 <= 1/2, -1 <= x <_ 1.
A further application of Theorem 1 to Jacobi series is given in [1].
Both Theorems 1 and 2 are best possible, in the sense that the averaging

factor (1 r) -2141 cannot be replaced by (1 r) -k for k < 2121 and still retain
nonnegative coefficients for -1 =< x =< 1. To see this let x -1 in Theorem
and x 1 in Theorem 2 and observe that the coefficient of r is negative for k < 2121.

2. Hankel transforms and complete monotonicity. The results in suggest
the following analogue.

THEOREM 3. If 2 is real, then the functions X-2141(X2 + 1) -4 are completely
monotonic functions for x > O, that is,

xZl41(x2 + 1)4
e -" d#4(t), x > O, dla4(t) >= O.

Proof. Theorem 3 follows easily from the following theorem of Schoenberg.
THEOREM A. A function f(x), x >= O, with f(O)= 1 has the property that

If(x)]4 is completely monotonic for x >= 0 and all 2 > 0 if and only if

f(x) exp

where g(t) is a completely monotonic function.
For let

so that

g(t) dt t’

re(X)-"
(X -+- e)2141[(X + /)2 ql_ 114

exp -121 g(t)dt

g(x)=2 e -(x+)’ +--cost dt,

which is clearly completely monotonic. Thus

L(x ) 1

32141(/32 -+- 1)4 X2141(X2 + 1)4

is completely monotonic for x > e for each e > 0, and so for x > 0.
An elementary direct proof can also be given. By the Hausdorff-Bernstein-

Widder theorem [11] it is sufficient to show that

(2.1) (--1]n-C--[xZ(x2 -F 1)+1] -4 > 0 X > 0 , > 0.
dx
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(2.1) is obvious for n 0. Assume that it holds for 1,2,..., n, and let
f(x) x2(x2 + 1)-1. Then

dn+l dn I Z f’(x)](-1)"+ d--d1[f(.x:)]-z --(-1) "q’dx" [f(x)]-
f(x)]

1)" If(x)] z

--o dx dx* Lf(x) J
2 (- 1)’- d--_:- If(x)]- z( 1

The first factor in the sum is positive by the hypothesis of induction, so it is sufficient
to prove

I-1 > 0

or that f’(x)/f(x) is completely monotonic. But

f’(x) d 2 2x fo -"[ t] dt- X2
2 e + cos

f(x) dx
log f(x)

x + 1

The necessity of Schoenberg’s condition can be used to show that
x-klZl(x2 + 1)- is not completely monotonic for all 2 > 0 if k < 2. However
this is not the whole story, since it is not unlikely that x-Z(x2 + 1)- is completely
monotonic for 2 1. Results of this type, which only hold for 2 with a positive
lower bound, are harder to prove, since there is no analogue of Schoenberg’s
theorem in this case.

The most promising method seems to be the use of various asymptotic
techniques. Kogbetliantz used Darboux’s method to prove that (1.5) is absolutely
monotonic, and J. Fields has proved Theorem 3 for 2 > 0 using fairly complicated
estimates. It seems likely that Fields’ methods can be used to prove the above
conjecture, as well as answer the more general question of when X-ta(X2 + 1)- 2

is completely monotonic.
If 2 a + k, 0 < a < 1, k 0, 1,..., then x-U(x2 + 1) -z is completely

monotonic for#=2+k, 0<a__<1/2;#= 1 +k, 1/2__<a__< 1. This is Theorem 8
in [1]. The proof uses Theorem 3 of this paper,

and the inequality

fo ’(1 t) dte cos
x(x2 + 1)’

fO: tJ(t) dt >= O, 0<__<1/2.

The connection of these problems with Hankel transforms is given in [1].
An even more general problem is suggested by an old result of Hamburger

[6], which was brought to our attention by I. J. Schoenberg. He proved

F(2n + 1)
x,[1

2"x(x2 + 1)... (x2 + n2)
e cos t]" dr.
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This raises the question of when

f(x)
1

Xc(X2 -31- 1)cl (X2 -+-n2)c.

is completely monotonic. The connection with Ces/tro summability of Hankel
transforms disappears in this more general problem, so the correct state of affairs
is far from clear.
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CONVERGENCE AND EVALUATION OF SUMS OF RECIPROCAL
POWERS OF EIGENVALUES OF BOUNDARY VALUE PROBLEMS

NONLINEAR IN THE EIGENVALUE PARAMETER*

ANTHONY V. LAGINESTRAf AND WILLIAM E. BOYCE:I:

Abstract. In this paper the trace equations

(1) 2? Kp(x, x) dx
i=1

arising in the Hilbert-Schmidt theory of Fredholm integral equations are extended to integral equations
of the form

(2) dp(x) 2 K(x, y, 2)b(y) dy,

in which the kernel K(x, y, 2) is a rather general function of 2. Attention is focused on equations that
correspond to differential boundary value problems via the Green’s function. The underlying boundary
value problem may be nonlinear in 2 in the differential equation, in the boundary conditions, or in
both. Three theorems are proved, each of which asserts the convergence of

(3) L 2-
i=1

for p sufficiently large, under relatively mild hypotheses on the coefficients appearing in the boundary
value problem. Finally, a procedure is established whereby (3) can sometimes be evaluated in terms ofthe
Taylor coefficients of a certain function, but without the necessity for the repeated integration implied
by(l).

1. Introduction. In the standard theory of homogeneous Fredholm integral
equations,

(1.1) b(x) 2 K(x, y)c(y) dy,

the kernel K is Lebesgue square integrable on [0, 1] 0, 1], and is independent
of 2. If {22 is the sequence of eigenvalues of (1.1), then (see Dunford-Schwartz [3,
pp. 1033-4])

(1.2) 2 p Kp(x, x) dx
i=1

is valid if p is an integer greater than unity and under additional restrictions if
p 1 as well. The right-hand side of (1.2) is the pth trace of the kernel K, and Kp

denotes the pth iterated kernel. Equation (1.2) has important applications, among
which is its usefulness in estimating the lower eigenvalues of (1.1).
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Our purpose is to establish results analogous to (1.2) for a more general class
of problems of the form

(1.3) (x) , K(x, y, 2)(y)dy,

in which the kernel depends on 2. The problems to be considered are derivable
from boundary value problems which are nonlinear in 2 either in the differential
equation, boundary conditions, or both. The kernel K(x, y, 2) in (1.3) is related to
a Green’s function. We will take advantage of this fact in obtaining improved
results by requiring certain regularity conditions on the coefficients in the dif-
ferential operators. We will also establish a relation between the sum =1 2-p
and the Taylor coefficients of a certain function to be defined later. In some cases
this permits evaluation of

__
2p without the calculation of iterated integrals.

Some work has been done on convergence and evaluation of these series.
Mtiller [8] proves the absolute convergence of= 2’ and proves a formula for
its evaluation in the case of a very special kernel which is a polynomial in 2.
Goodwin 5] provides a generalization of equation (1.1) to kernels nonlinear in 2
for the cases p and p 2. Tamarkin [9] extends the Fredholm theory to
integral equations nonlinear in 2 via the method of infinite determinants of von
Koch. Hille and Tamarkin [6] have done extensive work on convergence of the
sums = 2/- using infinite determinants; their kernels are independent of 2,
and are not in general Green’s functions.

In 2-3 we define the class of problems to be considered and review certain
background material needed in the rest ofthe paper. Section 4 contains the theorems
concerning the growth of the eigenvalues and the convergence of

__
2. By

means of examples, we illustrate the use of these theorems, and show that in a
certain sense they are the best obtainable. In 5 we investigate the relation between
the sums

_
2- p and the Green’s function for a slightly restricted class of prob-

lems, thereby generalizing (1.2).

2. Notation and assumptions. We shall consider primarily the eigenvalue
problem

(2.1) Mu Nxu,
m,--1

(2.2) Uj(u, 2) [f/j(2)u(i)(0) + gij(2)u(i)(1)] O, j 1,..., m,
i=0

where M and Nx are ordinary differential operators of orders m and n, respectively,
with 0 __< n __< m 1. The nonsingular operator M is of the form

(2.3) Mu 2 Pm-j(X)u(J)(x) (po(x) > O)
j=O

where Pm-j is continuous on [0, 1]. Further,

(2.4) Nzu 2iNiu,
i=0

where Ni is a differential operator of order n or less with coefficients continuous
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for x [0, 1] and independent of 2; 2 is a complex parameter. We assume that the
order of Ni is exactly n for at least one i. We also assume that Ns - 0 and that
s >__ so that N actually does depend on 2. Finally, we assume that the operators
U form a linearly independent set for each fixed complex 2 and that the coeffi-
cients fj and gij are entire functions of 2.

We will also consider the more general problem

(2.5) Mu aNzu, U;(u, 2) 0,

where 2 is fixed. Denote by {qi(x, a, 2)}, i=- 1,..., m, the fundamental set for
Mu aNu satisfying

(2.6) 4IJ- 1)(x, a, 2)Ix_-0 6ij, j 1,... m,

where 6j is the Kronecker delta. Clearly 4IJ- 1)(x, a, 2) is an entire function of a for
fixed x and 2, an entire function of 2 for fixed x and a, and continuous in (x, a, 2)
together.

Let

(2.7) A(, 2)

where 4 b(x, a, 2). We shall assume throughout that A(0, 2) and A(1, 2) do not
vanish identically. In this case, each of these functions has a countable number of
zeros accumulating at oe only. Note that 2 is a zero of A(1, 2) if and only if 2 is an
eigenvalue of (2.1) and (2.2). Let 21,/2, be the enumerated set of all nonzero
roots of A(1, 2) 0, written according to algebraic multiplicity.

If # is a zero of A(0, 2), then # is an eigenvalue of

(2.8) mu O, Uj(u, 2) 0,

and conversely. Let #1, #2,"" be the enumerated set of all nonzero roots of
A(0, 2)= 0, written according to algebraic multiplicity. Note that 4)(x, 0,2) is
independent of 2; if the fj and gij are polynomials of degree not greater than p,
then A(0, 2) is a polynomial ofdegree not exceeding pro. If a 0 is not an eigenvalue
of (2.5) with 2 fixed, then the inhomogeneous problem

(2.9) Mu f, U(u, 2) 0

has a Green’s function M(x, y, 2). Clearly M(x, y, 2) is meromorphic in 2 with poles
at the eigenvalues #.

In terms of the Green’s function M(x,y, 2), the original boundary value
problem (2.1), (2.2) is equivalent to the integral equation

(2.10) u(x) M(x, y, 2)(gxu)(y) dy.

Following Buscham [1], we apply Nz to both sides of (2.10) and let

(2.11) v(x) (Nu)(x),
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thereby obtaining

(2.12) v(x) [(Nz)1M](x, y, 2)v(y) dy.

The subscript on Nx indicates that it operates on M as a function of its first
variable. Equation (2.12) has the same eigenvalues as (2.10) (see Buscham [1]).
We will use the notation

(2.13) K(x, y, 2) [(Nx)IM] (x, y, 2)

to denote the kernel of (2.12); more briefly, we will refer to this function simply as

Kx. The corresponding Fredholm function @/(a) is given by

(a)

(2.14)
-I- 1 (-- 0")i f fi= i!

K(x x ) K(X Xi )

dxl
K(xi, x1, ,’].) K(xi, xi, ’)

dx

It can be shown that

(2.15) A(a, 2) A(0, 2)(a),

provided K(x, y, 2) is suitably defined along x y if it is discontinuous there.
Equation (2.15) is a consequence of the following facts. Suppose we have a

system

(2.16) Mu 2Nu, Ui(u) O, 1,..., m,

where M is of order m, N is of order n and m > n. Assume that 2 0 is not an
eigenvalue of (2.16). If M(x, y) is the Green’s function for M, and if

(2.17) K(x, y) (N1M)(x, y),

then the determinant A(2) and the Fredholm function of K differ by a multipli-
cative constant; that is,

(2.18) A(2) AK(2), A = 0.

We construct our Green’s function in the manner of Coddington-Levinson E2,
Chap. 7]. Equation (2.18) is true provided K(x, y) is defined along the diagonal by
a limit process from the triangle x < y if it is discontinuous there. The result is
plausible, since, as before, the eigenvalues of the system (2.16) are also the eigen-
values of the equation (see Buscham 1])

(2.19) v(x) 2 K(x, y)v(y) dy,

where v Nu. However, this does not constitute a proof of (2.18).
If we set 2 0 in (2.18), then using the fact that

(2.20) K(0) 1,
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we find that

(2.21) A(2) A(0)K(2).

Equation (2.15) is a restatement of (2.21) with a as the "eigenvalue parameter"
(instead of 2) and with 2 as a "fixed parameter".

Equation (2.18) is well known, but its proof appears not to be readily available
in the literature. Therefore we will outline a proof here, although we do not believe
that the results of this section are new.

Let G(x, y, 2) be the Green’s function for the operator (M 2N) with boundary
conditions Ui(u) 0. Note that G(x, y, O) M(x, y). First, we must show that

(2.22) (N G)(x, y, 2) RK(x, y, 2),

where the kernel K is given in (2.17), and where R(x, y, 2) denotes the resolvent
of K and is given (for small 121) by

(2.23) R(x, y, 2) 2J- ’Kj(x, y).
j=l

In (2.23), Kj is the jth iterate of K.
We prove (2.22) by first establishing that

(2.24) a(x, y, 2) G(x, y, O) + 2 G(x, z, O)R:(z, y, 2) dz.

Let us denote the right side of (2.24) by G(x, y, 2). Note that iff is continuous, then

(M 2/) ((x, y, 2)f(y) dy f(x) +/t Ru(x, y, 2)f(y) dy

2 K(x, y)f(y)dy

(2.25)
2 K(x, z)Re(z, y, 2)f(y) dz dy

f(x).

The last step follows by a standard equality in the theory of integral equations (see
Mikhlin [7, p. 47, eq. # 4]).

Now w(x), defined by

(2.26) w(x) a(x, y, 2)f(y) dy,

satisfies the boundary conditions U(w) O; this follows from the properties of
G(x, y, O) and from the fact that

(2.27)

with

(2.28)

w(x) G(x, y, O)r(y) dy,

r(y) f(y) + 2 Ru(y, z)f(z) dz.
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Hence w(x) given by (2.26) satisfies the system

(2.29) (M 2N)w f, Ui(w) O, 1,..., m.

Hence, since 2 0 is not an eigenvalue of (2.16), the solution of (2.29) is unique, so

(2.30) G(x, y, 2)f(y) dy w(x) (x, y, 2)f(y) dy.
0

Hence G(x, y, 2)= (x, y, 2), except perhaps at points on the line x y, where
these functions will be discontinuous if n m 1. If all functions involved are
defined on the line x y by a limit process from the triangle y > x, then indeed
G G even on this diagonal.

We obtain (2.22) from (2.24) by applying the operator N1 to both sides of
(2.24), and again using equation # 4 in Mikhlin [7, p. 47].

Having established (2.22), we proceed to the proof of (2.21). We will show that

(/) t"1 (NiG)(x,x,2)dx(2.31)
:(2) 0

and

A’(2)
(2.32) (N 1G)(x, x 2) dx

o A()

Here, :(2) is the Fredholm function given essentially by (2.14). The equality of the
logarithmic derivatives of A(2) and K(2) will yield (2.18).

The first inequality (2.31) is well known (see Tricomi [11, p. 72]) provided we
replace (NG) in (2.31) by RK. This is where (2.22) is needed. The second equality
(2.32) is perhaps not so trivial. To prove it, we must differentiate A(2). Let S(x, y, ))
denote the Green’s function for the initial value problem

(2.33) (M 2N)v f,

(2.34) vJ)(O) O, j 0,..., m 1.

Let the integral operator Sz be defined by

(2.35) Su(x) S(x, y, 2)u(y)dy.

If {bi(x, 2)} is a fundamental set of solutions for (M- 2N)u 0 satisfying
{(])Ij- 1)(0’ /)} (ij as in (2.6), then we note that

(2.36) M(8i/c3, 2N(c3i/632)-- NO
and that C3i/C32 vanishes along" with its first (m 1) derivatives at x 0. Hence,

(2.37) c3/2 SNc.
We shall use the notation UiS(., y, 2) to indicate that Ui acts on S(x, y, 2) as a
function of x; the result is clearly independent of x.
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We have

U1 -- U UI(]) Ulff)

(2.38) m’(,,) U2() U2 ff) .-Jr- ....-t-- U 1()1 U ff)m

We replace c/c2 by SxN in (2.38). Then by a series of interchanges we can bring
the jth row in thejth determinant in (2.38) up to the top of the determinant, leaving
the other rows in their original relative order. Thus the new determinant and the
old one are related by a factor of (- 1). The sum of determinants can then be con-
solidated so as to obtain

0 Nbl(y,/],) NdPm(Y,/],)

UIS(’,y,/],) Ult]) Ult#m
(2.39) A’(2) dy.

UrnS(. y, l,) Um) Um)

The validity of (2.39) can also be verified by expanding the determinant using
cofactors of the first column. Now we note that if m > n + 1, then N1S(x, 9, ,) 0
since NS(x, y, 2) 0 if y > x and since the latter function must be continuous on
[0, 1] [0, 1]. If m n + 1, we still define N1S(x, x, 2) NS(x, x +, 2) 0. If we
replace 0 in the determinant in (2.39) by N1S(x, x, 2), we obtain (2.32) (see
Coddington-Levinson [2, p. 204, prob. 12]).

3. The order of an entire function and consequences. We are interested in
investigating the convergence or divergence ofthe series= 1/2il p and

__
1/#l q.

This depends on the density of/]’i and #i about , which in turn is related to the
order of the functions A(0, 2) and A(1, 2). In this section we will review this concept
and also point out how these sums are related to the Taylor coefficients of A(0, 2)
and A(1, 2) via Newton’s formula.

Following Titchmarsh 10, Chap. 8], we say that the entire function f is of
order p >__ 0 if and only if

(3.1) f(z) f(rei) O(e+)

for each e > 0, but for no negative value of e. If we write

(3.2) [f(rei)[ <- Me’+,

then M may depend on e. It is easy to verify that if f/has order pg for 1, 2, then
the functions (f + f2) and (f. f2) have finite orders not exceeding max(p l,/92).
It is also easy to show that this estimate may be too high.

Iff is of order p, and if Zl, z2, are the nonzero roots of the equation

(3.3) f(z) O,
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written according to multiplicity, then the series

(3.4) I1/zil’+
i=1

converges for each e > 0.
Let h + be the smallest integer larger than p. Then f may be represented as

an infinite product. If

1-z for h 0,
(3.5) E(z,h)=

[z2 ;](1-z) exp z+-+ + forh= 1,2,...,

then

(3.6) f(z) Czp e-(’) I-I E[(z/zi), hi,
i=1

where p is a nonnegative integer and Q(z) is a polynomial of degree not exceeding h.
The infinite product here is not necessarily the canonical product discussed in
Titchmarsh [10, p. 250]. An explanation of this concept is not needed in this paper.

If

(3.7) Izl Iz21 ’",
then for each e > 0, there exists an A A() so that

(3.8) A .jl/(p+) < IzjI, j 1,2,

The lower the order, the faster will the quantity Izj[ tend to oe. Equation (3.8) thus
indicates how the order p affects the growth of the quantities IzjI. It follows that for
each > 0,

(3.9) IzjI. j- 1/(p+e) _31_ 0(3 as j o.

From the infinite product and Taylor series representations of f, we can find
the sums

(3.10) [1/z], k h + 1,h + 2,..-,
i=1

as explicit functions of the Taylor series coefficients of f. Let

(3.11) g(z) z-Pf(z).

Taking the logarithmic derivative of g(z) from (3.6) and expanding it in a Taylor
series in the region [zl < [zll, we obtain

g’(z)/g(z) [Q1 + + hQhzh- 1]
(3.12)

zh 2 (llzi)h+ zh+ 2 (l/z,)h+2
i=1 i=1

(3.13) Q(z) Qizi.
i=0

where (see (3.6))
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Let

(3.14) f(z) zp aizi, ao :/: O.
i=0

If we set

then

g’(z)= [i=o ci+lzlg(z)’

(3.16) E1/zi-[’ ck
i=1

fork h + l,h + 2,...

provided, of course, that f has zeroes away from the origin.
We can provide a formula for ck in terms of the Taylor coefficients of f(z) in

(3.14). By expanding both sides of (3.15) in powers of z, and comparing coefficients,
we obtain, after slight rearrangement,

(3.17)

aoC _al

alc + aoc2 -2a2
a2cl + acz + aoc3 -3a3

a_ca + ak_2c2 + + aoC -kay.

Solving for ck by means of determinants, we obtain

(3.18) c

al ao 0 0
2a2 a a0 0

kay, a,_ ak- 2

ao
al

k= 1,2,....

Turnbull [12, p. 74] gives a similar formula for polynomials. He attributes (3.18)
to Newton.

Clearly a necessary and sufficient condition that f have no zeroes away from
the origin is that the determinants c vanish for all k >__ h + 1. In this case, f(z)

CzPe(2(z).

4. Theorems on the order of the determinant A(1, 2). Henceforth we will
assume that 0 is the maximum order of the functions f/j and gij. Note that the
order of A(0, 2) cannot exceed t, and therefore =111/#[’+ converges for each
e > 0. Of course, if all f/j and gij are polynomials, then 0, and the set {i} is
finite.
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The main purpose of this section is to establish three theorems giving upper
bounds on the order of A(1, 2).

THEOREM 1. The function A(1, 2) has a finite order not exceeding max (s, t).
Proof. Let S(x, y) be the Green’s function for the initial value problem

(4.1) Mu f, uJ)(0) 0, j=0,1,...,m- 1.

If (])i(X, 0", ,) is the function given in 2, set

(4.2) 4,(x) 4,(x, 0, 2),

since the latter function does not really depend on 2. Then we maintain that

4,(x, , ,) ck,(x) + S(x, y),(y) y
(4.3)

+ a , # S(x, z)T(z, y, 2)Ndpi(y) dz dy,
j=

where

(4.4) T(x, y, 2) [(Nz),S](x, y).

To establish (4.3) we can proceed in the following way. In the first place, the con-
vergence of the series in (4.3) is a consequence of certain inequalities given later.
For now, denote the right side of (4.3) by the symbol i(x, a, 2) i. One can
then show by direct computation that w satisfies (as a function of x)

(4.5) Mw aNxw, w-1)(0) 6i, j 1,..., m 1,

where 6j is the Kronecker delta. We take here a slightly different point of view. The
right side , of (4.3) may be written

i(x, a, 2) dpi(x) + a S(x, y) + a S(x, z)Rw(Z, y, a) dz dpi(y) dy,

where RT, the resolvent kernel, is given by

(4.6) RT(X, y, 0") _. j-1Tj(X, y, ).
j=l

However, Q(x, y, a, 2), defined by

Q(x, y, , 2) S(x, y) + S(x, z)Rr(z, y, a) dz,

is precisely the Green’s function for

(4.7) Mu aNxu f,uJ(O) O, j O, 1,..., m 1.

This fact is proved in a manner entirely analogous to (2.24); the proof merely
involves changing the "boundary" conditions in the discussion preceding (2.24) to
finitial" conditions. Using the fact that Q is the Green’s function for (4.7), we
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obtain

(M aN)@i(x,a,2) (M o’g.)i(x + a(M aN) Q(x,z,a,2)Ni(z)dz

-aNac/)i(x)+ aNdpi(x)

--0.

Also, since

(iS
(4.8) xi(X, y)

x=O
=0 for/=0,...,m- 1,

the function (I)i on the right side of (4.3) must satisfy (see (4.2) and (2.6))

1)(Di(X /)l (])lj- 1)(0) (ij, j O, rn
o-, 1.

x:o

Hence i must satisfy the same differential equation and initial conditions as
4i(x, a, 2), namely (4.5); hence the two functions are equal, and (4.3) is verified.

We will now concern ourselves with convergence of (4.3), and with bounds on
the function A(1, 2).

Choose a > 0 so that for all 1, ..., m"

(4.9) [i(x)] < a,

(4.10)

(4.11)

(4.12)

INa,(x)l a[IRI + 1-1,

IT(x, Y,R)I a[lRl + 1-1,

cq
xqS(x, y) <= a, q=O,...,m-- 1.

Since S(x, y) and T(x, y, 2) are Volterra kernels, we may show by standard tech-
niques (see Mikhlin [7, p. 16]) that

(4.13)
S(x, z)Tp(z, y, )N,c/)i(y dz dy

ap+ 2

< []21 + 1Iv+l, q 0, rn 1.
-(p+ 1)!

The estimate (4.13) guarantees Convergence of the series in (4.3) for all a and
2, and guarantees that the series may be differentiated up to (m 1) times in the
variable x. The estimate (4.13) will help us prove a bound on the order of A(1, 2).
However, this estimate (4.13) is certainly crude; in view of regularity conditions
which S and Tx frequently possess, as we shall see later, the inequality (4.13) is
quite unsatisfactory to demonstrate the convergence of

(4.14) ll/2il p
i=1

for < p < s, when it happens that < s.



BOUNDARY VALUE PROBLEMS 75

For convenience, let p(X, 2) be the coefficient ofo-p in (4.3), where p 0, 1, ....
We suppress the dependence ofp on so as to simplify the notation. Assume that

(4.15)

for each e > 0, and for 0, ..., m 1 and j 1, ..., m. For convenience, set

(4.16) q, cfli(x, 1,2).

Then, using (4.3) and the estimate (4.13), we obtain

m-1

(4.17) IUj(i)l fq(2)qSq)(0, 1,2) + gq(2)qSlq)(1,1, 2)
q=O

m-1

(4.18) __< b(g)[exp 12l ’+]
p=0 q=0

(4.19) =< 2mb(e)[exp I;1’ /q max Io(pq(x, 2)1
p=0 xe[0,1]

q=O,...,m-

ap+
(4.20) =< 2rob(e) [exp 121’+

p=O

(4.21) 2amb(e)[exp 11 /q exp Ka(I/l + 1)3.

It follows easily that

(4.22) IA(1,2)1 <= m ![2amb(e)]" exp (am). exp [m121 + / amlR[],

from which it follows that the order of A(1, 2) does not exceed max (s, t), thus
completing the proof.

Theorem is a "best" one in the sense that there are systems for which the
order of A(1, 2) is exactly max (s, t).

Example 1. Consider the system

u(")(x) i2u(- )(x),

u)(0) i2u-)(0), j 1,.-., n- 1,

u(0) exp i2’ u(1),

where n, s, are integers such that n __> 1, s _> 1, __> 0, and s 4= t. If n 1, the
boundary condition obtained by settingj is no restriction. The above system
is entirely equivalent to the system

u’(x) i2Su(x),

u(0) exp i2’ u(1).

For the latter system, A(1, 2) [exp i2’] [exp i,a?], so that the order of A(1, 2) is
exactly max (s, t). The eigenvalues satisfy

2’ 2 2pro, p 0,

__
1, ___2,...

and we will show further that o= [1/2[ma(,,) diverges. Let us assume that > s
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for convenience. Pick one root ap of

2t- 2s= 2pn,

Now Irrpl --* + c as p oo. For large 12[,

1

2’ 2- 2

so setting 2 op for large p, we find that

2proO’p

Therefore, the inequality

A

A
2pro [rp[ 2t-s= [rrp[

p= 1,2,...

yields divergence ofp= 111/@1 to see this, we recall that 2t s > t, so that for all
p sufficiently large, 1/2prc < (A + 1)/Irpl . The divergence of p= lip then yields
the desired result. By symmetry, G 11/2gl diverges if s > t. In any case,
_

ll/2il max,t) diverges.
Theorem 1 can also give poor estimates on the order of A(1, 2), as one might

expect.
Example 2. Consider

u’= i2u,

{[exp i2] + p(2)} u(0) u(1),

where p(2) is any polynomial. Here, A(1, )= p(2), so A(1, ) has order zero;
Theorem states that the order of A(1, 2) does not exceed s. This example also
shows us that sometimes only a finite number of eigenvalues occur.

Examples and 2 are at the opposite ends of the spectrum of possibilities; in
general, the cancellations occurring in the second example will not happen.
Hence the first example is considered to be more "typical".

We shall see that while the order of the functions fj and gi, and also the degree
s of the polynomial operator Nx, are working against us, the difference between
m and n will be to our advantage. This is no surprise, since the greater m n is,
the greater the regularity properties of K(x, y, 2) [see (2.13)] and T(x, y, 2), pro-
vided the coefficients of u(i) in Nju also share suitable regularity properties.

The following theorem will have interest when 0, or when A(0, 2) is a
polynomial, for here it shows the possibility of convergence of 11/2] when
q < s; in the important case s 1, 0, it yields absolute convergence and the
possibility of evaluation of= 1/2i.

THEOREM 2. Let k be a positive integer satisfying

k<m-n-1.

Let the coefficient ofu(i) in the expressionfor Nju be k times continuously differentiable
for each in 0 <= <= n, and for each j in 0 <= j <= s. Then the order of A(1, 2) does
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not exceed

max(t,s/(k + 1)).

Remark. Note that in Theorem 2 we may take k m n 1, provided that
the coefficients in Nu are sufficiently smooth. In this event, the conclusion of
Theorem 2 becomes

order A(1,2) =< max (t, s/m- n)).

Pro@ The quantities Op(X, 2) and b(e)of the previous theorem shall retain
their significance. We note that

(4.23) -xT (x, y,2)

is continuous in x and y together for 0 _<_ j _<_ k 1, and that each of these functions
vanishes for y >_ x. For j k, c3JT/c3x is piecewise continuous in [0, 1] 2, with a
possible simple jump across x y. For k 1 and x __> y,

(4.24)

and for k >= 2 and x _>_ y,

T(x, y, 2) (u, y, 2) du,

(4.25) T(x, y, )0

Choose a > 0 so large that

(4.26)

T (xk, Y, 2) dxk dxl.

for all (x, y)e [0, II 2 and for all complex 2. For k __> 2 and x => y,

[T(x,y,/)1 < a[12l + 1] dx.., dxl.

Evidently, for k >= and x >= y,

(4.27) IT(x, y. A)l a[ll + 1](x y)/k!.

Let

(4.28)
(x y)

J(x, y) k!
x >= y,

0, otherwise.

The iterated kernels of J are given by

(4.29)
(X y)p(k+l)-I

J,(x y) [p(k + 1) 1]!’
0, otherwise,

a result that can be established by induction. Certainly, (4.29) is valid for p 1.
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We show that if (4.29) is valid for p, then it is valid for p + 1. Now

-,-f (x -k! z)k [p(k(Z +Y)Pk+I) 1)-1

(4.3O) Jp+ 1(X Y) ii dz forx=>y,

and

Jp+ (x, y) 0

Let u z y in (4.30). Then, for x >__ y,
y uP(k + 1)

(4.31) Jp+l(x,y)
o [p(k + 1) 13!

The integral in (4.31) is a convolution. If

(4.32) v() ,
then (see Tricomi [11, p. 25])

otherwise.

(x- y- u)
k

du.

i= 1,2,-..

(4.33) , () Vi+j+

(i+j+ 1)!

(The asterisk in (4.33) denotes a convolution.) The asserted result (4.29) follows by
setting x y, p(k + 1) 1 and j k in (4.33). Now

(4.34) Yp(x, y, ,L)I <= aP[]2l + 1]PJp(x, y),

soforq 0,..., m- 1,

(4.35)

From (4.19) and (4.35),

xq S(x, z)Tp(z, y, 2)Nz4(y) dz dy

a2[11 + 1] [T,(z, y, 2)1 dz dy

lf (Z y)p(k+ 1)-1
< av+2EI;l / 1]p+x

[p( + 1) i j! y z

< ap+ 2Jill -t- llp+ [p(k + 1)+ 13!"

(4.36) oy(6,)l <= 2ab(e)m[exp Il’+q 1 + [ 1) + 1]’.

Since the function

(4.37) all21 + 1] exp [a(121 + 1)] ’/tk+ 1)

dominates the infinite series in (4.36), it follows that A(1, 2) has finite order not
exceeding max (t, s/(k + 1)).

The results given are again "best" results, as seen from the following examples.
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Example 3. Let m and n be even integers with m > n. Consider

u(m)

u(i)(0) u((1) 0, 0,2,4,.-., m 2.

The functions {sinjrcxlj 1, 2,... are eigenfunctions and {(jrc)m-"lj 1, 2,...
is the set of absolute values of the associated eigenvalues. Here max It, s/(k + 1)]

1/(m n), since 0 and s 1, and

11/21
j=l

converges only if e > 0.
Example 4. Let m, n, and be nonnegative integers and let m n be a positive

even integer. Consider

um(x)

U{’-h)(O) 2*U"-h(O),

u(O) O,

u(1) -I- cos 2’u(O) O,

0<=x<=l,

h= 1,...,n,

j=l,3,5,...,m-n-1,

k 0,2,4,..., m- n- 2.

Let r s/(m n) for convenience. In this case we take k m n 1 in Theorem
2, so that max It, s/(k + 1)] max (t, r). Assume that r > for simplicity. We will
show that the series IRl-r diverges. The original system is equivalent to the
reduced system

u"-"(x) 2u(x), 0 <_ x 1,

uJ)(0) 0, j 1,3, 5,... (m n 1),

utk)(1) + (COS 2’)utk)(0) 0, k 0, 2, 4,..., (m n 2),

as a simple integration will show. A solution of the reduced system is the function
cos )Sx, where ). is a solution of the equation

0 cos 2 + cos 2’ 2 cos (2 + 2’)/2 cos (2 2’)/2.

Let ap be any positive root of the equation

2 + 2’= (2p- 1)rt, p 1,2,....

Note that cos [(2 + 2’)/2] 0 when 2 a. The divergence of y’,p= er-, and
hence divergence of 121-, follows from the inequality

1/a >= 1/(ao + a,)= 1/(2p- 1)ft.

If > r, one can obtain similar results, so in any case,
max[t,s/(k + 1)]

i= //
diverges.

One may obtain unreasonably high estimates on the order of A(1, 2) using
Theorem 2, just as in the case of Theorem 1.
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Example 5. Let s be a positive integer and let r s/2. Consider

u" 22u, u’(0) 0,

u(0) [cos 2 + p(2)] u(1),

where p is a polynomial. In this case A(1, 2) p(2), provided we choose as a fun-
damental set u(x)= cos 2r, v(x)= (sin 2x)/2. Obviously the order of A(1, 2) is
zero, while the estimate provided by Theorem 2 is max It, s/(k + 1)] r.

It is not possible to say very much about the asymptotic behavior of the eigen-
values of problem (2.1)-(2.2) under the generality assumed. It is not at all surprising
that A(1, 2) can be any entire function, possibly one of infinite order. Equation
(3.9) is the only asymptotic result for the eigenvalues of (2.1)-(2.2), unless less
general systems are considered. We may not generally even set e 0 in (3.9), as
the previous examples show.

We now give another result of the same type as Theorem 2; this time, we
place restrictions on M instead of on Nz in order to improve the bound on the
order of A(1, 2).

THEOREM 3. Let

(4.38) Mu p_(x)u(x),
j=0

and suppose that Pm-j C(J)[0, 1] for j 0,..., m. Then the order of A(1, 2) does
not exceed

max It, s/(m n)].

Proof. Under our assumptions, the adjoint M* of M exists, and

(4.39) S(x, y) , ck,(x)(i(y)
i=1

for x _>_ y, where cki(x) is given by (4.2), and where the (i are solutions of the adjoint
equation (see problems 19 and 21, Coddington and Levinson [2, p. 101])
(4.40) m*(i O.

Hence (i e c(m)[0, 1] and it follows that

P+q
(4.41) cx" cyqS(x’ y)

is continuous on all of [0, 1] 2 provided that p + q =< m 2.
For p + q so restricted, cP+qS/cxp cyq vanishes along x y. Let k m

n- 1. If k= andx>=y, then

(4.42) T(x, y, 2) --u(x, u, 2) du.

Ifk __> 2, and x >= y, then

(4.43) T(x, y, 2) -2..k T (X, Yk, 2) dy dye.

Assume Po without loss of generality.



BOUNDARY VALUE PROBLEMS 81

Hence, for x >__ y and k _> 1, and for a > 0 and sufficiently large,

(4.44) IT(x, Y,)I alibi + 1](x y)/k!.

The rest of the proof follows as before.
For a given system, there are often several possibilities in the way we can

chooseM and Nz. Depending on how we choose M and Nx, and on which theorem
we use, we may obtain different estimates for the order of A(1, 2). If some of the
functions pj(x) (where 0 =< m -j _<_ n) do not have the required regularity con-
ditions of Theorem 3, the offending terms can be incorporated into Nzu without
harming the estimates.

5. Evaluation of traces from the Fredholm function @K(2). In this section
we will examine the relation between i:12 and the Fredholm function

@K(2). By doing this, we develop the analogue of (1.2) for the equation (1.3). For
small values of p, the equations sought sometimes yield a practical means of
evaluating these sums, provided one of the previous theorems is applicable. At
this stage it is convenient to restrict slightly the class of problems under investiga-
tion;instead of (2.1) and (2.2), we will consider

(5.1) Mu 2Nxu, Uj(u, 2) 0,

where M, N, Uj, qSi(x, a, 2), A(a, 2), m, n, s, t, #i, m(x, y, 2) and K(x, y, 2) are as
before, with the exception that now we may assume s >= 0 instead of s >__ 1. The
eigenvalues 2i of (5.1) taken according to algebraic multiplicity are given as solu-
tions of

(5.2) A(2, 2) 0.

One can use the function t((2) to compute the sums = [1/2i]q, but again
the usefulness of the procedure is limited to special types of problems. Evidently,
the equation Mu 0 must be solvable; that is, K(x, y, 2) must be computable.
Formulas connecting the coefficients of 2 in the Taylor expansion of

about 2 0 with these sums possess a complication; since (2) is meromorphic
and not generally entire, we will shortly see that one can find only the sums

p+l p+l(5.3)
i= i=

directly in terms of the said Taylor coefficients of its logarithmic derivative.
However, the g are zeroes of A(0, 2), so use of (3.18) yields explicit expressions for
the series above involving the g, provided Mu 0 is solvable.

We shall presently develop the abovementioned formulas. We assume that
M(x, y, 0) exists, where M(x, y, 2) is the Green’s function for (2.9). From (2.15),

d

(5.4) +
(, x)

d d
--A(, 2) A(O, ) a()

a(o, ) ()
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so (using equation (3.12)) the expression (5.3) is precisely the Taylor coefficient of
2p in the expansion of the function on the right side of equation (5.4), provided
(p + 1) is larger than the orders of A(2, 2) and A(0, 2). Let

(x, y, ,)

/((x, y, 2) K(x, y, 2) K(x, Yi, 2)

/(y, y, x) /(y, y, )

g(Yi, Y,/],) g(Yi, Y l, ) g(Yi, Yi,

dy dyi.

By a general formula2 of Fredholm, modified by our notation, (see Fredholm
[4, pp. 379-3.81])

[2K(x, x, 2)] dx

ff(x,y,,)--[2K(y, x, 2)] dx dy.

Now

,,(x, y, 0 ,V/%+ (x, y, x),(5.6)
(2) =o

SO

(5.7)

2 Kj+ l(x, x, 2) dx + 2. K(x, x, 2) dx
j=O

"1-" 0 22+ 2 K2+ I(X, y, 2 K(y, x, 2) dx dy.
j=

Next we expand K(x, y, 2) in powers of 2, i.e.,

(5.8) K(x, y, 2) oK(x, y) + 2 1K(x, y) q- "’’,

and substitute this expression into (5.7). We will partially verify below that all
necessary rearrangements and term by term integrations of series are valid.
Proceeding formally, it is possible to collect terms in (5.7) according to powers of 2
and thereby obtain, after considerable manipulation, an equation of the form

d
a()

(5.9)
K(2) Z ap)’p,

p=0

2Fredholm’s notation is somewhat deceiving; his kernel f(x, y) is actually dependent upon a

hidden parameter. It is by varying this parameter that he computes the differential of his function Ds,
although he does not say so explicitly.
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where as we will show shortly, 3 for p >= 1,

ap oKp + I(X, X) dx + (p + 1) pK(x x) dx

(5.10)

+ i,K(x,z1) i2K(z1,z2)
i +...+. =p-j 0

i,i2,... >= 0
i, /,K(z2, x) d(Zl, zj, x)

p-2 p-j-2 ;-t- Z 2 (p j h 1) ixK(x, Z1)
j--0 h=0 il +...+ij+ =h 0

i,i2,...>=O

i2K(zx, z2) ij+ ,K(z2, y) v-j-h- 1K(y, x) d(Zl, zj, x, y).

Combining this result with (5.4), we obtain

(5.11) 2 ap,
i= i=

where ap is given by (5.10). The (standard) notation iKj denotes the jth iterated
kernel of iK. Clearly, if iK(x, y)>= 0 for each nonnegative integer i_<_ p, then
existence of eigenvalues or poles is assured if (5.11) holds for that p. In the case in
which K(x, y, 2) oK(x, y), the equations (5.11) reduce to

(5.12) oKp+l(x,x)dx,
i= 0

as we should expect.
In general, (5.11) holds if p + 1 is larger than the orders of A(2, 2) and A(0, 2).

It is clear that equations (5.11) hold for p + > max(s + 1, t); we must recall
that 2N is a polynomial of order s + in the variable 2. Equations (5.11) are
valid also for p + 1 > max (t, (s + 1)/(k + 1)), where k is the number given in
Theorem 2. If Theorem 3 is applicable, then we have validity of (5.11) for p + 1
> max It, (s + 1)/(m n)]. Since the # are zeroes of A(0, 2), expansion of this
function in powers of 2 and use of formula (3.16) yields expressions for the sums

27=1 [1/lli]p+ 1, valid for p + > t.
For p 0, 1, and 2, equations (5.11) reduce to

oK(x, x) dx,
i= i=1

(5.14)
i= i=1

I-il3 I-il
3

i= i=1

2 1K(x, x) dx + oK2(x, x) dx,

3 2K(x, x) dx

4-. 3 1K(x, y) oK(y, x) dx dy

i

+ | oK3(x, x) dx.
d0

Ifj 0, the integrand in the second series in (5.10) is i,K(x, y) p-h- K(y, x).
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Equation (5.13) is valid if < 1, s < m n 1, and if p3 e c(m-3)[0, 1], where the

pj are given in Theorem 3. Equation (5.14) is valid if < 2, s < 2(m n) and
if p C"-)[0, ].

If Theorem 3 is inapplicable, then assume that the hypothesis on Nz in
Theorem 2 is valid. Equation (5.13) holds if < and s < k. Equation (5.14)
holds ift<2ands<2k+ 1. Herek<m-n- 1.

pK(x, x)dx on the right side ofIf m n + 1, the appearance of the term o
(5.10) may cause concern, since pK(x, x) seems to vary depending on how we define
K(x, x, 2) if K(x, y, 2) has a jump across the line y x. This is, in fact, only par-
tially true; the values of ,K(x, x) are independent of how we define K(x, x, 2)
provided p > s, as we shall see shortly when we examine the structure of K(x, y, 2).
This is, of course, good reason why we should expect that the formulas (5.11) are
generally not valid when p < s unless further assumptions are made.

An explanation of (5.10) is in order here. Let the first double series in (5.10) be
written as Z; b}), where the b}.e, are sums of integrals over the variables l, -..,

S p- 2 C(p)ij+l. Similarly, let the second double series in (5.10) be written a Y’q--o The
latter series vanishes, of course, for p 0 or p 1. Let

(5.16) b(o) eK(x, x) dx, bp) oK+ (x, x) dx

then the right side of (5.10) is precisely
p

C}p)Z b}p) + + p ,K(x, x)dx.
j=o j=o

First we note that

(5.18) p K(x,x)dx

in (5.17) is precisely the coefficient of 2p in the MacLaurin expansion of

(5.19) 2 K(x,x,2)dx

in (5.7).
Next we will show that . b}e) in (5.17) is precisely the coefficient of 2p in1=0

the MacLaurin expansion of

(5.20) o 2 K+ l(x, x, 2) dx
j=

in (5.7). If we write

(5.21) K(x, zl 2)K(zl, z2,2).-. K(z, y) f(hJ)(x, y, z ,..., zj)2h,
h=0

then

(5.22) f(hJ)(x, y, z zj)
i + ij+ =h
il,.",ij+ >=0

ilK(x, z) i2K(z z2) i/ iK(zj, y).
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Let

(5.23)

Then

(5.24)

gJ)(x, y) fhJ)(X, y, Z 1,’’’, Zj) d(zl, zj).

b" g_(x, x) clx.

Note that the integral of the left side of (5.21) over the square 0 __< Zl, z2

zj =< 1 is precisely Kj + l(x, y, 2) and that

(5.25) Kj+ I(X, y, t].) Z l]’hg(hj)(x’ Y)"
h=0

Justification of the term by term integration needed to obtain (5.25) will be done
later.

We maintain that

(5.26)

(5.27)

(5.28) Z 2p b}p)"
p=O j=0

Equation (5.26) follows from (5.25). If we set p j + h and eliminate h in the right
side of (5.26), we get (5.27). The last equality follows from (5.24). Finally, the
rearrangement of terms in (5.27) will be justified later when we examine the
structure of K(x, y, 2).

By (5.26)-(5.28), we see that the coefficient of 2p in the MacLaurin expansion
of the first series on the right side of (5.7) is precisely j=P o b}p)""

It remains to be shown that the series __-g c}p) in (5.17)is the coefficient of
2p in the MacLaurin expansion of the last series on the right side of (5.7). Here we
will be brief. From (5.25),

(5.29)

/j+ 2 Kj+ l(x, x, 2) dx dy

/j+2 2 E (i + 1)2 +’ gJ)(x, Y),+IK(Y, x) dx dy.
h=0 i=0

Letting k h + + 2 in the right side of (5.29), and eliminating i, we obtain
the equality of the right side of (5.29) and of

(5.30) )j .k(k h 1) g(hJ)(X, y)
__

1K(y, x) dx dy.
k=2 h=O
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We sum (5.29) and (5.30) from j 0 to j + oo, set p j + k, and eliminate the
p-2variable k from the summation. The result will be that j=o c)p) in (5.17) is the

coefficient of 2p in the MacLaurin expansion of the last term (series) on the right
side of (5.7). Again, certain term by term integrations and rearrangements would
have to be justified.

Hence we have the relation between (5.7) and (5.17), namely that (5.17) is
the coefficient of 2p in the MacLaurin expansion of the right side of (5.7).

We now will justify the term by term integration needed to obtain (5.25) and
the rearrangement of terms in (5.27).

In Coddington-Levinson [2, p. 204, prob. 12], we note the formula given (in
our notation) for M(x, y, 2), the Green’s function fo (2.9)(see (4.1)-(4.2)):

(5.3 ) zx(0, X)M(x, y, )

s(x, y) 4 (x)

GAs(., y), v[, uA4, ]

(Coddington-Levinson’s variable /is our a.) In (5.31), the operator
operates on S(x, y) as a function of x the result is independent of x as the notation
Uj[S(., y), 2 indicates. If we operate on (5.31) with (N2)1 and expand in cofactors
via the first row, then we get

(5.32) K(x, y, 2) H(x, y, 2) + Xi(x’ 2)Y,(y, 2)
i= p(2)

H(x, y, 2) [(N2)18] (x, y),

p(2) ZX(0, ),

where

(5.33)

(5.34)

and

(5.35) Xi(x, 2) (N2d?i)(x, O, 2) (N2c/)i)(x).

Here, [-Yjy, 2)] is the determinant obtained by replacing the ith column of
A(0, 2) by

u[s(., y), ]

UralS(’, Y),

(5.36) H(x, y, 2) 2 H(x, y),
i=0

then

(5.37) 121 liH(x, Y)I
i=0

If we let
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is piecewise continuous on [0, 1] 2, with a possible simple jump across the line
y x. Similarly, if we let

(5.38) X(x, 2) x(x)2J,
j=O

then

(5.39) IXg(x)l IJI
j=0

is continuous for x [0, 1].
Finally, if

(5.40) Y(y,2) Yj(y)2j,

then we will show that

(5.41) Y(y)I IAI
j=O

is continuous in the variables (y, 2) and uniformly convergent in (y, 2) near 2 0.
If necessary, we agree that

x(m_lS (0, 0)= lim S (0 y)
r-" o x(m -1)

with a similar definition of the derivative at (x, y) (1, 1) via a limit as y - 1-
with x 1. The uniform convergence (and continuity) of the series (5.41) in
(y, 2) near 2 0 follows from the particularly simple form Y(y, 2) takes upon
expansion of this determinant, namely,

(5.43) Yi(Y, )
=o a(2)LxJ(’ y) + b’(’t)Laxj(l’ ;)

where the functions aik(2) and bik(2) are certain entire functions. Incidentally, the
continuity of the functions Xi and Y indicates that the functions pK(x, x) are
independent of how we define K(x, x, 2), provided p > s, since (5.36), the only
possibly discontinuous part of K(x, y, 2), terminates. Indeed, the functions pK(x, y)
are continuous on [0, 1] 2 if p > s. If

(5.44) y,, ig(x y)/],i
i=0

is the Taylor expansion of K(x, y, 2) about 2 0, then the series

(5.45) Ig(x, Y)1121
i=0

converges for 121 small and is piecewise continuous and uniformly convergent for
(x, y)e [0, 1] 2 and small 2 as a result of the above.



88 A. V. LAGINESTRA AND W. E. BOYCE

Next we show that

(5.46) (j + 1)lj+ 1K(x, Y)I I,1
j=O

is piecewise continuous and uniformly convergent in the variables (x, y, 2) for
small 2.

Let e > 0 be small, and let C be the circle [z[ e. If 121 < e, then

(5.47) (j+ 1)lRlJ 1.If Zj+l j+2

c(2-))edz <=(e_ll)2"

Hence convergence of (5.46) is uniform in the asserted variables provided
121 =< e/2; this follows from the uniform convergence of (5.45).

If y is replaced by x in either (5.45) or (5.46), one can show in similar fashion
that the resulting series are continuous in x, provided H(x, x, 2)= H(x, x +, 2)
in accordance with the remarks after (2.18).

We give some indication of the justification of the interchange of sum and
integral and the rearrangement which are needed in order to justify (5.25) and
(5.27), respectively.

Let us assume 2 > 0 and iK(x, y) O. Hence we replace 2 and iK(x, y) by
their magnitudes. The new function K(x, y, 2) so formed is piecewise continuous
and integrable. For each fixed eo > 0, there exists a 6o > 0 such that

(5.48)
j=O

converges for 0 < 2 < 6o to a Lebesgue integrable (indeed piecewise continuous)
function (see Tricomi 11, p. 50]), and hence the right side of (5.6)converges to an
integrable function for 0 < 2 < . if e is small. We are using here the fact that
(5.48) is a monotonic function of 2 and eo under the positivity assumptions made.
Under the positivity assumptions, we have (see (5.21))

p

(5.49) K(x, zl, 2)K(zl, z2,2)... K(zj, y, 2) >__ fJ)(x,y, zl, "", zj)2h.
h=0

Hence the term by term integration needed to obtain (5.25)4 may be justified by the
Lebesgue dominated convergence theorem. The rearrangement in (5.27) is valid
since the series involved are absolutely convergent. Similarly the manipulations
involving (5.29)-(5.30) can be justified; in order to do this, we would use the fact
that (5.46) converges to a piecewise continuous function.

We would like to make a comment about the application of Theorem 3.
It is best made through an example. Suppose we consider the system

3

(5.50) Y’ P3-ju0)= ql_jU
(j)

j=o j=o

plus suitable boundary conditions involving 2 only as a polynomial for simplicity.
Assume that Po C3[0, 1], p C2[0, 1] and that all the other coefficients pj, q
are merely continuous. Theorem 3 cannot be applied directly, and Theorem
yields only the convergence ofi 1121- +) for e > 0. Theorem 2 is inapplicable

4 and (5.26).
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because of insufficient regularity of the coefficients qo and q l. We rewrite the
system in the form

3

(5.51) P3-Ju’J,= ql-Ju(J’- Z P3-J
j=2 j=0 j--0

and now Theorem 3 yields convergence of the sum

i--1

The comment we wish to make is as follows. If K(x, y, 2) is given by (2.13), where
M(x, y, 2) is the Green’s function of the operator on the left side of (5.50) for
small, if one exists, then (5.13) is still valid. This is true because of the following
reasons. The function A(2, 2) for (5.50), with

3

jU
(j)Mu p3_ju

O) N,u q_.
j=0 j=0

and Mu 2Nxu, is the same as the function A(1, 2) of (5.51), with

3

u(j) Z P3 jU
(j)Mu P3 uO) N,u 2 q

j=2 j=O j=0

and Mu Nau. The series i 2/- p is precisely the same for both interpretations
of the original system. However, the function A(0, 2) and the series i=1 g- p are
different for each of the two interpretations of the original system, but the order
of A(0, 2) is zero in each interpretation, since the boundary conditions involve
polynomials in 2, and 0 in each case.

Finally we note that the Green’s function M(x, y) for the system

u’ i2u,

u(0) u(1)

is discontinuous along the line y x. However, A(2) and D(2) are of order one.
Carleman [13] has exhibited continuous kernels (which are evidently not Green’s
functions) such that the order of D(2) is precisely two. Evidently, then, Green’s
functions have very special properties, even when they are discontinuous.
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SUCCESSIVE APPROXIMATIONS OF SOME NONLINEAR
INITIAL-BOUNDARY VALUE PROBLEMS*

C. V. PAO

Abstract. The method of successive approximations is used to show the existence of a unique
solution for a nonlinear initial-boundary value problem for the heat equation. A constructive method for
the determination of approximate solutions and their error estimates is given. The existence problem
includes both global and local solutions as well as continuation of a local solution. The space domain
can either be bounded or unbounded. Some qualitative analysis on the boundedness of the solution and
the stability of an equilibrium solution is included. The mathematical system considered in the paper
is motivated by a physical problem arising from the theory of tubular chemical reactors. An application
to this particular problem is given.

1. Introduction. Let f be an open domain in the n-dimensional Euclidean
space R" with boundary cf which consists of a bounded part cfl and an un-
bounded part cf2. Consider the following initial-boundary value problem"

(1.1)

(1.2)

u, Lu =- u, aij(t,X)Ux, x + bi(t,X)Ux, + C(t,x)u
i,j=l i=1

f(t, x, u),

t6(0, TJ, x6f,

(u
off x -v + fl x u h x e (O, T], X . (’I

lim u(t, x) O, (0, T],
x-2

(1.3) u(0, x) qS(x), x e f,

where v is the unit outward normal vector on ?fl, >= 0, fl > 0 are bounded
functions on [0, T] x cfl and h, 4 are continuous functions on [0, T] x c?fl and
f (the closure of f), respectively. The coefficients azj, bi, c of L are continuous on
[0, T x f and there exists a constant ao > 0 such that for every vector
( 1, n)in R", Zin,j=l aijij a0[l 2 for (t, x)e [0, T] x . The function f

is assumed to be continuous with respect to all its arguments. Either the bounded
part cfl or the unbounded part cf2 of the boundary (f is allowed to be empty.
Thus f is a bounded domain if cf2 is empty and f is the whole space R" if 8f is
empty. In general, cf consists of a bounded part and an unbounded part such as
the exterior of a sphere or a half-space, etc. The purpose of this paper is to show
that the problem (1.1)-(1.3) has a unique solution (both global and local) for a
class of nonlinear functions f and this solution can be constructed by the method
of successive approximations as well as error estimates for the approximations.
We also discuss the bounded property of the solution and the stability problem of
a steady state (or equilibrium) solution.

* Received by the editors August 24, 1972, and in revised form January 19, 1973.

" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27607.
This work was supported by the U.S. Army Research Office, Durham.
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The problem (1.1)-(1.3) is a generalization of the following physical problem
arising from the theory of tubular chemical reactors (cf. [2], [4]):

(1.4) u-(aUxx+ bu)=fo(u)=- A(r-u) exp -(1+u
t>O, O<x<l,

(1.5) a,u,(O) fl,u(O)= O, a2u,(1) + fl2u(1)= O,

(1.6) u(O, x) 4)(x), 0 < x < 1,

where i >= 0, fli 0 with i +/3i 4:0 (i 1, 2), b is a real number and a, r, A, B are
positive constants. We shall show that the problem (1.4)-(1.6) has a unique solution
u(t, x) satisfying 0 < u(t, x) <= r provided that 0 =< b(x) < r. This implies in par-
ticular that every steady state solution Ue(X) of the system satisfies 0 __< ue(x) <-_ r, a
result that was established in [4] (see also [7]) by considering the corresponding
boundary value problem directly.

The existenceproblem of(1.1 )-( 1.3) by themethod ofsuccessive approximations
has recently been discussed by Chan [3] and by Sattinger [10], and a number of
earlier works on the subject have been referenced by the authors. In [3], Chan
approximates the solution by solving an integro-differential equation and the
construction of a Neumann function of a boundary-valued problem. Sattinger [10]
uses the monotone iterate scheme by constructing a monotone increasing and a
monotone decreasing sequence and then shows that these sequences converge
from below and above, respectively, to the unique solution. Both authors have
treated the problem with bounded space domains. In this paper we also use the
concept of successive approximations, but we take a different process of approxi-
mations and a different approach in the convergence proof. This process requires
indirectly some properties of the Green’s function of the corresponding linear
problem. The advantage of this approach is that it can be applied to a bounded or
an unbounded space domain and leads to an error estimate for the approximations.

In 2 we show the existence of a global solution and a local solution as well
as its continuation. In 3 we study the boundedness of a solution and the existence
of a global solution for locally Lipschitz continuous functions. Section 4 deals with
some stability problems of an equilibrium solution and 5 gives an application of
the existence and stability theorems to the problem (1.4)-(1.6).

2. The existence problem. Let D (0, T] ) with its closure denoted by
D and let 2 be any real number. Then by letting v e- tu we transform the problem
(1.1)-(1.3) into the form

(2.2)

t(0, T],

t(O, T],
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Thus the existence and uniqueness problem of (1.1)-(1.3) follows from the same
as for (2.1)-(2.3). We denote by C(D) the Banach space of all bounded continuous
functions v(t, x) on D with norm

I1 sup {Iv(t, x)l (t, x) b}.
A similar definition holds for C(f) with its norm denoted by "11. Let

v---- v,- (L-2)v

and consider &r as an operator in C() into itself with domain D(5o) given by

D(5) {v C(/); v C(/), v C2() for each t, and v satisfying (2.2), (2.3)},
where C2() denotes the set of all twice continuously differentiable functions on ft.
Consider F defined by (F(v))(t, x)= e-’f(t, x, e’v) as a nonlinear operator on
C(O). Then the problem (2.1)-(2.3) is equivalent to the operator equation

(2.4) v F(v), v D(2’),

in the Banach space C(O). The requirement of v in D(L,W) in (2.4) insures that v
satisfies the boundary and initial conditions (2.2), (2.3).

Let S be a closed subset of C(D). Consider the linear equation

(2.5) qv v (L 2)v g(t, x), (t, x) D,

together with the boundary and initial conditions (2.2), (2.3), where g(t, x) is in
C(). If to each g S the linear problem (2.5), (2.2), (2.3) has a unique solution in
S, then for any v0 S the system

(Vm)(t X) F(V 1)(t, x), ((t, x) D)

a(t, x)-v + fl(t, x)v e-th(t, x), (t 6 (O, T], x c)

(2.6) tn 1,2,...,
lim Vm(t, x) 0, (t (0, T])

Vm(O, X) (X), (X e fl)

determines a sequence {Vm} in S. Our aim is to show that if f(t, x, u) satisfies a

Lipschitz condition (in u) then the sequence {Vm} converges to a unique solution
of the problem (2.1)-(2.3). Before proving this we derive some properties for the
operator . For convenience, we set Co sup {c(t, x); (t, x)e }.

LEMMA 2.1. Let v v2 e D(C’) and let v v I)2" Then there exists o e (0, T],
Xo e such that Ilvll Iv(to, xo)l and

(2.7) v(to, Xo)(’v ov2)(t0 x0) - (,, c(t0 Xo))lV(to, Xo)l 2

Furthermore for any 2 > co the inverse operator ’- of exists on R(2’), the
range of, and

(2.8) 115-xw -Xw2 < (’ Co)- w w2 II, w, w2 6 R(&).

Proof. It is obvious that (2.7) holds when v--0. We assume that v 0.
Then for any (to, Xo) in such that Ilvll IV(to, xo)l we must have o e (0, T] and

xo eft. For from v 0 we have x0 cf and from v(0, x)= b(x)- 4(x)= 0,
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to 4: 0. Now if xo ’-’1, then from the boundary condition (2.2) we would have
V(to, Xo) 0 if a(to, Xo) 0 and ?V(to, Xo)/#v -(fl(to, Xo)/a(to, Xo))V(to, Xo) if
a(to, Xo) - 0. These are not possible since fl > 0 and v(to, Xo) is either a positive
maximum or a negative minimum in ft (with to fixed). Knowing xo gt and to 4:0
we obtain Vx,(to, Xo) 0 (i 1,..., n), vt(to, Xo) 0 if to T, and

(2.9) ai(to, Xo)Vx,x(to, Xo) = 0 according to v(to, Xo) 0
i,j=

(cf. [6, p. 34]). The above relations imply that

(2.10) V(to, Xo) aij(to, Xo)Vxx(to, Xo) <= O.
i,j=

It follows that

(2.11) V(to,Xo)( CPVl v2)(to,Xo) V(to,Xo)Vt(to,Xo) -+- ( C(to,Xo))lV(to,Xo)[ 2

and (2.7) follows from (2.11) if to 4: T. In case to T then vt(T, Xo) >= 0 or =< 0
depending on whether v(T, Xo) > 0 or < 0, respectively. Thus v(T, Xo)Vt(T, Xo) > 0
and (2.7) also holds. Finally if 2 > co then from (2.7),

Iv v2l [15Vx 5v211 V(to, Xo)(5vl V2)(t0, X0)
(2.12) _>_ ( C0)[[V /)2112

Hence L- exists and (2.8) holds.
THEOREM 2.1. Assume thatf(t, x, maps a closed subset S ofC(D) into itself, and

for any g in S the linear problem (2.5), (2.2), (2.3) has a unique solution in S. If there
exists a constant k such that

(2.13) If(t, x, 1) f(t, x, r/2)[ =< k[r/1 r/2[, (t, x) D, < r/l, r/2 < ,
then the nonlinear problem (1.1)-(1.3) has a unique solution in S. Moreover given any
> k + co and any vo in S, the sequence {Vm} determinedfrom (2.6) converges to a

unique solution v(t, x) of (2.1)-(2.3) in S and

(2.14) v Vmll < k k m-1

V Vo rn 1,2,....
2 k co 2 co

Proof. Let w e S and let F(t, x, w(t, x)) =_ g(t, x). Then by hypothesis, g e S and
there exists v e D() f-] S such that (v)(t, x) F(t, x, w(t, x)). By Lemma 2.1 we
may write v 2.W- IF(w). Since condition (2.13) implies that for any w,w2 e S

[f(t x w l)- f(t x W2) < k e-XtleXtw- e’’w2l kiwi w2l,

we obtain F(w) F(w2) =< k w w2 It follows from Lemma 2.1 that

(2.15) ’-F(w) 5fl-XF(w2) __< k( Co)-llwl w2

By choosing 2 > k + Co, the operator (&o-F) is a contraction mapping on S.
Therefore the sequence {v,,} defined successively by

(2.16) Vm q- 1F(vm- 1), m 1,2, ...,
converges to a unique element v e S such that v ’-1F(v). This shows that
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v e D(C) and &v F(v). Hence the problem (2.1)-(2.3) (and thus (1.1)-(1.3)) has a
unique solution in S. Since the sequence given in (2.16) is the same as that given in
(2.6) and since the contraction constant of(ca- 1F) is k(2 Co)- 1, the convergence
of (2.6) and the inequality (2.14) follow from the standard proof of the contraction
mapping theorem. This completes the proof of the theorem.

Remarks 2.1. (a) In case S is an arbitrary set not necessarily closed then the
sequence Vm in (2.16) converges to an element v in C(D). If we let c be the closure
of (in the sense that if w, e O(), w, w and 5w, v in C(D) then w D(c)
and cw v. Notice that D() is not a linear subspace)then 5c exists and satis-
fies (2.8) as can be seen from (2.12). Since 5ev,, F(v,,_ 1) and F(vm_ 1) F(v) as
m we have v e O(c) and 5cv F(v). In this case, the solution v(t, x) is in the
above extended sense. However, it is easy to show that v(t, x) satisfies the conditions
(2.2), (2.3) and by definition LZcV v for v e D(&a). We see that if vt C(D) and
v e C2() for each the function v(t, x) is the classical solution of (2.1)-(2.3).

(b) The existence of a solution v(t, x) to the linear problem (2.5), (2.2), (2.3)
can be insured under sufficiently smooth conditions on the boundary off and some
conditions of H61der continuity on f, b, h, , fl and the coefficients of L, where S
may be chosen as the set of H61der continuous functions (cf. [8, p. 320]). Using the
a priori estimate for v, one can show that v e D(e) so that v is the solution in the
classical sense. On the other hand, from Theorem 2.1 if the Green’s function of the
linear problem is obtained, then the solution of the nonlinear problem (2.1)-(2.3)
can be constructed from (2.6) by successive approximations.

In Theorem 2.1 it is assumed that f satisfies a global Lipschitz condition so
that the "global solution" v(t, x) can be constructed by successive approximations.
However, many classes of nonlinear functions such as polynomials satisfy only
local Lipschitz conditions. It is therefore desirable to know whether solutions to
the problem (1.1)-(1.3) exist for locally Lipschitz continuous functions. The fol-
lowing theorem shows the existence of a unique "local solution".

THEOREM 2.2. If in Theorem 2.1 the condition (2.13) is replaced by the local
Lipschitz condition

(2.17) [f(t,X, tll)- f(t,x, ri2)l <- kit/1 t/21, rl,,ri2e[-r,r,

for some r > 0 then for Ib(x)l < r on f the problem (1.1)-(1.3) has a unique "local
solution" u(t, x) in the sense that for some To > O, u(t, x) satisfies (1.1)-(1.3)for all
x and [0, To]. The value of To is determined by the largest interval [0, To] on
which lu(t, x)[ <= r on f. If, in addition, f satisfies (2.17)for every finite r where
k k(r) < , then u(t, x) can be continued (in t)for as long as it remains bounded
onlY.

Proof. Define a modification for f by

(2.18)

f(t,x,-r) if q=< -r,

f(t,x,rl)= f(t,x,q) iflql__<r,

f(t,x,r) if r/=> r.

Then f is continuous in r/and satisfies (2.13). Thus by Theorem 2.1 the problem
(1.1)-(1.3) with f replaced by f has a unique solution (t, x). Since 1(0, x)[ [b(x)[
< r, there exists To > 0 such that [o(t, x)[ =< r for 0, To]. We choose To with the
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largest possible value such that I(t, x)[ =< r on [0, To] x . But f coincides withf
when I(t, x)l =< r. We see that (t, x) is the unique solution of(1.1)-(1.3) for [0, To].
In case f satisfies (2.17) for every finite r, where k may depend on r, we choose
fi(To, x) as the new initial element in (1.3) and define a modification fl as in (2.18)
with r > r. Then by the same argument there exists a unique solution to (1.1)-(1.3)
on [To, T1] x f for some T1 > To. Continuing this process and using the unique-
ness property we can continue the solution for as long as it remains bounded on f.
This proves the theorem.

An immediate consequence of Theorem 2.2 is the existence of a local solution
of the equation

N

(2.19) ut Lu dj(t, x)uj, (t, x) D,
j=0

under the boundary and initial conditions (1.2), (1.3).
COROLLARY. Assume that the functions dj(t, x), j 0, 1, 2,..., are bounded

continuous on D. Then the problem (2.19), (1.2), (1.3) has a unique local solution
u(t, x). Furthermore u(t, x) is either the solution on the whole domain D or it is
unbounded on f at some (0, T].

Proof. Since the function f u__ o du satisfies the local Lipschitz condition
(2.17) in every finite interval [-r, r] for some k k(r) < oe the conclusion in the
corollary follows directly from Theorem 2.2.

The results in Theorems 2.1 and 2.2 are analogous to the Cauchy problem of
ordinary differential equations. The possibility of the unboundedness of a solution
for functions satisfying only local Lipschitz conditions may be demonstrated by
the simple example dy/dt y ( > 1) which has an unbounded solution over a
finite interval of for any initial element y(0) - 0. Thus in order to obtain bounded
solutions of(1.1)-(1.3) on/ for this class of functions, some additional assumptions
seem to be imperative. These assumptions will be given in the following section.

3. The boundedness problem. In this section we give some boundedness
properties of a solution of (1.1)-(1.3). These properties lead to the existence of a
global solution on D for a class of functions satisfying local Lipschitz conditions.
We recall that any continuous function u(t, x) on D may be considered as a vector-
valued function u(t) in C() with u(t) n sup {lu(t, x)l; x } for each in [0, T].
The following lemma plays an essential role in the study of the boundedness
problem as well as the stability problem.

LEMMA 3.1. Let u(t,x) C(D) such that u(t,x) 0 as x (2 and u,(to,X)
C(f) at o [0, T). Then there exists xo f (Xo depends on to) with U(to)
lU(to, Xo)l such that the right-derivative (d+/dt)(lu(t, Xo)l) exists at o and

d +

(3.1) lU(to, xo)l-d-[(lu(to, xo)l) =< U(to, Xo)U,(to, Xo).

Proof. We first show that for any fixed x , (d+/dt)(lu(t, x)l) exists at o
and

d +

(3.2)
dt
(lu(to, x)l) lim h- ’(lu(to, x) + hu,(to, x)l lu(to, x)l).

hO+

Thelimitin(3.2)existssincethefunctiong(h) h- l(lU(to, x) + hu,(to, x)l lu(t0, x)l)
is monotonically nondecreasing in h and is uniformly bounded by +_ lut(to,
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(cf. [5, p. 3]). Since for each h > 0,

h- xl[lU(to / h, x)l lU(to, x)l] filU(to, x) + hu,(to, x)l lU(to, x)l]l

=< h- lu(to + h, x) U(to, x) hut(to, x)l,

we see by taking h 0 + that (3.2) holds. Let SO {x eft; U(to)lla lU(to, x)l}.
Then by taking any Xo e So in (3.2) we obtain

d +
(3.3) d---(lU(to, Xo)l) <= lim h-1( U(to + hut(to n- Ilu(to)).

hO+

Notice that the limit in (3.3) also exists. Since (3.1) holds for lU(to, Xo)l 0 we need
only to show the case where lU(to, Xo)l O. For convenience, we suppress the
fixed to in U(to, x).

For each h > 0 we choose X such that [[u + hu,[[n [U(Xh) + hut(Xh)l.
Then for any x* e So,

(3.4) lu(x*) / hu,(x*)l <= Ilu / hu, n --lu(xh) / hu,(xh)l.

Moreover there exists ho > 0 such that for h < ho, xh cf2. For if Xh C3f2, then
from the relation

we would have u n< u nforallh < ho uln(2 u n)- . We next show that
{x} contains aconvergent subsequence. This is certainly true if {x} is bounded.
Assume {xa} is unbounded and contains no convergent subsequence. Then there
exists a subsequence {xa} with its limit value on Of2. By taking xa and h in (3.4)
and letting h 0 we would have luKx’)l <-_ O. Thus we obtain a contradiction.
Without any loss we may assume xa Xo (say). Then from (3.4) we obtain lu(x*)l
-< luKxo)l which shows that Xo So. Notice that Xo (f + cXl) and (3.3) holds with
this particular choice of Xo So.

Now ifu(xo) X 0 then for sufficiently small h, u(xa) 0 and u(xh) + hu,(xh) O,
and thus

(3.5) h-I(lU(Xh) / hu,(Xh)l [U(Xh)l) (sgn U(Xo))Ut(Xh).

Since for each h > 0

(3.6) h-I([U(Xh)/ hu,(xh)l lu(x*)l) <= h-l(lU(Xh)/ hut(xh) --lU(Xh)l),

we obtain from (3.5) and (3.6) that

U(Xo)
(3.7) h-o+lim h-
Therefore (3.1) follows from (3.3) and (3.7) which proves the lemma.

The following theorem gives a maximum property of a solution of (1.1)-(1.3).
For simplicity, we assume in this section that h(t, x) =_ 0 in (1.2). (This assumption
can be removed by a suitable transformation.)

THEOREM 3.1. Assume that there exists a constant r > 0 such that for all
(t,x)eD

(3.8) rlf(t,x, ) < -c(t,x)rl2 when 0 < Irl[ <= r.
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Thenfor 14(x)l _-< r every solution u(t, x) of(1.1)-(1.3)(with h(t, x) O) satisfies
(3.9) u(t)lln -_<- 4lla <= r for all te [0, r].

Proof. Let o be an arbitrary point in [0, T]. By Lemma 3.1 there exists

Xo e f (xo depends on to) such that IN(to, Xo)l U(to) n and

d +

(3.10) IN(to, Xo)l-([U(to, Xo)l) <= U(to, Xo)(Lu)(to, Xo) + U(to, xo)f(to, Xo, U(to, Xo)).

Suppose that IN(to, Xo)l 0. Then from the proof of Lemmas 2.1 and 3.1, Xo e f
and (2.10) holds. It follows from (3.10), (3.8) that

d +

IN(t0, Xo)l-d-(lU(to, No)l) C(to, N0)IN(to, Xo)[ 2 -- U(to, Xo)f(to, No, U(to, Xo) 0

(3.11)

whenever 0 < IN(to, Xo)[ r. Thus at any time to [0, T] where IN(to, x)l 0 on
we have (d +/dt)(lu(to, Xo)l) < 0. This shows that at the point Xo

IN(t, Xo)[ =< IN(to, Xo)l for e [to, to + 6]

for some 6 > 0. The above inequality holds for every o e [0, T) and a corresponding
xo so long as 0 < IN(to, Xo)l _-< r. But IN(0, x)[ [qS(x)[ __< r on f. We conclude that
IN(to, Xo)l _-< 4 n < r at any such point (to, Xo) e D. The boundedness of IN(to, Xo)[
when o T or U(to, Xo) 0 is obvious. This proves (3.9) and thus the theorem.

Under a slightly stronger assumption than (3.8) we have the following.
COROLLARY 1. If there exists c > 0 such thatfor all e [0, ), x e fL

(3.12) qf(t, x, rl) <= -[c(t, x) + e]r/2 when [r/[ __< r,

then for 14(x)l <-_ r and any 1 with 0 < el < the solution u(t, x) of (1.1)-(1.3)
satisfies
(3.13) u(t)II n =< e-ltll 4 n for all >= O.

Proof. Under the condition (3.12) the inequality (3.11) becomes

d +

(3.14) IN(to, Xo)l-(lU(to, Xo)[) _-< alU(to, Xo)l 2

It is easily seen from the boundedness of u, that IN(t, x)[ is Lipschitz continuous in
for each x e f. In fact,

[IN(t, x)l IN(S, x)l] _-< IN(t, x) u(s, x)l Mlt s[, t, s e [0, T], x e ,
where M is a constant independent of and x. Since the usual rules of differentiation
hold for right derivatives of a continuous function we may write (3.14) as

d +
(3.15) d--(e2t[U(to, X0)[ 2) 2(e e) e2t[U(to, XO)[ 2 < 0.

It follows from the same argument as in the proof of the theorem that
e2[U(to, Xo)[ 2 =< b =< r2 for all to _>- 0 which is equivalent to (3.13).
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THEOREM 3.2. Assume that the condition (3.8) holdsfor [r/[ > r instead of[q[ <= r.
Then for I(x)l <= r any solution u(t,x) of(1.1)-(1.3) satisfies u(t) In <= r. If(3.12)
holdsfor [r/[ > r instead of[q[ <__ r, then for 14(x)l , u(t)[[n is strictly decreasing
in so long as [u(t) > r. In this case there exists T > 0 such that u(t)[l _-< rfor
t>=T

Proof. Suppose that (3.8) holds for [r/[ > r. Then from the proof of Theorem
3.1 we have [u(t)l a =< [[U(to)[ for e [to, to + 3] whenever [[U(to)l[a > r. Thus if
u(0) a _= 114 a =< r, the value of u(t) cannot be greater than r as can be seen
from the same argument as in the proof ofTheorem 3.1. Similarly if(3.12) holds for
[r/[ > r then the proof of Corollary shows that (3.15) is valid when lU(to, Xo)[ > r.
This implies that U(to)[[n is strictly decreasing in to when it has value greater than
r. Hence for b n < r, we obtain U(to)lln_-< rforall o__>0andfor blln> r,
]]U(to) n is strictly decreasing in to until it is bounded by r. This proves the theorem.

Remark 3.1. Let Sr denote the sphere with radius r > 0 in the space C().
Then Theorem 3.2 states that under the condition (3.12) for [q[ > r any solution of
(1.1)-(1.3) remains in Sr for all if it starts from S, and it is "attracted" toward S
until it reaches to S if it starts outside of S.

Based on the results in Theorems 2.2 and 3.1 it is possible to show the exis-
tence of a bounded solution on D for a class of nonlinear functions satisfying only
local Lipschitz conditions.

TH,OREM 3.3. Assume that f satisfies (2.17) and (3.8) for some r > O. Then for
Ic(x)l <= r the problem (1.1)-(1.3) (with h(t, x) =- O) has a unique solution u(t, x) such
that [u(t, x)l <= r on D.

Proof. Define a modification f by (2.18). Then by Theorem 2.1 the modified
problem (1.1)-(1.3) with f replaced by f has a unique solution u(t,x). Since f
also satisfies (3.8), Theorem 3.1 ensures that lu(t, x)] <= r on . But f coincides
with f when ]u(t, x)l <= r. We conclude that u(t, x) is the solution of the original
problem (1.1)-(1.3).

COROLLARY. Let do(t, x) O, dj(t, x), j 1, 2,..., be bounded continuous on
O. IfJbr some r > O,

N

(3.16) dj(t, x)rlj+ < _c(t, x)rl2 for 0 < Irll <= r,
j=l

thenfor ]c(x)[ <= r the problem (2.19), (1.2), (1.3) has a unique solution u(t, x) such that
lu(t, x)l <= r on D.

Proof This is a direct consequence of Theorem 3.3.
A simple example of the above corollary is the equation

u Lu dl(t, x)u -t- d3(t, x)u3,

where dl(t, x) <_ -c(t, x) and d3(t, x) < 0 on D. In this case the solution u(t,x)
exists on O and satisfies [u(t, x)[ =< [lb[[ for any [b(x)[ < since (2.17), (3.8) holds
for r

4. The stability problem. In this section we discuss the stability problem of an
equilibrium (or steady state) solution Ue(X). Definitions of stability and asymptotic
stability of u are in the sense of Lyapunov (cf. [9]). Notice that an equilibrium
solution Ue(X may be considered as a solution of (1.1)--(1.3) with qS(x)= Ue(X),
due/dt =- O. In particular, if f(t, x, O) h(t, x) q(x) O, then u(t, x) =_ 0 is an
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equilibrium solution. In the following theorem we assume the existence of an
equilibrium solution Ue to (1.1)--(1.3). Here the function h(t, x) =- h(x) in (1.2) is
assumed independent of but not necessarily zero.

THEOREM 4.1. Let ue(x) be an equilibrium solution and let {u C();
u ue]]n <= 6)for some 6 > O. Assumefor some e > O,

(4.1) (u ue)f(t,x,u) f(t,x, ue)] <= -[c(t,x) +

for all (t, x) . Then the equilibrium solution ue is (exponentially) asymptotically
stable.

Proof Let u(t, x) be any solution of (1.1)-(1.3) and let w(t, x) u(t, x) ue(x).
Then w(t, x) satisfies the equation

(4.2) w, Lw f(t, x, u(t, x)) f(t, x, ue(x))

and the boundary condition (1.2) with h(x) O. For each where w(t) n 4:0 the
proof of Lemma 2.1 shows that for some Xo

[w(t, Xo) and (2.10) holds for w(t, Xo). Hence by Lemma 3.1,

d +

Iw(t, Xo)l-d(lw(t, Xo)l) <= w(t, Xo)[Lw(t, Xo) + f(t, Xo, u(t, Xo)) f(t, Xo, Ue(XO))]

<= c(t, Xo)W2(t, Xo) + w(t, Xo)If(t, Xo, u(t, Xo) f(t, Xo, Ue(Xo))].
(4.3)

In case Iw(t, Xo)l 0, (4.3)is trivially satisfied. In view ofthe hypothesis (4.1) we have

d +

(4.4) Iw(t, Xo)l--[(Iw(t, )Co)l) <= elw(t, Xo)l 2

for as long as u(t) remains in . It follows from (4.4) that

(4.5) IIw(t)

where 0 < e < e. Hence if 4 e then u(t) remains in and satisfies (4.5) for all
_>_ 0. The asymptotic stability of Ue follows immediately from definition.

Remarks 4.1. (a) If f,(t, x, u) exists and

(4.6) f,(t

then (4.1) is satisfied in some neighborhood V. Hence under the condition (4.6)
the equilibrium solution u is asymptotically stable. The stability ofany unperturbed
solution such as periodic solution can similarly be treated.

(b) From the proof of Theorem 4.1 it is seen that any solution u(t,x) of
(1.1)-(1.3) starting from V at 0 will remain in f for all > 0 and u(t, x)- Ue(X as . This property means that is a stability region ofthe equilibrium
solution ue. Hence the condition (4.1) insures not only the stability of u but also
a stability region for ue. In addition, (4.5) shows that u(t, x) decays exponentially
to Ue(X) with a decay constant .

In case f(t, x, O) h(t, x) 0, that is, if Ue(X =-- 0 is an equilibrium solution,
the requirement (4.1) can be replaced by (3.12) for some e > 0. In this case the zero
solution is asymptotically stable (see Corollary 1 to Theorem 3.1). In the special
caseoftheequation(2.19),ifdo(t,x =_ Oandd(t,x) <= -(c(t,x) + e)forsomee > 0
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then there exists 6 > 0 such that for (t, x) D,
N

dj(t, x)rl+1 <= -(c(t, x) + e)r/2 when [r/I <- 6.
j=l

Hence the zero solution of (2.19), (1.2), (1.3) (with h(x) 0) is asymptotically stable.
In conclusion we have the following corollary.

COROLLARY. Let f(t, x, O) h(t, x) 0 and let (3.12) hold for some > O.
Then the solution u,(x)=- 0 is asymptotically stable. In particular, if do(t, x)=-0
and d(t,x) <__ -(c(t,x) + ) for some > 0 then the zero solution of(2.19), (1.2),
(1.3) is asymptotically stable.
The above corollary may be considered as the stability of the zero solution

of the corresponding linear system under simultaneously initial and "forcing"
perturbations.

5. An example. As an application of the results obtained in the previous
sections we consider the problem (1.4)-(1.6) with 0 _< 4)(x) =< r. It is easily seen
that the function fo possesses the following properties" (i) fo(u) > 0 for -o < u
< r, (ii) ufo(u) < 0 for u > r, (iii) [cfo/SU[ =< k < o for 0 __< u < o. Define fo(r/)

fo(r/) if r/>__ 0 and fo(r/) fo(0) if r/__< 0. Then by the property (iii) of fo, fo
satisfies the global Lipschitz condition (2.13). It is easily seen that the inequality
(2.8) remains valid under the boundary condition (1.5) whether/g is zero or not
(i 1, 2) since in this case the proof of Lemma 2.1 shows that (2.10) holds even
if Xo 0 or 1. It follows from Theorem 2.1 that the modified problem (1.4)-(1.6)
with fo replaced by f0 has a unique solution fi(t, x). In view of the properties (i),
(ii) offo, we have r/fo(r/) < 0 for [r/[ > r, that is, fo satisfies the condition (3.8) with
c(t, x) 0 for Ir/] > r. Hence by Theorem 3.2, Ifi(t, x)] __< r on D. Since the property
(i) offo implies fo(r/) >__ 0 for [u[ _< r the maximum principle insures that fi(t, x) >__ 0
on . But fo coincides with fo when 0 =< (t, x) =< r. We conclude that (t, x) is
the unique solution of (1.4)-(1.6).

As an application of the results in Theorem 4.1 to the stability problem
(1.4)-(1.6) we differentiate fo with respect to u to obtain

(5.1)
cf(u)

A(1 + u)- 2 exp + (B + 2)u + (1 Br)].

Hence by Theorem 4.1 and Remark 4.1 we see that any equilibrium solution u,(x)
satisfying the relation

(5.2) 2u. + (B + 2)u + (1 Br) > O forx6[O, 1]

isasymptotically stable. For example, when r 0.4, B 20, A 2(10v), three
equilibrium solutions of the problem (1.4)-(1.6) with a 5, el 02 -b l,
/ 0.2,/2 0 have been computed in [1] (see also [4]). One of these equilibrium
solutions is found to have values between 0.32 and 0.37 for x e [0, 1]. Since this
solution satisfies (5.2), Theorem 4.1 implies that it is asymptotically stable. This
fact is known in [4] by a different definition of stability. Notice that in our case
condition (5.1) also gives an estimate of a stability region and a decay constant for
this particular equilibrium solution.
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A CONSTRUCTIVE EXISTENCE THEOREM FOR A NONLINEAR
PARABOLIC EQUATION*

DAVID W. BANGE"

Abstract. This paper considers the first boundary value problem for the quasilinear parabolic
differential equation

(A) L[u a,(x, t)u,,x + b,(x, t)u,,, u f(x, t, u)
i,j=l i=1

on a cylindrical domain in E,+ The central theorem is an existence theorem offering an iterative
procedure for approximating or constructing a classical solution u(x, t) for this problem. The iteration
is done by successively applying a monotone integral ,operator with an appropriate Green’ function as
its kernel. The procedure starts with either of a pair of functions o-_(x, t) <__ (x, t) which satisfy

L[6] >= f(x, t,

and

L[8] _<_. f(x, t, 8).

This theorem is then used to prove an existence theorem for equation (A) on E,+ by solving a sequence
of problems on nested cylinders in E,+

Introduction. In this paper we shall be dealing with the nonlinear parabolic
differential equation

(A) L[u] aij(X t)l/lxixj + bi(x t)blxi bl --f(x, t, U).
i,j=l i=1

The main theorem is a constructive existence theorem which gives an iterative
method for solving the first boundary value problem in noncylindrical domains
for equation (A). The method is patterned after a Caplygin type of iteration used by
Schmitt [6] to solve a nonlinear ordinary differential equation. The iteration scheme
is a parallel to a similar theorem due to Kusano 5], but the present theorem permits
us to drop Kusano’s hypothesis that f(x, t, u) be nondecreasing in u. As a corollary,
we are also able to prove Theorem 2 of Chabrowski [1] under these weakened
hypotheses.

1. Preliminary notation and results. We shall let En+ denote the (n + 1)-
dimensional space-time of points (x, t)= (Xl,X2,’", x,, t). By a cyclindrical
domain QinE,+ ,wemeanasetoftheformQ D (T0, T)whereDisabounded
domain in E,. We shall let O denote the closure of Q, S denote the lateral surface of
Q, and B denote the base of Q; i.e., B O f) {(x,t)lt-- To}. The surface F

S U B is called the parabolic surface of Q.
For points P (x, t) and P’ (x’, t’) in E"+ , we define two metrics

p(P, P’)= (Ix- x’l 2 -+-It- t’12) 1/2,

d(P, P’)= (Ix- xtl 2 --{-It- t’l) 1/2,
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where Ix[ denotes the Euclidean norm of x. The quantity d(P, P’) is called the
parabolic distance between P and P’.

Following a standard notation, we introduce the following norms on a
function u(x, t) defined on a set A in E,+

sup lu(P)I,
PeA

lu(P)- u(P’)l
lulA -lul -4- sup

P,e’A d(P
p:/:p’

i=1

i=1

where 0 < < 1. We shall say that u(x, t) is in H61der class Cq(A) or that u e Cq(A)
aKoo, q--O ,1 + ,2 + .in case [Ulq

A function h(y, z) is said to satisfy a H6lder condition in y with exponent on a
set Y x Z in case

(1.1) Ih(y, z) h(y’, z)] <= Hly y’l for all (y, z), (y’, z) e Y x Z,
for some constant H, which may depend on z. If (1.1) holds for some H, which is
independent of z e Z, we say that h satisfies a H61der condition in y, uniformly
with respect to z. Finally, if (1.1) holds for e 1, we say that h satisfies a Lipschitz
condition in y.

It will be convenient to let Ae denote the linear space of functions v(x, t)
which are continuous and continuously differentiable with respect to each com-
ponent of x on the cylinder Q. We define a norm on Ae by

v max Iv(P) + maxlvx,(P) l.
P0 i=

By a solution to (0.1) on Q, we shall mean a function u(x, t) such that u and

ux are continuous on Q,u and ut are continuous on Q, and that these functions
satisfy equation (A) on Q.

In order to prove a constructive existence theorem for the first boundary
value problem on Q for equation (A) we shall need the following conditions"

(I) At every (x, t) Q and for all real n-tuples (1, 2,-.- ,),

aij(x, t)ij >= ao ,
i,j=l i=1

where ao is a fixed positive constant.
(II) The coefficients aij(x, t) are in class Ca(Q), 0 < e < 1. Moreover they

satisfy a Lipschitz condition on the lateral surface S.
(lid The coefficients bi(x, t) are in class Ca(Q).
(IV) The boundary condition, a function qo(x, t) defined on the parabolic

boundary F, may be extended over to a function (x, t) which is in class C2

We will define

Iql+ inf 112
where the infimum is taken over all possible extensions.
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(V) The right member f(x, t, u) is continuous on Q x (- , ) and satisfies a
H61der condition in (x, t) for each fixed u and a H61der condition in u, uniformly
with respect to (x, t) e Q (both with exponent 00.

(VI) For every (x, t)e Q,

(1.2) K(u u2) f(x, t, U 1) f(x, t, U2)
for some positive constant K and any u __> u 2.

(VII) There exist functions _(x, t) and if(x, t) satisfying the differential in-
equalities

(1.3)

on Q with

and

L[o-] (x, t) >= -f(x, t, g(x, t)),

L[] (x, t) <= -f(x, t, if(x, t))

a_(x, t) =< if(x, t) on Q

a_(x,t) =< qo(x,t) < 8(x,t) onF.

For the rest of this paper, we shall assume that the domain Q is such that for
every point P of Q there exists an (n + 1)-dimensional neighborhood V such that
V f) O can be represented in the form

x h(x 1, x2, Xk- 1, Xk+ 1, Xn, t)

for some k. Moreover, h, hx,, hx,xj, h, are assumed to be H61der continuous with
exponent e and h,x, and h,, are continuous on V O.

We need the following lemma, due to Friedman [2].
LEMMA 1. Consider thefirst boundary problem for the linear parabolic equation.

(1.4) aij(x t)Uxixj nu bi(x t)Uxi nu c(x, t)u u -f(x, t)
i,j=l i=1

on Q with boundary condition

(1.5) u(x, t) q)(x, t) on F.

Suppose that conditions (I) and (IV) are satisfied. Suppose also that each of the
functions aij(x, t), bi(x, t), c(x, t), and f(x, t) belongs to Ca(Q).

Then there exists one and only one solution u(x, t) to problem (A), (1.5) satisfying
the (2 + )-estimate

lu12+= c(Ifl +
We shall also make use of the following lemma, again due to Friedman [3],

which gives a priori estimates for solutions.
LFNNA 2. Consider thefirst boundary problem (1.4), (1.5). Assume that conditions

(I) and (IV) hold. Also assume that the coefficients and right member of (1.4) are
continuous in Q and satisfy the inequalities

laijl + ]bilbo -i-Iclo c,, c > 0
i,j=l i=1
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and

{laijl+suplaij(P)-aij(P’)l}p(p,p’)i,j=
p:/:p,

C2 " O.

Then if u(x, t) is any solution of problem (1.4), (1.5), for any 0 < 6 < we have
the (1 + cS)-estimate

lul+a =< C(l/Io / Iolr+),
where C is a positive constant depending only on 6, ao, C C2, and the cylinder Q;
that is, C is independent of the function f(x, t).

2. The constructive existence theorem on a rectangle. We are now in a position
to state and prove the central result of this paper.

THEOREM 1. Suppose that conditions (I)-(VI) are satisfied. Then there exists a
solution u(x, t) to problem (A), (1.5) satisfying

(x, t) <= u(x, t) <= (x, t) on Q,

which may be constructed by successive approximations of the ?aplygin type.
Moreover, u is in C +6(Q) for any 0 < 6 < and is also an element of C2 +(O.) for
some O < e < 1.

Proof We begin by considering the linear problem

(1.6) L[u] =_ Z aij(x, t)ux,x, + L hi(x’ t)Uxi Ku u, -h(x, t)
i,j=l i=1

with boundary conditions (1.5), where h(x, t) is taken to be continuous on Q and
satisfying a H61der condition in x on Q, uniformly with respect to t. By Theorem 16
and Corollary 1 in Friedman [4, pp. 82-83], there is a Green’s function G(x, t; , r)
forLi[u] =0onQandG(x,t;,r)0onQ x Q forTor <t T.

If we let v(x, t) denote the (unique) solution of L[u] 0 satisfying (1.5)
(Lemma guarantees this), then the function

u(x, t) G(x, t; , r)h(, z) d dr + v(x, t)

is the unique solution of problem (1.6), (1.5).
Consider the function Ku + f(x, t, u). By condition (V), we know that for

any (x, t)e Q,
Ku + f(x, t, U 1) " Ku2 + f(x, t, u2),

for U U2, that is, this function is monotonically nondecreasing in u.
We proceed by.defining an operator on the space AQ by

F[v](x, t) G(x, t; , :)[Kv(, z) + f(, z, v(, z))] d dz + v/(, z).

It is clear that F is a monotonically increasing operator; that is, if vl(x, t) < vZ(x, t)
on Q @1 and v 2 elements of AQ), then F[vl](x, t) <= F[vZ](x, t) on Q. Also, observe
that in view of the above comments, F[v] is the solution of the linear equation

Lu,[u] Kv(x, t) f(x, t, v(x, t)) on Q
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satisfying (1.5). It therefore follows that a fixed point of F will be a solution of
problem (A), (1.5). The rest of the proof will be the construction of such a fixed
point.

For the first step, we claim that F[a](x, t) =< a(x, t) on Q. Define a function

Clearly on F, we have

w(x, t) F[a](x, t) a(x, t) on Q.

w(x, t)= q)(x, t)- (x, t) <= o.
For purposes of contradiction, assume that w(x, t) achieves a positive maximum
at some point (x’, t’) in the interior or on the upper surface of Q. We then have

and

w,(x’, t’) >= 0; w,(w’, t’) O, i= 1,2,...,n,

(1.7)
02W(X’, t’) < 0c2kC).k

in any direction 2k .= czi(xi x’i), k 1, 2,..., n. From (1.7) and hypothesis
(I) it follows that

(1.8) aij(x’, t’)wx,,,j(x’, t’) <= O.
i,j=

Therefore, at the point (x’, t’), we obtain the contradiction

0 w,- Wx,
i,j

i,j i,j

biFEf]x K. F[8] + F(x’, t’, a)

+ Ka b,ex, f(x’, C, )

<0.

By an analogous procedure, it follows that

(x, t) FE](x, t) on Q.

We inductively define two sequences of functions {Yk(X, t)} and {Zk(X, t)} by

y (x, t) _(x, t),

and

ZI(X, t) ((X, t),

By monotonicity, we have

(1.9)

Yk + 1(X’ t) F[Yk](X, t), k= 1,2,...,

Zk+ I(X, t) F[zk](x, t), k= 1,2,.--.

Yl(X,t) Y2(X, t) <= y(x, t) z(x, t) <--’" -z2(x t) Zl(X t)
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on Q for all k. Both {Yk} and {zk} are bounded monotone sequences and therefore
converge pointwise to some function

lim Yk(X, t) y(x, t); lim Zk(X, t) Z(X, t)
k-

on Q with y(x, t) <= z(x, t) on Q.
Let

By (1.9), we have that

M m_ax {la_(x, t)l, Ia(x, t)l}.
2

lYk(X, t)l, IZk(X, t)l <= M on Q, k 1,2,....

The functionf(x, t, u) is uniformly continuous for (x, t) Q and ]u[ =< M. Therefore
if we can obtain a subsequence, for example, {Zktj)} of {Zk}, which is uniformly
convergent on Q, then f(x, t, Zktj)(X, t))} will converge uniformly to f(x, t, z(x, t)).
By showing the equicontinuity of {Zk} we shall be able to assert the existence of
such a sequence.

With this goal in mind, we let

N max If(x, t, u)l.
(x,t)c-
u<M

Note that z + l(X, t) is a solution of the linear equation

(1.10) L[u] f(x, t, zk(x, t)) + Kzk(x, t)

satisfying (1.5). By Lemma 2 applied to problem (1.10), (1.5), we know that for
any0<6< 1,

Iz/,lel/ __< C(N + KM + 1ol2/), k 1,2,..-,

in which the constant C is independent of k. From this it is clear that the norms

Izl are bounded independently of k. We may now use Lemma to conclude
that

zk+ lie2+= < C’(If(x, t, z)l / K. Izl / Iql+=),

where C’ is independent of k. Then by using condition (V), this last inequality,
and the uniform boundedness of Izkl, we find that the norms Izle2 / are bounded
independently of k.

By repeated use of the Ascoli-Arzela theorem we are able to extract a sub-
sequence of {zk}, say
to some function. Of course, this limit function is z(x, t). Immediately we also
have that

f(x, t, zk(j)(x, t)) + Kzk(2)(x, t) - f(x, t, z(x, t)) + gz(x, t)

uniformly on Q. We therefore obtain that z(x, t) is a fixed point of the operator F
and consequently is a solution of (A), (1.5) satisfying

a_(x, t)<= z(x, t) < a(x, t) on Q.

The asserted smoothness properties of z are shown by standard arguments with
the (1 + 6) and (2 + a)-estimates on
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Remark 1. By analogous arguments, it may be shown that y(x, t) is also a
solution of (A), (1.5).

Remark 2. It is important to realize that although the nonconstructive
Ascoli-Arzela theorem has been used in the proof, the solution z(x, t) is determined
as the pointwise limit of the iteration. Of course, the actual approximation of a
solution to (A), (1.5) depends on finding suitable a_, ff and our ability to find or
approximate the Green’s function and the solution vk(x, t).

As a corollary to Theorem 1, we easily obtain what is essentially Theorem 2.1
of Kusano [5] for a "system" of one equation on a cylindrical domain.

COROLLARY 1. Suppose that conditions (I)-(V) and (VII) of Theorem are

satisfied. Suppose also thatfor each (x, t) Q,f(x, t, u) is nondecreasing as afunction
of u. Then the conclusion of Theorem holds.

Proof Observe that inequality (1.2) is satisfied for any positive K under the
additional hypothesis.

COROLLARY 2. Suppose that conditions (I)-(V) and (VII) of Theorem are

satisfied. Suppose also that f(x, t, u) satisfies a Lipschitz condition in u, uniformly
with respect to (x, t) Q. Then the conclusion of Theorem holds.

Proof Note that inequality (1.1) is satisfied with K taken to be the Lipschitz
constant.

Remark 3. Under either of these additional hypotheses, the solution con-
structed will be unique and so y(x, t) z(x, t)o (See Friedman [6, pp. 201-202.)

3. Constructive existence on E,+ 1. We shall show that by using Corollary 2
we are able to offer an improvement of a constructive existence theorem of
Chabrowski 1 for equation (A) on all of E,+ 1.

THEOREM 2. Suppose that
(i) for every (x, t)6 E,+ and for all real n-tuples (1, 2, n),

>_- 0;
i,j=l i=1

(ii) the coefficients aij(x,t are bounded in E,+ and satisfy a Lipschitz
condition on any subset A of E,+

(iii) the coefficient bi(x, t) are bounded in E,+I and members of H61der class
Ca(A), 0 < < 1,for any subset of E,+ 1;

(iv) the right member f(x, t, u), defined on E, + x (- oo, oo), satisfies a H61der
condition (exponent ) in (x, t) on any subset A ofE,+ 1, jbr fixed u; and a Lipschitz
condition in u, uniformly with respect to (x, t);

(v) there exist functions a_(x, t) and 6(x, t), bounded in E,+ 1, satisfying the
inequalities

L[cr](x, t) > -f(x, t, a_(x, t)),

/](x, t) =< -f(x, t, (x, t))

and

_(x, t) <= a(x, t)

for any (x, t)e E, + 1.
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Then there exists at least one bounded solution to equation (A) on E,+ which
satisfies

_(x, t) <= u(x, t) <__ 8(x, t) on En+
Proof This theorem has essentially been proven by Chabrowski. In order to

make use of Corollary 2 in his proof, replacing the use of the analogous Kusano
theorem, it is only necessary to replace his nested sequence {Om} of subsets in
E,+ with a sequence of cylinders {Q,,} in E,+ such that

(i) Qm Qm+ for each m;
(ii) limm_.o Q,, E,+ 1"

(iii) each Qm satisfies the geometrical requirements of Theorem 1.
Because the details of the proof are in the Chabrowski paper, we shall not

give them here. It should, however, be apparent that the proof consists of solving
(uniquely) equation (A) on each Q,, (with appropriate boundary conditions) by
using Corollary 2, then extracting a subsequence which converges uniformly
together with its x and t-derivatives.
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POISSON INTEGRAL FORMULAS IN GENERALIZED BI-AXIALLY
SYMMETRIC POTENTIAL THEORY*

N. S. HALL, D. W. QUINN AND R. J. WEINACHT"

Abstract. Poisson integral formulas are given which solve certain Dirichlet problems for a
"quarter-ball" for the equation of generalized bi-axially symmetric potential theory. The formulas
are useful in studying properties of solutions of this equation and related equations. The equation
considered includes the equation of Weinstein’s generalized axially symmetric potential theory for
which corresponding Poisson integral formulas were given by A. Huber.

1. Introduction. In this paper we give Poisson integral formulas for the
equation of generalized bi-axially symmetric potential theory

(1.1) Lu] L,tu Ux.x. +--ux +--u 0
i=1 Xn_l Xn

which reduces to Weinstein’s 1], [2] generalized axially symmetric potential
theory (abbreviated GASPT) for the real constant a 0; fl is also a real constant
and n is an integer, n >= 2. These formulas are useful in studying properties of the
solutions of (1.1) and related equations. In GASPT corresponding formulas were
given by Huber [3] to which our results reduce in the appropriate special cases.

Equation (1.1) has been treated by Gilbert [4, [5 by integral operator
methods, and fundamental solutions in the large of (1.1) were given by Weinacht
[6]. Kapilevich has given mean value theorems for a class of equations including
(1.1) (see e.g. [7]).

The integral formulas solve certain Dirichlet problems for (1.1) for a "quarter-
ball" with data prescribed on various portions of the boundary depending on the
values of e and ft. Section 3 treats the case e > 1, fl > while the cases e < 1,
fl < and z < 1, fl __> 1 are dealt with in 4 and 5, respectively. The remaining
case (e _>_ 1, fl < 1) is obtained by merely changing notation in the case e < 1,
fl_>_l.

2. Notations. The usual notations for vectors in Euclidean n-space will be
used. At times it will be convenient in considering a vector x (x l, x2, "", x,)
to put y x,_ and z x, in a similar way for the vector we shall write some-
times r/for ,_ and ( for ..

The ball of radius R and center at the origin will be denoted by B(R), Q will
denote the open quarter-space {x’x,_l > 0, x. > 0}, B+(R) B(R) f-I Q is the
quarter-ball and Q(R) will denote the quarter-sphere {x:lx] R, X,_l > 0,
x. > 0}. The boundary of a set S will be denoted by cS. Since coefficients in (1.1)
become singular on x,_ 0 or x 0 we shall refer to these sets as singular
hyperplanes.

Some of the results presented here were given in the thesis [8].
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3. The case e > 1, fi >__ 1. Here data are prescribed only on Q(R). The
formula (3.3) below was obtained by considering the Poisson integral formula
for a sphere for Laplace’s equation in (n + ///)-dimensional space for positive
integral ,/3" 7++a=1 2bl/t 0 and then assuming bi-axial symmetry, .i.e., con-
sidering solutions u which depend only on t- x for 1, 2, ..., n 2, x,_

(t,2_1 + + t,2_1+)1/2 and x, (t,2+ + + tn2++#) 1/2. The resulting for-
mula, however, is valid for nonintegral , fl (Weinstein’s spaces of fractional
dimension).

THEOREM 1. Let >= 1, fl >= 1. Suppose f is continuous on Q(R) and has the fol-
lowing behavior near the singular hyperplanes"

(3.1) lim p(r/; )p(; fl)f() O,
-’o

where e Q(R), o e Q(R) f’l t?O and

,- 1, 7> 1,
(3.2) p(2;7)=

(log2) -1, 7= 1,

for positive real 2. Then the function u defined on B(R) by

(3.3) u(x) fo.(R) rl(tK(x, )f() dS,

where

(3.4)

2(R2-ixl2)r(P)jjt’e -2p -1K(x, ) Rrc"/2F(/2)F(fl/2)
a sin s sint- dt ds,

a [Ix ]2 + 2r/y(1 cos s) + 2z(1 cos t)] 1/2

and 2p n + + fl has the following properties:
(a) u is even in y and even in z,
(b) u is analytic in B(R) and satisfies (1.1) in B(R) except for y 0 and z O,
(c) u assumes the boundary value f on Q(R):

lim u(x) f(o), x B+(R), o Q(R),
X’-O

(d) u inherits the behavior off near the singular hyperplanes"

(3.5) lim p(y; a)p(z; fl)u(x) O, x B +(R), Xo B(R) c3Q,
X-- XO

the convergence being uniform in x.
Proof. (a) An elementary direct computation shows that K and hence u is

even in y and even in z.
(b) By extending each xi, 1, 2,..., n, into the complex plane it is easy

to see that K(x, ) is analytic in x in a neighborhood of each x e B(R) and con-
tinuous in (x, ) for x in that neighborhood and in Q(R). From this it follows
that u is analytic in B(R). Then the (permissible) differentiation of (3.3) under the
integral sign yields for x in B(R) but y 0, z va 0,

L[K] o
after integration by parts with respect to s, t. Thus (b) is verified.
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(c) The proof proceeds as in classical potential theory. The following identity,
valid for all x in B(R) and >__ 1, fl _>_ 1"

(3.6) f rlK(x, ) dS =_

(R)

is established in the Appendix. Then for any positive e and any o on Q(R) the
continuity off insures the existence of a ball B(di; o) with center o and radius
(with less than half the distance of o to c3Q) such that for any in Q6 B(6; o)
fq Q(R) we have If()- f(o)l < e/2. On the remainder of Q(R) the non-
negative kernel K tends uniformly in to zero as x tends to o because

K(x, ) C(R2 -Ix12)(6/2)-2’

for 1o- x[ < 6/2 as follows from straightforward estimates on the integrals
appearing in K. The number C depends only on R, e,/3 and n. Hence there exists
a positive 1 < 6/2 such that Ix o1 < 61 implies that

2 sup Ir/af()[ f K(x, )dS < /2.
2(R)

Then

]u(x) f(o)] fo.(R) rfl(tK(x, )[f() f(o)] dS

<_ rl’(aK(x, ) dS + 2 sup Irflaf()] K(x, ) dS
2

< -e )
rlaK(x, )dS + - =/3

which establishes (c).
(d) We treat the case > 1, fl > 1; the remaining cases are similar. Without

loss of generality we may assume that Zo, the nth coordinate of Xo in (3.5) is zero
otherwise, we merely interchange the last two coordinates. By (3.1) the function
r/-’a-’f() can be extended continuously to Q(R) and so there exists for every
positive/3 a positive di 61(e), 6 < R/2, independent of o, such that for o in
Q(R) fq cQ, on Q(R)and 1 o1 < 61 we have

Moreover there exists a positive 62 62(/3 with 62 < i such that

If()l =</3R1-621-fl
for t/ _>_ 6 and simultaneously ( 61. Now choose x* e B+(R) such that z, < 262
where z, x,* and for later use y, x,*_ . Then we have on Q(R), ]f()l =< 4(),
where

/3’- (z*/2) -a

/3(y*/2)’-i-a

/3(y*/2) (z*/2) a

on Q, Q(R).O {’2q __< y,, 2 < z,},
on Q2 Q(R) f) {’2r/< y,,2 > z,},
on Q3 Q(R) f’l {’2r/ > y,,2 =< z,},
on Q4 O(R) fq {’2r/> y,,2 > z,}.
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It then follows that

where
I + I + I + I,

Ij fQ. qeK(x*, )dp() dS, j 1,2, 3,4.

We now wish to estimate these integrals. Of course, lj is considered to be zero
when Qj is empty and hence the estimate in such cases is not needed. With the
notations

2F(p)
A=

R"/2r(a/2)F(fl/2)

and

we see that

k(x, ) o- 2p sin s sine‘- ds dt

11 Ae(R2 Ix*l 2) | uk(x*, ) dS.. Q
Since 2q < y,, 2 =< z,, 2Ix* l > Y, and 2Ix* 1 _>_ z, on Q1 and

fifok(x*, ) <= Ix* l-"--e sin S sine- ds dt,

we have

I 1-a 1-fle Ko(x* )dS < Ale,y, z,11 <= A le.y, z,

where Ko is the Poisson kernel for the sphere for the n-dimensional Laplacian so
that its integral over c3B(R) is one. The A depends only on R, 0, fl and n and the
same is true for A2, A3, A4 which appear below. We now consider

12 Ae(z,/2)a-e(R2

Since 2r/ =< y, and 2]x* ] y, on Q2 and

k(x, ) <= Ix* l- f’ sin- S ds ds
30

we find

rlek(x* ) dS.

[Ix* l 2 -+- 2z,(1 cos t)] -("+e)/2 sine. dr,

I 2 Aze,yl, z, 1-eeKe(x* ) dS <= A2eYX, z,
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where tK is the Poisson kernel for the sphere for the n-dimensional GASPT
operator with parameter//;the integral of this kernel over Q(R) is 1/2 (see Huber
[3, (24) p. 353]) The estimate 13 < A3cy,-z1- is very similar to that for I2
and is omitted. The estimate

14 e(Y*/2)l-(z*/2)1- fo.4 rlK(x*’ ) dS

1-< A4y, z,
follows directly from the identity (3.6). With the above estimates, in which the Aj
are independent of (x, *., x,_2) the property (d) follows.

Remarks. 1. For y 0 or z 0 the operator L is not defined. For such points
in B(R), u in (3.3) satisfies the limiting form of the homogeneous equation,
uy 0 for y 0 and uz 0 for z 0.

2. The analyticity of u in B(R) but not on y 0 or z 0 can be established
via the general theory of elliptic equations but this procedure is not valid on or
across the singular hyperplanes.

3. Putting x 0 yields a mean value theorem for solutions of (1.1) analogous
to Weinstein’s mean value theorem in GASPT [1] (see also Kapilevich [7).

4. The ease < 1, /3 < 1. In this case data are prescribed on the entirety
of OB+(R) with zero data on the singular hyperplanes and the problem is solved
by reduction to the previous case via the following simple generalization (Weinacht
[63) of Weinstein’s Ill correspondence principle of GASPT

A function u is a solution of L2-,,2-[u 0 if and only if
1- 1-u is a solution of L,[v] O.) Xn 1Xn

This principle is an immediate consequence of the identity

L,,[x- 1-flW X-(x 1-
ix,, x,, x,, tL2 ,2

analogous to that in GASPT.
The formula (4.1) can also be obtained by use of a fundamental solution

(Weinacht [6]) and a method of images (see the Appendix to this paper).
THEOREM 2. Let < 1, fl < 1. Suppose g is a jhnction which is continuous on

cB+(R) and vanishes on B(R) f’l cQ. Then the function v defined on B+(R) by

(4.1)

where

v(x) yl-XZ1-fl fQ(g) n(J(x, )g() dS,

2(g2-1xl2)F(q) f0tJ -2q 1-xJ(x, Rrt,/2F((2 )/2)F((2 -/3)/2)
a sin s sin -t ds dt

with a as defined previously in (3.4) and 2q n + 4 fl is the unique solution

of L[v] 0 in B+(R) taking on the boundary values g:

lim v(x) g({0), x B+(R), o aB+(R)

Proof. The proof consists of a reduction to a situation where Theorem 1
applies. Define f({) r/-l(-lg({). Then f is continuous on Q(R) and satisfies
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the hypothesis (3.1) of Theorem 1 with (, fl) replaced by (2 , 2 -/3); note that
2 > 1, 2 fl > 1. Hence we are assured by Theorem 1 that there is a function
u given by (3.3) with (, fl) replaced by (2 , 2 fl) and having the following
properties: L2_,2_Ct[U 0 in B+(R), u takes on the boundary values f on
Q(R) and u satisfies (3.5). By the correspondence principle the function
v yl-zl-tu satisfies L,,t[v 0 in B+(R). This is precisely the v in (4.1). More-
over, we see directly from its definition in terms of u that v takes on the boundary
values g on Q(R) and on B(R) f’l t?Q tends to zero which is the value of g there.
Thus, v is a solution of the boundary value problem as stated. The uniqueness
follows from a simple application of the usual maximum principle (Hopf [9]) for
second order nonsingular elliptic equations in the region B+(R).

Remark. Putting 0 or fl 0 in (4.1) yields after a short computation the
Poisson integral formula obtained by Huber [3, p. 357] for GASPT.

5. The case < 1, fl _>_ 1. Here data are prescribed on Q(R) as well as zero
data on y 0. The formula (5.2) was obtained via the correspondence principle
which also forms the basis of the verification.

THEOREM 3. Let cz < 1, >= 1. Suppose h is continuous on Q(R) and suppose h
has the following behavior near the singular hyperplanes"

(5.1) lim p( fl)h() O, e Q(R), o Q(R) f) cQ,-o
where p is as defined in (3.2). Then the function w defined in the half-ball
H(R) =_ B(R) f] {X’Xn_ > O} by

(5.2) w(x) yl- fO,(R) rl(I(x, )h() dS,

where

2(R2-lxl2)F(r) fOCf -2rl(x, ) Rn.5-((2 _- )/2-fl/2) a sin 1- s sin- ds dt,

2r n + fl + 2 and a is as defined in (3.4) has the following properties:
(a) w is even in z;
(b) w is analytic in H(R) and satisfies (1.1) there except for z 0:
(c) w assumes the boundary values h on Q(R):

lim w(x) h(o), x B+(R), o Q(R);
0

(d) w inherits the behavior of h near the singular hyperplanes

lim p(z fl)w(x) O, x B + (R), Xo B(R) f’l cQ.

Proof. The proof is similar to that of Theorem 2 and so will be sketched
briefly. Define f() q-lh(). Then because of (5.1), f satisfies (3.1) with (e, fl)
replaced by (2 -e, fl). For this f Theorem yields a function u via (3.3) with
(e, fl) replaced by (2- e, fl). The w in (5.2) is precisely ya-u. Using again the
correspondence principle and the properties of u one sees that w has all of the
properties asserted.
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Remarks. Putting a 0 in (5.2) yields, after a short computation, the Poisson
integral formula of Huber for GASPT [3, p. 352].

Appendix. We prove here (3.6), i.e.,

(A.1) rffaK(x, ) dS =-
(R)

for a _>_ 1, fl _>_ 1 and x B(R). It is sufficient to consider x in B +(R) because K is
even in y and z (so that only y __> 0 and z => 0 need be considered) and because,
in addition, K(x, ) is continuous for x in B(R) and on Q(R) (so that only y > 0
and z > 0 need be considered). Moreover it is sufficient to establish (A.1) for
a > 1 and fl > 1 and then argue by continuity to obtain the result for a >__ 1 and
fl>__.

In the fundamental solution E for L =_ L2-,2-t in the quarter space Q with
pole x (Weinacht 6, p. 577])

yzl- 1-
a2-’-- sin s sin- ds dt

replace a by (Ixl/R), where e is obtained by replacing xi by (R2/IxI2)x
(i 1, 2, ..., n) in a (see equation (3.4)) and call the resulting function g g(, x).
The above process is a variant of the method of images. It is easy to see that
G--- E-g is a Green’s function for in B+(R) with pole x which vanishes
for onB+ (R). Then the introduction of v() G(x, ) and the particular solution
U() //a- 1- of [u] 0 with x replaced by into the Green’s second identity

fB (R)

qz-#z-(u[v] v[u])d foB+(g) 8v 8u)-- u-v dS

yields after approach from compact subregions

Yz=fo.(m tlndS’
which upon simplification yields (A. 1).
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JACOBI POLYNOMIALS, I. NEW PROOFS OF KOORNWINDER’S
LAPLACE TYPE INTEGRAL REPRESENTATION AND BATEMAN’S

BILINEAR SUM*

RICHARD ASKEY-

Abstract. This is the first of a series of papers which will give simple proofs of a number of recent
formulas for Jacobi polynomials. In this paper one of Gegenbauer’s proofs for his integral representation
of ultraspherical polynomials is given, and then a fractional integration gives.Koornwinder’s integral
representation for Jacobi polynomials. This is then combined with Koornwinder’s product formula to
give a new proof of a bilinear sum of Bateman.

1. Introduction. Gegenbauer’s fundamental work in the last quarter of the
nineteenth century led to a deep understanding of ultraspherical (or Gegenbauer)
polynomials C,(x). These polynomials are orthogonal with respect to the weight
function (1 x2)- 1/2. The more general Jacobi polynomials, Pt,’)(x), which are
orthogonal with respect to (1 x)(1 + x), also arise in a number of different
contexts. A brief glance at the standard list of formulas [8 shows that many of
the known formulas for ultraspherical polynomials have not been generalized to
Jacobi polynomials. The most important missing formula is the addition formula
[8, 10.9 (34)]

C,Z(cos 0 cos , + sin 0 sin cos q)

(1.1) 22"(2m + 22 1)(n m)! (sin o)mcAn+._(COS O)
m:0 (22 1)n+m +
(sin ’)"C,_+mm(cos ’)C-1/2 (cos q).

The Laplace type integral, [8, 10.9 (31)],

(1.2) C,(x) 21-__2F(n + 22) ff?/i- EX + (X2 1) 1/2 cos o ]"(sin q)2 do

is another such formula. These gaps have been particularly unfortunate, for not
only are these formulas very useful, but Jacobi polynomials form a more natural
class of polynomials than the subclass of ultraspherical polynomials. There are
some operations which are very natural in the class of Jacobi polynomials; for
example, the kernel which gives the partial sum of a Jacobi series at y 1,

K’t)(x 1)=
(2k + + fl + 1)F(k + 0 + fl + 1)F(k + 1)p(,,)t,.p(,l)(1

k:O 2+’+lF(k + e + 1)F(k + fl + 1) --k

2--t-1 r(n + e + fl + 2) p.+ 1,,)(x [17, (4, 5, 3)]
1( / 1)l(n //3 / 1)
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120 RICHARD ASKEY

and Bateman’s integral

P(.+u’-U)(x)
(1.4) (1 x)+Up,+,_u)(1),._

r( + # + l) f/ P("’)(Y)"
x). dy

r( + 1)r(#)
1 y) p(.,)(1)(y

[1,(3.3)-];

which take ultraspherical polynomials out of the class of ultraspherical (or
symmetric Jacobi) polynomials.

After almost one hundred years this gap has finally been closed by some deep
work of Tom Koornwinder [11], [12]. He has found the addition formula for
Jacobi polynomials, and as a consequence has found the Laplace integral repre-
sentation. His original proof used the unitary group and is a good example of
the power of algebraic methods applied to special functions. While this proof is
very natural there are many people who could use Koornwinder’s results who do
not have the background to understand his proof. In this series of papers by
Askey, Koornwinder, and others an alternate proof will be given of this work,
and applications will be given of some of the special cases. One such application
of an old (and almost forgotten) formula of Bateman [3

()" P(’)(x)P(’)(Y)
(1.5)

x + y P(.’)((1 + xy)/(x + y))=
Ck,.2 P(,,’)(1) k= o P(k’)(1)P(k’)(1)

where Ck,, is defined by

(1.6)
1 + x)" P(k’)(X)

2 Ck’nP(’)(1)’k=0

is the variation diminishing property of the de la Vall6e Poussin means 2] for
Jacobi series. This will be given in a later paper by R. Horton. H. Bavinck pointed
out that Bateman’s sum (1.5) gives an explicit formula for the kernel of the de la
Vall6e Poussin means. The variation diminishing property for the case a fl

-1/2 was previously given by P61ya and Schoenberg [15]. Their proofs were
very complicated, because they did not have the explicit formula (1.5). Thus even
in the case of Fourier series it sometimes pays to consider generalizations to
Jacobi series. As often happens in mathematics, the correct generalization tends
to simplify matters.

One application of these results is the positivity of some Cestro mean for
Jacobi series. Without the product formula (4.4), it would be impossible to prove
this result. The Laplace integral (3.6) can be used to study biaxially symmetric
potentials. Once these results become well known, other applications will arise.

2. Gegenbauer’s Laplace integral. Gegenbauer’s Laplace type integral is
reasonably well known, but the impression exists that it is hard to prove; see 16]
where a very unnatural proof is given. Gegenbauer’s second proof [10] is simple,
natural, and almost unknown, go we start with it.

One of the most natural ways to define ultraspherical polynomials is by the
generating function

(2.1) (1 2r cos 0 + r2) -’ Cn(COS O)r".
n=0
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Use 2 cos 0 ei + e-i0 in (2.1), factor and expand the left-hand side to obtain

(2.2) C(cos 0)
(2)k(2)"-’

ei("- 2t,)0

, o k !(n

The expression (2) is defined by

r( + )
r(2)

Thus (2.2) can be rewritten as

n! F(k + 2)F(n- k + 2)ei(,_2)o(2.3) C,X(cos 0)
[F(z],)] 2 k !(n k) --F(n + 1)k--0

The presence of
k!(n k)!

suggests the binomial theorem, and the beta

function

B(a, b) y,- 1(1 y)b- dy
r(a)r(b)
r’(a + b)

can be used witha=k +2, b=n-k+2toobtain

C.(cos0 F(n + 22)Ily2_1( y)-i
[F()]2n! Jo k=0

yU(1 y)"- ei(n- 2k)O dy

F(n + 22) f] Y2-1(1- Y)-1( Y)" ei"I1 +
ye

dy
1-

F(n + 22) I1 f_ 1( y)2-1[( y)eio _+_ y e-,O], dy.
[V(2)]2n o

Letting y sin 2
q) gives

rt/2
2 [-cos 0 + sin O(COS 2

(./9 sin 2C.(cos O)=
2F(n + 22)
EF()]! o

q))]"(sin q) cos (/,))22- d(D.

Replacing q) by q)/2 gives

F(n + 22)
[cos 0 + sin 0 cos q](sin qg)2- doC.(cos O) 22_-[F(2n

or

C,(cos 0) F(2 + 1/2)
[cos 0 + sin 0 cos (p]"(sin (p)22-1 dq), 2 > 0(2.4) C.(1) F(2)F(1/2)

where

C,(1) (22),/n!

and Legendre’s duplication formula F(22)= 222-1F(2)1-’(2 + 1/2)/F(1/2) has been
used to simplify (2.4). This is Gegenbauer’s formula.
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3. Koornwinder’s Laplace type integral. The Jacobi polynomial P(.’)(x) can
be defined by

(3.1)
( + I)2F n n + + fl + 1" + "-----t!

n -(22). C"( )’

gives a connection between the ultraspherical polynomials and the symmetric
Jacobi polynomials, so Gegenbauer’s integral is

p;,t)(y) F(fl + 1) f i y2 0]"(sin 0)2 dO0.3) e,’(.) v(F + )v() [Y + cos

The integral

( x)
( + x)"++’ P?,(1)

(s.4) 2-v(+) Ix (-r)
( + )( ) ( + ),_,_ +, p,(

X) dy,

a > fl, is a consequence of Bateman’s integral

F(a, b’c + It x)
F(c + ")/’ yC- 1(1 y).- 1F(a b" c xy) dy, It > 0
r(c)r(#) :o

and the Euler transformation formula

F(a, b c x) (1 x)-"F(a, c b c x/(x 1)).

See [1]. Combining (3.3) and (3.4) gives

p,l)(x)_ 2-/r( + 1)f[fo(1.-y)e(l+x)e(n’’)(1) r(fl + 1/2)F( fl)F(1/2) (1 x)(1 + y)" + + (y x)-/ --1

(3.5)
Ey + ix/ y2 cos 0]"(sin 0)2//dO dy.

The change of variables

//2 (1 y)(1 -t- x)
(! +y)(l-x)

reduces (3.5) to

P(,,")(x) 2F(a + l) f fo[_1 + x (1 X)U2

ix/i 2l
P?’)(1) F(fi + 1/2)F(e fi)F(1/2) 2

+ -x cos 0

(3.6) (1 u2)-fl lu2fl+ l(sin O)2fl dO du, o > fl > -2-,

which is Koornwinder’s Laplace type integral for Jacobi polynomials. Somewhat
earlier Braaksma and Meulenbeld [5] found a different integral representation
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for Jacobi polynomials and their work was extended by Dijksma and Koornwinder
[7]. However Koornwinder’s formula [11] is a more useful formula, as will be
shown in the remainder of this paper and in the sequel 13J by Koornwinder.

4. Bateman’s bilinear sum. Bateman [3] found the formula

[_+1" Ptk"q’(x)x y P,’")((1 + xy)/(x + y))_(4.1) P’(1) =0 c’";:-i] P’(1)’
where c,, is defined by (4.1) when y 1, i.e.,

)" P")(x)
(4.2)

k=O

A simple calculation using Rodrigues’ formula

shows that

(4.3) ck,,

( x)( + x)’e?,(x) )" a"
2"n! dx"[(1 x)"+(1 + x)"+/]

F(n+ fl + 1)n!(2k + e +fl + 1)F(k + e + fl+ 1)F(k + + l)
I-’(k + n + o + fl + 2)F(k + fl + 1)k!(n- k)!F( + l)

However for some applications the explicit formula is not needed, only the defining
series (4.2), or in Horton’s proof, the positivity of (4.3). Replace the variable x in
(4.2) by

xy 1/2-(1 x)(1 y)(1 /)2)-Jr- N///-i------N//-i y2/)COS 0.

Then use

e’e(x) P(,,=’*’(y) 2F(e + l)
P’’)(1) P’’)(1) F(- fl)r(fl + )fl(-)

c, c + :l_ cos
(4.4) Jo Jo P’()

(1 /)2)a--fl- 1/)2fl+ 1(sin 0)2ll dO

and (3.6), and a routine calculation to obtain (4.1).
Equation (4.4) is Koornwinder’s version of the product formula for Jacobi

polynomials. An equivalent expression, which however is a little harder to use as
it is given, was found somewhat earlier by Gasper [9]. Gasper’s original proof
used a very complicated integral involving Bessel functions and Koornwinder’s
first proof used his addition formula. In the next paper Koornwinder will give a
very simple proof of (4.4). His proof consists of finding a simple direct proof of
(4.1) and its inverse, and then applying the Laplace type integral as above. After
all of this work had been done, Gasper called our attention to Bateman’s paper [3]
and then Koornwinder found that his proof of (4.1) had been anticipated by
Bateman in 1932 [41. A possible reason that this important work has been over-
looked is the nonstandard notation which Bateman used. Two other papers
should be mentioned, [6] and [14. Cowling proved the case 0 of the following
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formula and Koschmieder proved the general case.

(4.5) (/32 + v2 1)"/2
P(’’)(uv/(u2 + v2 1)/2)

dk,
P(’)(u) P(’)(v)

P(,’)(1) k=o P(’)(1)P(’)(1)’
where d,, is iven by (4.5) when 1. I knew (4.5) from th review of 14J in
Mathematical Reviews and (4.1) was discovered for fl __1/2 by applyin the
classical quadratic tansformation formulas

(4.6)
P’)(x) P(,,’-’/2)(2x2 l)

[17, (4, l, 5)]P)(1) P(,’- ’/2)(1)
and

2)(2x22n+ 1(X) P(,,"/ 1)
(4.7) p(a,a) X [17 (4 5)3

2n/ 1(1) P(na’/2)(I)

to, (4.5).
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JACOBI POLYNOMIALS, II. AN ANALYTIC PROOF OF THE
PRODUCT FORMULA*

TOM KOORNWINDER"

Abstract. An analytic proof is given for the author’s product formula for Jacobi polynomials and
a new integral representation is obtained for the product J(x)Ja(y) of two Bessel functions. Similarly, a
product formula for Jacobi polynomials due to Dijksma and the author is derived in an analytic way.
The proofs are based on Bateman’s work on special solutions of the biaxially symmetric potential
equation. The paper concludes with new proofs for Gasper’s evaluation of the convolution kernel for
Jacobi series and for Watson’s evaluation of the integral

fo J(2x)Jt(2y)Jt(2z)21 d2.

1. Introduction. In recent papers [13], [14], 15] the author derived the
addition formula for Jacobi polynomials by group theoretic methods. It was
pointed out in [13] that the product formula and the Laplace type integral repre-
sentation for Jacobi polynomials immediately follow from the addition formula.
The way of obtaining these results illustrated the power of the group theoretic
approach to special functions. However, it was felt unsatisfying that no analytic
proofs were available for the addition formula and its corollaries.

Next, an elementary analytic proof of the Laplace type integral representation
was given by Askey [1]. Our main result in the present paper is an analytic deriva-
tion of the product formula. It is based on important but rather unknown results of
Bateman [3], [4] concerning special solutions of the biaxially symmetric potential
equation. The present paper is a continuation of Askey’s paper 1]. We would like
to thank Askey for communicating us the results contained in [1] and Gasper for
calling our attention to [3.

Immediately after this work was done both Gasper and the author extended
the results to an analytic proofofthe addition formula. They used different methods
and will publish their proofs separately in subsequent papers.

Section 2 of this paper contains a review of Bateman’s work on the biaxially
symmetric potential equation [3], [4]. Admitting transformations of the variables,
Bateman obtained solutions of this equation by separating the variables in three
different ways. We prove that, in a certain sense, these three possibilities are the
only ones.Bateman’s special solutions involve Bessel functions, Jacobi polynomials
and nth powers. They can be expressed in terms of each other by means of a
number of identities, one of which is the bilinear sum obtained in [1 ].

By using these identities the product formula for Jacobi polynomials and a
new product formula for Bessel functions can be derived from the Laplace type
integral representation for Jacobi polynomials. This is done in 3. Section 4 dis-
cusses the analogous results connected with an integral representation for Jacobi
polynomials due to Braaksma and Meulenbeld [5] and a new proof is given of a
product formula due to Dijksma and the author [7].
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Gasper [10], [11] settled the positivity of the convolution structure for Jacobi
series. His explicit expression for the convolution kernel is derived from our pro-
duct formula in {} 5. Some formulas from Watson 17, which Gasper applied in his
proof in [10], here arise in a natural way. Thus, a deeper understanding of Gasper’s
proof is achieved.

2. The biaxially symmetric potential equation. The partial differential
equation

(c2 2fl+ c3 c32 2z+ 1 c3)(.) 57u2 + +
u u - v .F(u v)=O

arises naturally from the potential equation in two different ways.
First, if and fl are nonnegative integers and if (Xl, Xz,X3, x4) (u cos q,

u sin b, v cos Z, v sin Z), then the equation

XX2/2 (2

0X---’(2 2
(2.2) + -xx-+ +x2 (uv e"g’+Z)F(u, v)) 0

is equivalent to (2.1) (cf. Bateman [4, p. 389]).
Second, if 2e + and 2/? + are nonnegative integers and if

U N21 "q- X "q-’’" "-1
t- XIj+ 2

and

then the equation

(2 02 (2

is equivalent to (2.1).

+ y2 + + F(u,v)=O

Therefore, (2.1) is called the biaxially symmetric potential equation. Special
solutions of this equation were studied by Bateman in [3] and in [4, pp. 389-394].
We will summarize some of Bateman’s results in this section.

The differential operator in (2.1) has two singular lines u 0 and v 0.
It is natural to consider solutions of (2.1) in the upper right quarter-plane. Equation
(2.1) admits solutions by separation of variables. Regular solutions of this type are

(2.4) F(u, v) u-J(Au)v-I(2v),
where the functions J, and Is are Bessel functions.

Let 1 be a simply connected domain in the (s, t)-plane and let @2
> 0, v > 0}. Suppose that the mapping (s, t)--+ (u, v) is a conformal mapping of

1 onto 92 It means that u(s, t) and v(s, t) satisfy the Cauchy-Riemann equations

(2.5) u=v, and ut -v
and that

(2.6) A(s, t) =- uv, -u,v :/: 0 on 1.
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After this transformation, equation (2.1) becomes

A(s,t) t_
+ (213+ 1)us G 0

U V S
2.v

++ (aft+ 1)u’+(2+ 1))]u
Fu(s, ), vs, )) O.

It is not difficult to prove that for a fixed conformal mapping (s, t) (u, v)
as introduced above the following three statements are equivalent.

(A) For all values of a and fl, equation (2.7) admits separation of variables.
(B) Both the functions u(s, t) and v(s, t) are the products of a function of s and

a function of t.

(C) The mapping (s, t) (u, v) is given by one of the three complex analytic
functions

u+ iv=s+ it, u+ iv e+ or u+ iv=cos(s+ it),

up to translations, dilatations and rotations over an angle k(/2) of the (s, t)-plane
and up to dilatations of the (u, v)-plane.

We did not succeed in proving or disproving the equivalence of (B) with the
following statement (A’).

(A’) There is a value of and fl (-} a fl -) for which equation (2.7)
admits separation of variables.

However, the equivalence of the statements (A)and (C) suggests that one should
especially consider the three forms of equation (2.1) connected by the transforma-
tions

(2.8) u + iv e+ cos ( + i).

The pictures in Fig. 1 show the domains which are thus mapped onto each
other.

FIG.

The first identity in (2.8) is equivalent to

(2.9) u=excosy, v=exsiny

and equation (2.7) becomes

+ 2( + fl + 1)>7 + + ((2 + 1)cotgy- (2fl + 1)tgy)75;;
(2.10)

F(e cos y, e sin y) 0
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with the special regular solutions

(2.11) F(e cos y, e sin y) eZnxP(n’#)(COS 2y)

(cf. Bateman [4, p. 389]). Here the function P(,’) denotes a Jacobi polynomial.
The mapping (, r/) (u, v) in (2.8) can be written as

(2.12) u=coschr/, v= -sinshr/

and after this transformation equation (2.1) takes the form

+ ((2e + 1) cotg (2//+ 1) tg )

(2.13) + + ((2e + 1)cth r/+ (2fl + 1) th r/)

F(cos ch r/, -sin sh r/) 0

with the special regular solutions

(2.14) F(cos ch r/, -sin sh r/) P(,’)(cos 2)P(,’)(ch 2r/)

(cf. Bateman [4, pp. 392-393]).
Bateman [3], [4] has derived some identities which relate the special solutions

(2.4), (2.11) and (2.14) ofequation (2.1) to each other. We need two of these identities.
Solutions of type (2.4) and (2.11) are related to each other by

(2.15) u-aJ(u)v-I(v) 2 an(u2 nt- V2)nP(n’#)((u2 U2)/(U2 + 192))
n=0 P.=’)(1)

where the coefficients a, are defined by

(2.16)
2F( + 1)u-aJa(u) a"u2"

n=0

(formula (2.15) with v 0). For a detailed proof, see Bateman [3, pp. 113, 114].
Formula (2.15) is a generating function for Jacobi polynomials, which is also
mentioned in Erd61yi [8, vol. III, 19.9(12)].

The substitution

(2.17) s=cos2, =ch2q

combined with the substitutions (2.9) and (2.12) gives

(2.18) e2x-- s + t, cos 2y
l+st
s+t

In terms of the variables s and t, the solutions of type (2.11) and (2.14) can be re-
lated to each other by the identity

(2.19)
P(’)(s) P(’)(t)

b,.(s + t)
P(’)((1 + st)/(s + t))

P(.’)(1) P(’)(1) -k: o P(’)(1)
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where bk, is defined by (2.19) when 1, i.e.,

P,’/)(s)
bk,,(s + 1)k.(2.20) P,")(1)

Formula (2.19) is proved in Bateman [4, pp. 392, 393] by using the fact that both
sides of (2.19) are solutions of the same partial differential equation (2.13) (after
the transformation (2.17)). The converse identity (formula (4.1) in Askey [1]) was
first obtained in [3, pp. 122, 123]. For another result of Bateman, which expresses
the solution (2.4) in terms of the solutions (2.14), the reader is referred to [3, p. 115
or [17, p. 370].

The preceding results might be extended by considering other special solu-
tions of (2.1). For instance, one may take n complex in the solutions (2.11) and
(2.14). In this way Flensted-Jensen and the author [9] generalized (2.19) for
complex values of n. Another possibility is to replace one or both of the factors in
(2.4), (2.11), (2.14) by a second solution of the (ordinary) differential equation.

It should be pointed out that Appell’s hypergeometric function

F4(y, 6 + , +/3; -/)2, u2),
defined in [8, vol. I, 5.7.1], is also a solution of (2.1). This can be verified by term-
wise differentiating the power series of the function F4. The methods of this section
may be applied in order to prove the generating function for Jacobi polynomials
mentioned in [8, vol. III, 19.10(26)] and the Poisson kernel for Jacobi polynomials
(see Bailey [2, p. 102, example 19]).

It would also be of interest to express the solutions (2.11) and (2.14) in terms
of the solutions (2.4) by means of definite integrals over 2.

Finally, we mention the work of Henrici [12], who used equation (2.1) in
order to prove the addition formula for Gegenbauer functions.

3. The product formulas for Jacobi polynomials and for Bessel functions. The
Laplace type integral representation for Jacobi polynomials is

f,lfdp NR.=,fl)(x)
-1
t- x x 2 2 r

=o =o 2 r +i -x cos

(3.1)

where

(3.2) dm,(r, )
2F(o + 1)

Following Gasper [10] we use the notation

(1 r2)-fl- lr2fl+ 1(sin 4)) 2fl dr dq.

The measure (3.2)is normalized by

(3.4) f/ ff dm=,,(r, gp) 1.

P(,,’)(x)
(3.3) R’)(x) =- pT,)(1)
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Formula (3.1) was first proved by the author [13] from the addition formula. Next,
an elementary analytic proof of (3.1) was obtained by Askey [1, 3]. The deriva-
tions given below were suggested by the way Askey proved the converse of (2.19)
(see [1, 4]).

It follows from (3.1) that

(x + )":,
x + !

(3.5) [(1 + X)(1 + fl)+ (1 X)(1 y)r2

+ (1 ( yr cos 3" am,(r, )
and

(3.6) x2 + YZ)"R’) )5---1 (x2 y2r2 + 2ixyr cos qS)" dm,(r, ).

Combination of formulas (2.19), (2.20) and (3.5) gives the product formula

R. (x)R.

3.7) ?,k + x) + y)+

+ 1 x yr cos

In his original proof the author [133 derived (3.7) from the addition formula by
integration.

In a similar way, it follows from the formulas (2.15), (2.16) and (3.6) that

x-’J(x)y-I(y)

On (X2 y2r2 + 2ixyr cos )" dm,e(r,
n=0

an(X2 y2r2 + 2ixyr cos

2 2 (1/2)fl2V(o + 1) (X2 2_ )-;-- _- i/--y 0-s 7---- dm=,(r el)).

The interchanging of summation and integration is allowed because the infinite
sum converges uniformly in r and qS. By using that

y-I(y) (iy)-J(iy)

and by analytic continuation it follows that

x-/Jttx)Y-%tYl’’’’’ 2F(o + 1)

(3.8) fj f/J//((x2 Y--2r2-- + 2xyr cos )/2)dm (r(x2 + y2r2 +0)1,
>>-.

This formula seems to be new.
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It is surprising that the two product formulas (3.7) and (3.8), which seem to be
much deeper results than the integral representation (3.1), can be derived from (3.1)
so easily. Another surprising fact is that formula (3.1) implies (3.7) but is also a
degenerate case of (3.7). In fact, one obtains (3.1) after dividing both sides of(3.7) by
R,’)(y) and then taking the limit for y oo.

Formula (3.8) follows from (3.7) by applying the confluence relations

(3.9)

and

lim
P(’’t(1 Y2/(2n2))

2F(o + 1)y-J(y)

(3.10) lim
P(n’l)(x2/(2n2)- 1)= 2F(fl + 1)x_J(x)

,-, P(,’)(- l)

(cf. ErdOlyi 8, vol. II, 10, 8(41)J).
If fl T then the measure dm,(r, q) defined in (3.2) degenerates to the measure

F(e + 1 6(1 r)(sin )2 dr d4.

Here 6(0 represents Dirac’s delta function
The degenerate forms of (3.1) and (3.7) for fl are Gegenbauer’s classical

formulas for ultraspherical polynomials (cf. [8, vol. I, 3, 15(22), (20)]). Formula
(3.8) degenerates to the product formula

x- IJ(x)y- Jl(y

(3.11)
2v/F(/ + 1/2)

J((x2 + .)2
2 -- 2xy cos (D) 1/2)

-(-- -. 7+_ 2xy cos 4)) 1/2)fl (sin b)2 dO,

This is an integrated form of Gegenbauer’s addition formula for Bessel functions
(cf. Watson [17, 11..4(2)]). It should be pointed out that new proofs are obtained
for these two classical product formulas of Gegenbauer if one applies Bateman’s
identities (2.15) and (2.19) to (3.1) in the case ft.

Askey [1] derived the Laplace type integral representation (3.1) from its
degenerate case a fl by using a fractional integral for Jacobi polynomials. In a
similar way we can derive the product formula (3.8) from its special case (3.11.) by
applying Sonine’s first integral

(3.12) foy--J(y)
2_

_
1i_,(0 fl)

(yr)-lj(yr)r21+ *(1.- r2)-l-l dr,

> fl > 1 (see Watson [17, 12.1.1(1)]). This method of reducing the case (e,/3)
to the case (fl, fl) fails for the product formula (3.7).

If fl $ -1/2 then the measure dm,e(r, c/)) degenerates to the measure

F(a + 1)1/2)( r2)_ 1/2(6((/)) + (7 (/)))dr d.
+
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The degenerate forms of (3.1) and (3.7) which are thus obtained are related to the
degenerate forms for fl by the quadratic transformation

(3.13) P’- l/z)(2x2 1) P,,’)(x)
P.’ ’/2)(1) P’)(1) (see [8, vol. II, 10.9(21)]).

Formula (3.8) degenerates for/3 -1/2 to

(3.14) cos (x + yr)(1 r2) 1/2 dr,cos x’y J(y)
2x/r( + ) -,

For x 0, this is Poisson’s integral ([17, 3.3(1)])

cos (yr)(1 r2) 1/2 dr(3.15) Y-J(Y)
2xfF(0 + 1/2)

and, conversely, formula (3.14) immediately follows from (3.15). Thus, the double
integral (3.8) connects (3.11) with Poisson’s integral in a continuous way.

The remarks at the end of 2 suggest that other integral formulas can be
derived by the methods of 3. One case, for Jacobi functions, is worked out in [9].

The left-hand sides of formulas (3.1), (3.7) and (3.8) can each be considered as
the first term of an orthogonal expansion with respect to the measure dm,(r,
An orthogonal system of functions with respect to this measure is

f,,(r, b) PI-- 1’+-(2r2 1)rt-’P_- 1/2’- /2)(cos q).
(3.16)

k>_l>O.

The expansion corresponding to formula (3.7) is called the addition formula for
Jacobi polynomials (see Koornwinder [13]). The expansions corresponding to
(3.1) and (3.8)can be obtained as degenerate cases ofthis addition formula. Recently,
Gasper and the author independently gave analytic proofs of these expansions.

Gasper first derived the expansion corresponding to (3.1) in an elementary
way and next applied (2.19) and (2.20) in order to obtain the addition formula.
Similarly, one might prove the expansion corresponding to (3.8).

The author obtained the higher terms of the addition formula by doing inte-
gration by parts in (3.7). The same method might be applied to (3.1) and (3.8).

These two methods of proof will be published in the near future.

4. The integral representation of Braaksma and Meulenbeld. By interpreting
Jacobi polynomials as spherical harmonics Braaksma and Meulenbeld 5] ob-
tained an integral representation for Jacobi polynomials which is different from
(3.1). Their formula is

P.’e)(x) F( + 1)F(fl + 1) (e + 1).(fl + 1).

(i,/i cos + + cos

(sin b)2(sin //)2fl d(/) dl//, fl>-1/2.
As pointed out in [5], the analytic proof of (4.1) is easy.



JACOBI POLYNOMIALS, II 133

By using (2.19) a product formula can be derived from (4.1). The explicit form
of the coefficients bk,, in (2.21) follows from

(4.2)
p?,t)(_ 1) P(,f’)(1)

Hence,

P(,,’)(x) p(,,,t)(y)
p(,,t)(_ l) P(,,’)(1)

(sin q)2(sin )2fl d(/) dO
Let C.+ e+ l(t) denote a Gegenbauer polynomial. By using

L (-n)k(n++fl+ 1),t2= 2Fl(-n n+o+fl+ l’1/2"t2)
: o (1/2)k

we conclude that

P(,,’)(x) P(,,’)(y)
P’)(- 1) P(,,’t)(1)

(4.3)

p(.-1/2,a+fl+ 1/2)(1 2t2)
p(n-1/2,o+fl+ l/2)(1)

Cn+ fi + l(t
C’+e+’(O)2n

F( + 1)F(fl + 1)
1/’-’,(z --I-- fl --t--TCI-’(0 -- 1/2)F(/ ----,’2n 1(0)

Cn+ fl + y COS

+ + cos

(sin 402=(sin O)2fl d(/) dO,

Formula (4.3) was first obtained by Dijksma and Koornwinder [7]. They used
similar group theoretic methods to those of Braaksma and Meulenbeld [5].

We can also derive from (2.15) and (4.1) that

(4.4)

x-Jtx)Y-PJtY)’’ 2+nr( + 1/2)r(/ + 1/2)

cos (x cos 4) + Y cos O)(sin 4))2=(sin O)2e d4 dO,
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Writing

cos (x cos 4 + y cos 0) cos (x cos 4) cos (y cos 6)

sin (x cos 4)) sin (y cos ),

we can reduce (4.4) to the product of two Poisson integrals (3.15).

5. Gasper’s product formula. The right-hand sides of the formulas (3.1), (3.7)
and (3.8) all have the form

ff for f(a2r2 + 2abr cos + be) dm,//(r, b),

where the function f is continuous on (0, ), the letters a and b represent positive
real numbers and the measure dm,//(r, ) is defined by (3.2). By a transformation of
the integration variables this integral can be rewritten in the so-called kernel form.
We will prove that

ff f f(a2r2 + 2abr cos b + b2) drn,//(r, 49)

j’(t2)g,//(a, b, t)t21 + dt,

where for > fl > - the kernel K,//is defined by

(5.2)

a- 2 (a2 b 2 c2 .qt._ 2bc cos ff)--//- (sin 0)2//dO

In formula (5.2) the notation

ifx > O,
(x)+

0 if x=<0,

is used.
Formula (5.1) can be proved by successively performing the following trans-

tbrmations of variables to the left-hand side of (5.1). First, we put

x=rcosqS, y=rsin05,

next,

x’= ax + b, y’ ay,

and finally,

x’=tcosO, y’=tsinO.
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Thus we obtain the equalities

ff[f([arei+b[2)(1-r2)--lr2’+’(sindp)2drddp
f((ax + b)2 + (ay)2)(1 x2 yZ)_-t--lyZt dx dy

a-2 f((x,)2 + (y,)2)(a2 b 2 (x,)2 (y,)2 +

(y,)2 dx’ dy’

a 2 f(t2)(a2 ba {2 + 2bt cos

Formula (5.1) follows by substitution of (3.2) and (5.2).
The kernel K,, defined by (5.2), is clearly nonnegative. Putting f(x) in

(5.1) we find

fo(5.3) K,(a, b, t)t2 + dt 1.

The analytic form of the kernel K was studied by Macdonald (see Watson
[17, p. 412])and by Gasper [11]. It turns out that three different cases have to be
distinguished. Let

bz + c2 a2

(5.4) B
2bc

Then (5.2) takes the form

2-eF( + 1)
K,e(a, b, c)

x/r(a fl)r(fl + 1/2)"-2(bc)-
(5.5)

(s B)+-/- 1(1 $2)fl- 1/2 ds.

Case I. a < [b cl. Here < B, and K,(a, b, c) O.
CaseII. lb-cl <a<b+c. Here-1 <B< 1, and

F( + 1) B2)- 1/2K,e(a, b, c)
F(a + )a- 2a(bc) e ’(1

(5.6) B
"2F1 + fl

_
fl. + _.1

2

Case III. b + c < a. Here B < -1, and

2-/F( + 1) B) /2

K,e(a, b, c) a-2a(bc)-e- (1

(5.7) r(a- fl)r(fl + 1) (-1 B)e+ ,/2

2)2F1 + fl, fl + {;2fl + ;;-7
For these results, cf. [17, p. 412] and [11].
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Next, we will rewrite the formulas (3.1), (3.7) and (3.8)in kernel form using
formula (5.1). It follows from (3.1) that

y.+(5.8) R("S’//)(x) - (x/ 1)/2, w/( + 1)/2, x/f)dy, x > 1.

A Mehler type integral for Jacobi functions (also for complex n) which follows from
(5.8) leads to an explicit expression for the Radon transform for Jacobi function
expansions (to be published by the author). The analogous Mehler type integral
for Jacobi polynomials was independently obtained by Gasper (yet unpublished).
He applied the formulas [8, vol. I, 2.4(3) and 2.8(11)3. The kernel form of (3.7)
was first obtained by Gasper [10]. It is

t/2

R,S’//)(cos 20 )R,S’//)(cos 202) RnS’//)(cos 203)Ks,(sin 0 sin
,0

(5.9) COS 01 COS 02, COS03)(COS 03)2//+ sin 03 dO3,

0<02<, 0<0<,
Here, the range of integration is restricted, because a sin 01 sin 02,
b cos 01 cos 02 and c > would imply the condition of Case I.

Formula (3.8) can be rewritten as

(5.10)
Js(x) J//(Y)
x y// fo J//(z) Ks//(x y, z)z2//+ dz

2SF(e + 1) F-
It follows by the homogeneity of Ks,//that

(5.11) Js(2x)J//(2y)2 fo y, Z)
2F( + 1)

By duality it follows from (5.9) that

(5.12)

where

J//(2z)z dz.

--, t,,,o 201)R,S’//)(cos 202)R’//)(cos 203)
n=0

Ks,//(sin 01 sin 02, cos 01 cos 02, cos 03)
2 +//+ 2(sin 03)2s

(h(.S’//)) -1 (R(.S’//)(x))2(1 x)S(1. + x)// dx

and cos 0 4: [cos (01 + 02)1. It follows from (5.11) that

f xSy//z// Ks,//(x y, z)
(5.13) js(2x)j//()y)j//[2z)21--s d2 2F(e + 1)

for zlxyl.
In order to prove (5.12) and (5.13) by duality one has to use that the function

K,(a, b, t) is continuous differentiable on the intervals (0, ]a b[), (]a hi, a + b)
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and (a + b, ). In the Jacobi case, the equiconvergence theorem for Jacobi series
(Szeg6 [16, Thin. 9.1.2]) and well-known convergence properties of Fourier-
cosine series then can be applied. In the Bessel case, the tool is Hankel’s inversion
theorem [17, p. 456].

Combination of (5.12) and (5.13) gives

Z h,’a)R,’)(cs 20,)R,’)(cos 202)R,,e)(cos 203)
n=0

(5.14)
2-t-2F(0 + 1)(sin 01 sin 02 sin2 03)-(COS 01 COS 02 COS 03) -fl

J(2 sin 01 sin 02)JB(2 cos 01 cos 02)J//(2 cos 03)/ 1-a d2,

Z > fl > --1/2, COS 03 :)g: Icos (01 -1- 02)
For (5.13)and (5.14)see Watson [17, pp. 411,413]. Gasper [10] obtained (5.12)

by combining these two formulas of Watson. Formula (5.13) was applied by
Copson [6, p. 352] to the Riemann-Green function for the hyperbolic analogue of
(2.1).
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SOME ADDITIONAL REMARKS ON THE NONEXISTENCE OF
GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS*

HOWARD A. LEVINE-

Abstract. Let P and A be symmetric linear operators defined on a dense domain D H, a (real)
Hilbert space. Let (x, Ax) >= 2(x, x) for all x D and some 2 > 0 and (x, Px) > 0 for all x D, x : 0.
Let D have a Hilbert space structure and let the embedding be continuous. Let ’D H be a non-
linear gradient operator and let f be a potential associated with Suppose that 2(2 + 1)fC(x)
< (x, (x)) for all x e D and some > 0. If u’I0, T) D is a solution to Putt Au + (u) with
u(0) uo, vt(O vo, and if fq(Uo) > 1/2[(uo, Auo) + (vo, Pvo)] (2/(2 + 1))(uo, Puo) then, for some
T < o, limt-,r- (u, Pu) + v. An analogous result holds for weak solutions to this equation and for
the damped equation Putt + ut + Au (u), where is a positive semidefinite linear operator.

Introduction. In this paper, we shall extend the results of[ 1] to weak solutions
and examine the consequences of imposing an additional assumption on the
operator A, namely, that (x, Ax) >= 2(x, Px) for all x DA and some 2 > 0.

The notation and definitions used in [1] are assumed to be in force here. Here
we assume that the operator A does not depend upon time.

We shall also extend the result of [1, Theorem VI], for the damped equation
utt -k- au + Au (u), with A a positive operator and a a constant, a > 0, to

Putt + Aut + Au (u), with P and A positive, symmetric, linear operators so
that our instability and nonexistence results hold even when we "damp" the
motion with an (unbounded) operator.

1. The case (x, Ax) >= 2(x, x). In [1], the following theorem was proved.
THEOREM 1. Consider the abstract Cauchy problem in the (real) Hilbert space H"

Putt -Au + -(u) in [O,T),

u(0) Uo, u,(0) Vo.

Suppose that P and A are symmetric linear operators with P > 0 and A > 0 in the
usual sense of quadratic forms (P and A being defined on a dense subdomain D c H).
Assume that the nonlinearity , (defined on D) has a symmetric, continuous2 Frchet
derivative at each x D and that there is a constant > 0 such that the potential

Received by the editors September 22, 1972, and. in revised form January 26, 1973.
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D is presumed to be equipped with a scalar product ) such that it in turn is a Hilbert space
in this scalar product and such that the injection from D into H is a continuous mapping of Hilbert
spaces.

In the D norm.
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N(x) =- (f(px), x)dp satisfies, jbr all x D,

(*) (x, if(x)) => 2(2a + 1)((x).

Suppose that Uo satisfies

do" C5(Uo) > 1/2(Uo, Auo)
and let

F(Uo) N{(Uo) 1/2(Uo’ Auo)} 1/2.

Define cos 0 (Uo, Pvo)/(Uo, Puo)/2(Uo, Pro) 1/2 and let

S,o {Vo e Dl(vo, Pro) < r2(uo)},
Bu {Vo e Dl(vo, Pro) rZ(uo)},

g+(uo) {roe DI cos 0 > 0},

E, {Vo e DI(1 1/2(2 + 1)-’ cos20)(vo, Pro) < r2(uo)},
C, {Vo e D[ sin O(vo, Pro) < rZ(Uo)}.

Then if u’[O, T) - H is a solution to (1.1) in the sense of [1] we have"
(i) If vo Suo (J H + (Uo) Buo, there exists T, 0 < T < + o, such that

lim (u(t), Pu(t)) + .
t- T-

(ii) If Vo e(E, S,o) f-I H+(uo) and the solution exists on [0, oo), then there
exists 7 > 0 such that

lim inf e-’t(u(t), Pu(t)) > O.

(iii) If Vo (C, E,o) f-] H+(uo) and u exists on [0, ), then

lim inf t- 2(u(t), Pu(t)) > O.

That is to say, we have the situation indicated in Fig. 1. If Vo is in the interior of
the "disk" Suo or on the open "semicircle" POP1, u will have finite escape time. If

Vo is in the region F1 excluding the "arc" PoP2P1, we have at least exponential
growth of (u, Pu). If Vo is in the region F2, we have at least quadratic growth of
(u, Pu).

Suppose we assume that there is a constant 2 > 0 such that (x, Ax) 2(x, Px)
for all x e D and e [0, 0), the other hypotheses on f and A being unchanged
except that Uo satisfies

d z);(Uo, Puo)/(2a + 1) + ((Uo) > 1/2(Uo, Auo).

In this case we have the following theorem.
THEOREM 2. Let Uo satisfy d l. Then Theorem 1, statements (ii) and (iii) hold with

r(uo) replaced by

g(uo) x/Ea2(2z + 1)- I(Uo, Puo) + ((Uo) 1/2(uo, Auo)] ’/z

(These statements will be referred to as (ii)’ and (iii)’ and the corresponding subsets
referred to as ’,o,/,o, (,o, and/,o respectively.) Let H + H +(Uo). Instead of
statement (i) we have:
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FIG.

(i)’ If v o (,o f-] H +) U (,o f’) H+), then there is a number T > O, T <
such that

lim (u(t), Pu(t)) + oo.

If, in addition, the stronger inequality

do" ff(Uo) > 1/2(uo,Auo)
holds, then statement (i) holds as well. That is, if vo S,o (D- H+), then
lim,_. T- (U, Pu) + oo for somefinite T > O.

Proof The proof is an immediate consequence of the results of [1]. If we set
F(t) (u, Pu) + Q2, then we find from (II-3), (II-5) and (II-6) of [1] with fl 0
that

FF" ( + 1)(F’)2 => 2F{2a(u,Au) + 2(2a + 1){ad(Uo) 1/2[(uo,Auo) + (vo,Pvo)]} }.
Since F’(t) 2(u, Put) and F’(0) 2(Uo, Pro), Vo H+ if and only if F’(0) > 0 so
that near O, F’(t) >_ 0 and F(t) is increasing. Thus (u, Au) >= ;t(u, Pu) >= 2(Uo, Puo)
so that

FF"-( + 1)(F’)2 >= 2F{2a2(uo,Puo)+ 2(2a + 1)[qd(Uo)
(1.2)

1/2[(Uo, Auo) + (Vo, Pro)I]}.
It then follows from (1.2) that the analogues of statements (ii) and (iii) follow by
simply modifying the proofs of Theorems III and IV of [1] to the extent that (Uo)
is replaced by a2(uo, Puo)(2a + 1)- + ff(Uo)in these proofs.

In order to show that (1.2) holds on the entire existence interval, one need only
establish that F’ does not change sign if F’(0) > 0. The arguments of [1] are easily
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modified to show that near 0, (F-S)’ < w/-p(F-a) in the case of (ii)’ and
F’ > 2vF /2 in the case of (iii)’ (/ and v are chosen as in [1] with the appropriate
replacement of f#(Uo).) From these latter it follows that F’ does not change sign.

If Vo e ,o f-I H / U/,o f"l H /, that is, if the coefficient of 2F on the right of
(1.2) is nonnegative, then (F-a) =< 0 near 0. This inequality persists in an
interval [0, to), say, as long as F’(t) > 0 there. In this interval,

(F-a)’(F-a)" >= O,
so that

> >0.
L J =L j

Therefore, (F-a) cannot change sign and hence, since it is initially negative,
F’(t) > 0 for all for which u is defined so that (F-a) =< 0 wherever the solution
exists. Thus statement (i)’ holds as we see from (II-4) of [1]. The last conclusion of
Theorem 2 is simply part of statement (i) of Theorem 1.

Remark 1. The extension is important because, as is the case in many initial
boundary value problems for bounded space domains, we often have (x, Ax)
>_ 2(x, Px) for some 2 > 0 and all x e D. We are thus able to locate more precisely
the candidates for Uo and Vo which give rise to unstable solutions to (1.1). (Compare
Figs. 2 and 3.)

Remark 2. Figure 2 illustrates the geometric content of Theorem 2 if d holds
and a(Uo) =< 1/2(Uo, AUo), while Fig. 3 illustrates the geometric content of Theorem 2
if N(Uo) > 1/2(Uo, Auo). The labeling in both figures has the same significance as that
used in Fig. 1. In Fig. 2 a(Uo)=< 1/2(Uo, Auo) and Uo 4: 0. We have unbounded
growth of (u, Pu) in finite time if Vo is in the right half "disk" including the (open)
"arc" PoP (see Remark 2). In Fig. 3 (Uo) > 1/2(Uo, Auo)(see Remark 2).

FIG. 2
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FIG. 3

Remark 3. Note that d cannot hold unless ff(Uo) > 0. Otherwise, from d and
the lower bound on (x, Ax), we have 2(Uo, Auo) > (2 + 1)(Uo, Auo), which is a
contradiction.

Remark 4. Applying "energy" arguments, we find that

Ex(t) 1/2(u, Au) + (ut, Put)] Cd(u(t))

-[(Uo, Auo) + (Vo, Pvo)] ad(Uo)= Eu(O).

(That is, we take the scalar product of both sides of (1.1) with ut, integrate, use (**)
of [1] (’o((u),u,)drl f(u)- f(Uo))and rearrange to arrive at the above
identity.) We saw in [1] that if EN(0) =< 0, then we have nonexistence of global
solutions to (1.1). Theorem 2 says that even if EN(0) > 0 the solution to (1.1) will
not be global if EN(O) is not too positive, that is, if EN(O) <= 2(Uo, Puo)(2 + 1)- 1.

Note that, in view of Remark 3, EN(t) =-- 0 does not imply that u 0 if d
holds. (Eu(t) is called the "energy" of the nonlinear problem at time t.)

Remark 5. If, as in [1], A A(t), (x, A(t)x) <__ 0 and (x, A(t)x) >__ 2(x, Px) for
some constant 2 > 0, all [0, oo) and all x D, Theorem 2 remains valid. (A(t)
denotes the strong limit of [A(t + h) A(t)] h- as h 0.)

Remark 6. It is interesting to note that the solutions to (1.1) were not required
to be uniquely determined by Uo and Vo although this is the case ifx is continuous.

Remark 7. If do or d fail, then (1.1)can exhibit bounded solutions. To see this,
let f be a nontrivial solution of

f,, +f2--0 on [0,z],

f(0) f(z0 0.
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Here -(g) g2, 1/4, 2 and CS(g) 1/2j’; g3 dx (g e cg2[0, ], g(0) g()
0). Then u(x, t) f(x)satisfies

Utt Uxx -Jr- U2

u(O, t) u(, t) O,

u(x, O) f(x), ut(x, O) O,

and is bounded and global. (do fails because (f)= f dx - ff" dx
;(f,)2 dx < k;(f’)2 dx, while d fails because if it held it would imply that

fo f2dx + fdx> (f,)2dx or f2dx> (f,)2dx,

which contradicts the well-known inequality of Poincar6, namely, if g e C,
g2 dx.)g(0) g(n) 0, then 1 < o (g,)2 dx/f

(x, t) e (0, ) 0, ),

t=>0,

0__<x<,

2. Weak solutions. We observe that we can also prove results analogous to
those of[1] and the present note for weak solutions to (1.1), provided we properly
formulate the definitions of a weak solution to (1.1). To do this, at least .formally,
let u exist on 0, T) and let P* P1/Z,A* A 1/2. Let D, (_D) denote a common
domain of definition for P*, ff and A.3. (It may happen that D, D.) We say that
u is a weak solution to (1.1) ifuo, Vo D, and, for all "smooth enough" 4)’[0, T) D,
we have, for all [0, T), that

(P*dp, P’u,) + (A*c/), A’u) dr/ (P*(0), P*vo) + (P*c,, P*u,) drl
(2.1)

+ (4, (u))d,

u(O) Uo, u,(O) Vo,

and that u is an admissible ok. (This clearly requires that both u and ut take values in
D, .) We now prove Theorem 1, statement (i) assuming only that (a) CS(u0) > 1/2(Uo,
Auo), (b) all such weak solutions u satisfy the following "energy" inequality for
>0"

(2.2) EN(t) 1/2[(A*u, A’u) + (P’u,, P*ut)] CS(u(t)) <= EN(O),

EN(O) =-- 1/2[(A*uo, A*uo) + (P*vo, P*vo)] C(Uo),

and (c)- and ( satisfy F-I, F-II of [1] and (*). Note that (2.2)is weaker than the
statement EN(t EN(O) of Remark 4.

We now prove the following theorem.
THEOREM 3. If (2.1) and (2.2) hold and if (P*vo, P*vo) < 2[(Uo) 1/2(A*uo,

A*uo)], then

lim (P*u(t), P*u(t)) + for some T, 0 < T<

Footnote about the embedding of D in H is assumed to hold also for D* with scalar product
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Proof Let

V(t) (P’u, P’u)+ fl(t + )2,
where fl and are positive constants to be determined later. Then

F’(t) 2(P’u, P*ut) + 2fl(t + ).

Putting b u in (2.1) and solving the resulting equation for (P’u, P*ut) We find
that

F"(t) 4(a + 1)[(P*ut, n*ut) + fl] + 2{(u, i(u)) -(A’u, A’u) 2(2a + 1)ON(u)

+ 2(2a + 1)IN(u)- 1/2(n*ut,n*ut)- fl]}.
Using (2.2) and (*) of [1], we see that

F"(t) > 4(a + 1)[(n*ut, n*ut) + fl] + 4a(A*u, A’u) + 2(2a + 1) {N(Uo)
1/2[(A*uo, A*uo) + (n*vo, n*vo)] 1/2fl}

=> 4(a + 1)[(n*ut, n*ut)+ fl],

which, follows after noting that we have assumed EN(0 < 0 and subsequently put
fl --2EN(0). Thus here too, (F-S) < 0. If is then chosen so large thal F’(0)

2(P*uo, P*vo)+ 2fi > 0, we see from (II-4)in [1] that lim_ T- (P*u,P*u)
+ o, where 0 < T <= F(O)/aF’(O).
Analogues of (ii) and (iii) in Theorem and an analogue of Theorem 2 can be

similarly proved.
Following [3], it is possible to relax the definition of a weak solution.

3. The damped equation. Here we let P, i, , A, a be as in [1], A being time
independent and the conditions on f and being in force. Let ’D--. H be
another symmetric linear operator such that (x, x) >__ 0 for all x D. We prove
the following theorem.

THEOREM 4. Let u’[0, T) - H be a solution in the sense of [1] to

d2u du
(3.1) n--t + "-d + Au if(u) in [0, T),

u(0) Uo,

u(0) Vo, Uo, Vo e D.

d’o"
then there exists T with

0<T_<a

where

N(Uo) > 1/2[(Uo, Auo)+ (Vo, Pro)I,

2fl l{[(1/2(Uo, dUo) a(Vo, Puo)) + (Uo, Puo)a2flo] ’/2

+ (1/2(Uo, Uo) a(Vo, nuo))},

flo 2{a3(Uo)- 1/2[(Uo, Auo)+ (Vo, Pro)]}
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such that

lim u(t), Pu(t)) + (u(rl), Au(q)) drl +
’I’

(We are assuming local existence here.)
Proof. Suppose the theorem fails so that u exists on [0, o). For any To, , 17,

arbitrary but positive, let

(u, Pu) + fl(3.2) F(t)

for [0, To]. Then

(3.3)

and

(u, 7u) dn + (To t)(Uo, duo)+ #(t + r)2

F’(t) 2(u,, Pu) + (u, flu) (Uo, 3Uo) + 2fl(t + 17)

2(u.. Pu) + 2 (u,. du)dq + 2fl(t + 17)

(3.4)

so that

F"(t) 2(ut.. Pu) + 2(u.. Pu.) + 2(u.. Au) + 2fl

FF"-(o + 1)(F’)2 >= 4(z + 1)S2 + 2F{(u,(u))- (u, Au)
(3.5)

2( + 1) (u,. u,) dq (2e + 1)[(u. Pu.) + fi}.

where

(u, Pu) + (u, U) dl/! .qt_ [(t + 17)2 (Ut, Pu,) + (u,, u,) dq + fl

(u,,Pu) + (u,,Au) dq + fl(t + )

Letting H(t) denote the expression in braces on the right of (3.5), we see that

d
H’(t) z(u, (u)) (4a + 2)(u,, Pu,,) 2(a + 1)(u,, Au,) 2(u,, Au)

d
d--Tt(u, (u)) (4a + 2)(u,, ,(u)) + 2a(u,, Au,) + 4a(u,, Au).

Therefore using (*) in Theorem and the formula d(u(t))/dt (u,, if(u)) we find
that

(3.6)
H(t) >= H (0) (Uo, ff(Uo)) + (4a + 2)gi(Uo) + 2a(u, Au) 2a(Uo, Auo)

>= (4a + 2){6(Uo)- 1/2[(Uo, Auo) + (Vo, Pvo)] fl/2}.
Thus with fl flo -= 2{(Uo) 1/2[(Uo, Auo) + (Vo, Pro)I}, we see that [F-(t)]

<= 0 in [0, To]. Therefore if we choose To and 17 such that F’(0)> 0((F-)’(0)
< 0) and F(O)/aF’(O) <= To, then F will have a zero in [0, To) at some point
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T <__ F(O)/aF’(O) and the second statement of the theorem will follow. Now F’(0)
2(uo, Pro) + 2flor > 0 if r is sufficiently large. Moreover, F(0) =< F’(O)To if

and only if

(3,7) (Uo, Puo) + flor2 < 2To{a(Uo, Pro) + rio’el 1/2(Uo, dUo)}.
Now choose r so large that the quantity in braces on the right of (3.7) is positive,
and let

o =- k[(Uo, ’Uo) + fio]/{[lUo, Ivo) + o] -}lUo, ,Uo)}.
Then minimizing over z, we obtain the estimate on T given in the statement of the
theorem.

Remark 8. By specializing Theorem 4 to the case P I and A aI, a > O,
we conclude that if roll < r(uo) x//{qd(Uo) 1/2(Uo, Auo)} then lim supt-r-Ilu(t)II

+ oo for some T, 0 < T < oo. In this case, however, Theorem VI of [13 tells us
that if Vo <r(uo) and IlVo cos0>a Uo /2a, wherecos0--(Uo,Vo)/ Uo Vo
then limt_. T- u(t) + c for some T, 0 < T < c. Thus, in this case, with the
additional restriction on Vo, the result of [13 gives us somewhat more information
about the nature ofthe approach to infinity of u Theorem 4 has wider application
of course.
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SOME PROPERTIES OF GENERALIZED BIAXIALLY SYMMETRIC
HELMHOLTZ POTENTIALS*

R. J. WEINACHT"

Abstract. For an equation which includes the equation of generalized biaxially symmetric potential
theory an investigation is made of the behavior of solutions near the intersection of the two singular
hyperplanes. The main results consist of a continuation theorem and uniqueness theorems analogous
to those of Huber E3] in generalized axially symmetric potential theory.

1. Introduction. In this note we investigate solutions of the generalized
biaxially symmetric Helmholtz equation

(1.1) L,u] + 2u O,

where

L,,[u] =- ux., + ux +--u
i= Xtl-- X.

with ,, fl, 2 real constants and n > 2. Of course, for x,_ 4: 0, x, 0 solutions of
this elliptic equation are analytic. Here we examine the behavior of solutions at
the intersection of the singular hyperplanes, i.e., near x,_ 1= 0, x, 0. It is
hoped that these results will give insight into the behavior of solutions of singular
and degenerate elliptic equations at the intersection of more general singular and
degenerate hypersurfaces. As a sample result we mention (see Theorem 1) that for

>= and fl >= 1, if a solution does not grow too rapidly near the intersection,
then it can be continued analytically throughout an entire neighborhood of the
intersection, i.e., the singularity is removable.

For a 2 0, (1.1) reduces to Weinstein’s [1], 2] generalized axially
symmetric potential theory (abbreviated GASPT). Our results are analogous to
those of Huber 3] for GASPT. For further references for GASPT as well as the
present case see the book of Gilbert [4]. See also Kiprijanov [8] and references
therein for more general equations involving one singular variable, including
equations of higher order.

2. Preliminaries. The usual notations for vectors in Euclidean n-space will
be used. With x (X1,X2, "’’, Xn) we denote by Q the open quarter space
{x’x,_ > 0, x, > 0}, B(R) the ball of radius R with center at the origin, B +(R)
=_ B(R)f’l Q is the open quarter-ball and Q(R) the quarter sphere {x’lx] R,
x,_ > 0, x, > 0}. The boundary of a set S will be denoted by cS.

Our results rest heavily on the following Poisson integral formula [5].
THEOREM. Let >__ 1, fl __> 1. Supposefis continuous on Q(R and has thefollowing

behavior near the singular hyperplanes"

lim p(,_l )P(, fl)f() 0,
--’o
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where e Q(R), o e Q(R) f’l cQ and - 1, ) > 1,
p(t;7)

((log t) -1 7

for positive real t. Then the function u defined on B(R) by

u(xl

_
(x, Of(O dS,

where

2(R2-[x[2)I’(P)j.j,,rr -2p -1K(x, ) R--n-y/--(2)F)_,, a sin 0 sin- dO d,

a [Ix 12 + 2._ x._ 1(1 cos 0) + 2.x.(1 cos )]/2

and 2p n + + fl, has the following properties"
(a) u is even in x._ and even in x.
(b) u is analytic in B(R) and satisfies L.,a[u] 0 in B(R) except on x._ 0

and x. 0;
(c) u assumes the boundary valuefon Q(R)"

lim u(x) f(o); x B+(R), o Q(R);

(d) u inherits the behavior off near the singular hyperplanes"

lim p(x._ a)p(x. fl)u(x) 0; x B+(R), Xo B(R) Q,
XXO

the convergence being uniform in x.
In addition we will use the following variant of Weinstein’s correspondence

principle [1] of GASPT"
A function u is a solution of L2-,2_ a[u] + 2u 0 in a region G of the quarter-

space Q ifand only if v x,-’_ x,-au is a solution of L,a[v + 2v 0 in G.

3. Removable singularities. Our first result concerns singularities of solutions
(1.1) near the intersection of the singular hyperplanes. Because of the translation
invariance of (1.1) with respect to x, x2,"’, x,_ 2 there is no loss of generality
in considering the intersection at the origin.

THORZM 1. Suppose a 1, fl 1. If u is a solution of(1.1) in B+(R) such
thatfor Xo in B(R) Q

(3.1) lim p(x,_ a)p(x,; fl)u(x) O, x B+(R),
X--- Xo

then u can be continued analytically into all ofB(R) as an evenfunction ofx._ and
x. and satisfying (1.1) in B(R), except on x._ 0 and x. O.

Remarks. (i) On the singular hyperplanes the operator (1.1) is not defined
except for a 0, fl 0 and the continuation of u satisfies limiting forms of (1.1)
there; in particular: ux._, 0 on x._ 0 and Ux. 0 on x. 0.

(ii) The function [,".= x2], 1/2(2 n a fl), which is a solution of
(1.1) in B+(R) for 2 0, shows that the condition (3.1) is not superfluous.
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Proof We first make a reduction to the case 2 0 by a method of descent
in the manner of Diaz and Ludford [6] as follows. The function u satisfies the
hypotheses of the theorem if and only if the function

le-’/-x"+ *u(x1, n), 2>0,
U(x, ..., x,, x,+ ) [.COSN//r--Xn+lU(X1 Xn), / < O,

satisfies the hypotheses of the theorem in a space of one higher dimension for
2 0. In particular, U satisfies the equation

n+l (X

(3.2) Ux.x.+--Ux_ +--U =0
i= Xn- Xn

if and only if u satisfies (1.1). Consequently, if the theorem is proved for 2 0,
U has an analytic extension to an (n + 1)-dimensional ball of radius R about
the origin of the (n + 1)-dimensional space such that 0 is even in x,_ and x,
and such that 2 satisfies (3.2) there, except on x,_ 0 or x 0; a fortiori, is
analytic in x, ..., x, on the intersection of the (n + 1)-dimensional ball and the
hyperplane x, + 0, i.e., on B(R) in the n-dimensional space. Now put fi(x 1, "’", x,)

0(x,.-., x,,0) to obtain the extension fi with the properties listed in the
theorem. Hence, it remains only to give the proof for the case 2 0.

Let R be any positive number with R < R. Thanks to (3.1), one may use
the values of u on B(R) f) Q as boundary values in the Poisson integral formula
(see 2) to obtain a function v which is analytic in B(R1), is a solution of (1.1) in
B(R 1) for x,_ =//= 0, X =] 0, equals u on c3B(R 1) f) Q, is even in x,_ and x, and
satisfies the condition (3.1) for all Xo in B(R 1) I"l c3Q. It remains then only to show
that v u in B+(R1). This is easily accomplished by the maximum principle as
follows.

Since u and v satisfy (3.1) there exists for each positive e a positive 6 such that
for x,_ -<_ 6 or x, =< 6 one has

(3.3) lu(x) v(x)l < eh(x,,_l c)h(x. ;fl),

where the nonnegative function h is defined via

tl-, 7 > 1,
h(t )

log(R1/O, 1.

Then the function defined by

O(x) u(x) v(x) eh(x,_ 00h(x, ;fl)

is a solution of (1.1) for 0 in B B+(R1) I’q (x’x,_l > , x, > fi) which
may be chosen to contain any given x* in B / (R ). On cB one has ff =< 0 because
of (3.3) and the fact that u v on cB(R 1) Q. Hence, by the maximum principle
for (nonsingular) elliptic equations (x*) =< 0, i.e.,

U(X*) I)(X*) <-- 8h(x*n_ 00h(x,* fl)

so that by letting e tend to zero for fixed x* one obtains u(x*) <= v(x*) for arbitrary
x* in B+(R 1). Similarly v _<_ u in B + (R 1), completing the proof.

COROLt,AR 1. Suppose < 1, fl < 1. If u is a solution of(1.1) in B+(R) which
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takes on the boundary value zero on B(R) f-) Q"

lim u(x) O, x e B +(R), xo e B(R) cQ,
x-o

1- -v in B +then there exists a function v such that u x._ ix. (R) where v is analytic
in B(R), is even in x._ and x. and satisfies (1.1) with (, ) replaced by (2 , 2 )
in B(R) for x._ O, x. O.

Proof Owing to the correspondence principle (see 2) the function x,
satisfies all the hypotheses of the function u in Theorem except (a, fl) is replaced

a-1 fl-1 uby (2 e, 2 B), where 2 e > 1, 2 B > 1. Hence x, x, can be continued
analytically into all of B(R) to a function v which satisfies all of the conditions- -v in B +stated and u x,_ x, (R), completing the proof.

Using the correspondence principle one can also easily establish the following
corollary.

CorollArY 2. Suppose < 1, B 1. If u is a solution 4 (1.1) in B+(R)
such that for each xo in B(R) Q

(3.4) lim p(x, B)u(x) O, x e B + (R),
XXO

1- +then there exists a function w such that u x,_ w in B (R), where w is analytic in
B(R), is even in x,_ and x, and satisfies (1.1) with replaced by 2 in B(R) for
x,_ 0, x,0.

Remarks. (i) Note that the hypothesis (3.4) requires that u vanish on B(R) Q
if x,_ 0.

(ii) It follows immediately from Corollary 2 that the u considered can be
continued analytically into the hemi-ball B(R) {x’x,_ > 0} as an even func-
tion of x,.

4. UNeness theorems. Theorem allows one also to establish the following
uniqueness theorems which indicate for (1.1) to what extent the values of a solu-
tion on the singular hyperplanes determine a solution. The results depend critic-
ally on the values of the parameters e, .

TOREM 2. Suppose 1, 1. Let G be a region contained in the quarter-
space Q such that there exists a ball B(R) so that B(R) Q is contained in G. Let
u be a solution of(1.1) in G such that for any xo in B(R) Q

lim p(x,_ e)p(x, B)u(x) 0, x e B +(R).
XXo

Then, if u takes on the boundary value zero on an open subset 0 of B(R) Q"

(4.1) lim u(x) O, x e B +(R), x* e O,
XX

it follows that u 0 in G.
Remark. Observe that Theorem 2 is sharp in the following sense" If the rate

of growth allowed by (4.1) is increased, then the conclusion is Nlse. For, if such
log x, (forwere the case, the functions x,-_x, (for e > 1, > 1), x,

1, B> 1),x,-_logx,(for> 1, B= 1) andlogx, log x,_ (for B 1)
are counterexamples.
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Proof. Again because of the method of descent it is sufficient to consider the
case 2 0.

By means of Theorem 1, u can be continued analytically into all of B(R).
The result now follows directly from the following lemma, by realizing that
solutions of elliptic equations with analytic coefficients are analytic.

LEMMA. Let P be a linear differential operator

P(x D) a,(x)D

(where the usual multi-index notation has been used) with coefficients a bounded
in some region f] contained in E,. Suppose for scalar t, u u(x, t) is a solution of
(4.2) P(x; D)u utt + (k/t)u,

on f x (0, T) and further suppose u is analytic in (x, t) on f x [0, T). If u(x, O)
vanishes on some open subset of f, then for k 4= 0, -1, -2,..., we have u 0
in f x E0, T).

Proof. The proof is an elementary power series argument as given in the
case of GASPT by Hyman [7]. We can write

U(X, t) Ul(X)t
/=1

for x in a neighborhood of xo with small nonnegative and so (4.2) implies
Ul(X) =_ O, Uz(x)= 0 and (1 + 2)(k + + 1)Ul+z(X P(x;D)Ul(x),l 1,2, ..-,
completing the proof.

A proof analogous to that o Theorem 2 establishes the following theorem.
THEOREM 3. Suppose < 1, fl >__ 1. Let G be a region in the quarter-space Q

such that there exists a ball B(R) so that B(R) Q is contained in G. Let u be a
solution of (1.1) such that for any xo in B(R) fl Q

lim p(x,, fl)u(x) O, x e B + (R).
X-- XO

Then, ifutakesontheboundaryvalue zeroonanopensubsetO ofB+(R) {x’x, 0}"
lim u(x) O, x e B+(R), x* e O,

X*

it follows that u =- 0 in G.
Remark. Again the result is sharp as shown by the examples

1- log x, (for fl 1).(for fl > 1) and x,
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AN EXISTENCE-UNIQUENESS THEOREM FOR TWO-POINT
BOUNDARY VALUE PROBLEMS*

JAMES TIPPETTf

Abstract. A sufficient condition is given for the existence of a unique solution to the two-point
boundary value problem

x" f(x, x’, t), x(0)=x(1)=0

under the assumption that the partial derivative f2 is bounded and the partial derivative fl is bounded
from below.

1. Introduction. In 3] Lees shows that iffis a continuous real-valued function
on the set T R [0, 1, the two-point boundary value problem

x" f(x, t),

x(O) x()= o
has a unique solution whenever the partial derivative fl is continuous on T and

inffl > -n2.
T

The purpose of this paper is to extend this result to the more general problem

t)x" f(x,x,
(1)

x(0) x(1)-- 0,

where f, fl, and f2 are continuous on the set S R R [0, 1]. In what follows,
ifh is a real-valued function which is bounded on a set E,we put hi[ w sup f()[.
The principal result is the following.

THEOREM. Let there be a constant rl for which

fl(X, y,t) >= -rl > -n2

on S. Further, suppose that f2 is bounded on S and satisfies
n2 r

Then the boundary value problem (1) has a unique solution.
We note that this theorem gives information on the existence of unique solu-

tions for problems of the form

x" f(x, x’, t),

x(a)= A, x(b)= B,

since such a problem may be reduced to (1) by appropriate transformation of the
variables.

* Received by the editors May 25, 1972, and in revised form October 14, 1972.

f Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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2. Preliminary lemmas. The proof of the Theorem will be prefaced by two
lemmas. We denote 0, 1] by I and f(0, 0, t) by j(t).

LEMMA 1. If X is a solution of the boundary value problem (1) and f satisfies the
hypothesis of the Theorem, then there is a constant K such that

(x’) at <= 2K fo II,.

Also

Ilxll, KIIfolli,

Proof. We first show that a solution x of (1) satisfies a differential equation in
which fl and f2 appear explicitly. Define a function G(, t) by

G({, t) f({x, x’, t).

Differentiating G with respect to { and integrating the result over I, it is found that

f(x, X’, t) GI(, t) d + fo(t)

x fl(x, x’, t)d --{- X’ f2(X, {x’, t) d{ +
0 0

and we see that the equation in (1) is equivalent to

(2) x" xp(x, x’, t) + x’q(x, x’, t) + fo(t),

where p and q are defined by the integrals above. Multiplying (2) by x and inte-
grating the left-hand side by parts we find that

(X’)2 dt xZp dt xx’q dt xfo dr.
0

Noting the definitions of p and q, we have
,,,I

fl j.l--j x2p dt < rl X2 dt and
0 0 0

xx q dt f2 Ixllx’ldt.

Hence, by the Cauchy-Schwarz inequality,

(X’)2 dt <= rl x2 dt + fells x2 dt (X’)2 dt
o 0

+ f2o dt x2 dt

All occurrences of (j’ x2 dt) 1/2 may be removed from this expression by applying
the well-known inequality [2, p. 182]

rc x2 dt <__ (x’)2 dt (x(O) 0).
o
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The result is the inequality

(rez q rc f2 s) (x’)2 dt <= rc (x’)2 dt f) dt
o o

Since (rt2 r/- llf2lls) 0 by hypothesis, let K be rc/(2(rt2 r/ rcllf2lls)) to
obtain

(x’)2 dt <= 2K f dt <= 2K fo I"
o

The second conclusion follows from

21 x < (x’)2 dt

In the second lemma, we establish some inequalities concerning the behavior of
the derivative of a solution to problem (1). Let the set [- K 2% I1,, K 2% 01

[0, 1] be denoted by H. Since this set is compact, IIJ)[In exists.
LEPTA 2. If X is a solution of problem (1) and f satisfies the hypothesis of the

Theorem, then there is a constant L such that Jbr any l, t2 in l,

]x’(tl)- x’(t2)[ [tl t211/2LIIfollI.
Moreover,

Ilx’]]i _-< 2(K +
where K is the constant from Lemma 1.

Proof. Here we employ another equivalent form of the equation in (1).
Successive applications of the fundamental theorem of calculus show that

f(x, x’, t) x’ f2(x, {x’, t) d{ + x f({x, O, t) d{ + fo(t).
o o

Hence, the equation in (1) is equivalent to

x" x’h(x, x’, t) + xk(x, t) + fo(t),

where h and k are defined by the integrals above. Noting that ][hlls IIf2lls and
]k(x, t)] =< ]]f I1., we have by the Cauchy-Schwarz inequality

tt2 f )1/2Ix.’(tx)- x’(t2)l <- [x"(t)[ dt <= Ilf2iisltx t21 /2 (x’)2 dt

+ .1’1 11[tl t211/2 x 2 dt

4-Ita t211/2 fgdt

Now, recalling the two conclusions of Lemma 1, we see that

Ix’(tl)- x’(t2)l IIf2llsltl t21x/Z2Kllfolli
+ ]]Al]nltl t2]l/eKllfol]I + It1
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from which the first conclusion of the lemma,

Ix’(tl)- x’(t2)l-<_ Itx t21a/2Lllfol[,,
is obtained. From this it is immediate that

(3) Ix’(t)l _-< Lllf01lx + Ix’(0)l

and

Ix’(t)l >_-Ix’(0)l- LIIfoll,.

If the right-hand side of this last inequality is negative then Ix’(0)l < LIIfo}lt;
if it is positive, it follows that

1/2

(x’)2 dt >-_ Ix’(O)l L[fo I,.
o

Recalling Lemma 1, we see that in either case

Ix’(0)l < (2K / L)llfoll,.

This, together with (3), supplies the second conclusion of the lemma.

3. Proofofthe Theorem. First we show that wheneverfsatisfies the hypothesis
of the theorem, problem (1) has at most one solution. Suppose Xl and x2 are solu-
tions of (1) for such a function, and let y X x2. The procedure used in the
proof of Lemma 1 may be applied to show that y satisfies the equation

y" F(y, Y’I, t) P(t)y + Q(t)y’,

where

and

P(t) fl([x, x2] + x2, [x’ x’2] + x’2, t) d,

Q(t) f2(Ex1 x2] --[- x2, [Xtl xl --[- x, t)d.

Clearly, P(t) > -r/and IQ(t)l _-< IIf2lls. Thus F > -r/and

0 < 11 fll =< [IQII, IIF I1.
Since y(0) y(1) 0, we conclude from Lemma 1 that

yll, _-< K F(O, O, t)Ili O,

and consequently (1) has at most one solution. For the remainder of the proof, let
C1(I) denote the Banach space of real-valued continuously differentiable functions
on I, normed by

IIxII IIxII, + IIx’ll.

To show existence of solutions, we define a map T from C1(I) to C1(I) in such a
way that any fixed point of T solves (1). If x C1(I), let T(x) be the solution of
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problem (1) for the linear equation

(4) y"= y’h(x, x’, t) + yk(x, t) + fo(t),

where h and k are the functions defined in the proof of Lemma 2. T is well-defined
since a solution to (4) may be constructed exactly as in [3] and the preceding unique-
ness result applies. Let f be the set

{X e C1(I)" Ilxll <- (3K + 2L)llf011,}.
Lemma 1 and Lemma 2 applied to (4) show that T maps f into itself. Next we show
that T is continuous on f. Let Yl T(xt) and Y2 T(xz). Then y y, Y2
satisfies the equation

Y" y’h(Xl x t) + yk(Xl t) + y’2[h(Xl Xl t) h(x2, x2, t)]

+ y2[k(x, t) k(x, t).

Since 3:(0) y(1) 0, we may apply the lemmas to conclude that

y __< (3K / 2Ll[ Y211 h(Xl,X’l,t)-h(x2,x2,t)[

4- Y2 k(x t) k(x2, t) i]

=< 2(K / L)(aK + 2L)lifo h(xx, xi, t) h(x., x;, t),

+ K(aK + 2L) Ifolllllk(x, t) k(x=, t) i.

Because the set

[-(3K + 2L).]Olll,(3g 4- 2L).[) i] x [-(3K + 2L)II./)

(3K + 2Z)llfol i3 U0, 13
is compact, h and k are uniformly continuous there, and it follows from the in-
equality above that T is in fact uniformly continuous on f2. Finally we observe that
the closure of T(f) is compact. Indeed, given a sequence {xn} in T(f), Lemma 2
shows that the sequence of derivatives {x’,} is uniformly bounded and equicon-
tinuous, so the Ascoli theorem applies to show that the original sequence has a
subsequence which converges in C1(1). The Schauder fixed-point theorem [1,
p. 415] implies that there is a function x in f2 such that T(x) x. As was noted
in the proof of Lemma 2, any solution of

x" x’h(x, x’, t) + xh(x, t) + fo(t)

is also a solution of the equation in (1), so the proof is complete.

Acknowledgment. The author wishes to record here his gratitude to Professor
Wayne T. Ford for many useful discussions in connection with this work.

REFERENCES

[1] JAMES DUGUNJI, Topology, Allyn and Bacon, Boston, 1966.
[2] G. H. HARDY, J. E. LITTLEWOOD AND G. PdLYA, Inequalities, Cambridge University Press, London,

1952.
[3] MILTON LEES, Discrete methods for nonlinear two-point boundary value problems, Numerical

Solutions of Partial Differential Equations, J. H. Bramble, ed., Academic Press, New York,
1966, pp. 59-72.



SIAM J. MATH. ANAL.
Vol. 5, No. 2, April 1974

ASYMPTOTIC EVALUATION OF INTEGRALS INVOLVING A
FRACTIONAL DERIVATIVE*

A. ERDILYI"

Abstract. For the integral

e-t,-ia-xf(t)dt

an asymptotic expansion is obtained as z oc. Here 2 is fixed, 0 < 2 < 1, 14-1 is the operator of
fractional integration, and the expansion holds uniformly for a >__ 0. A similar expansion is obtained
for the integral from 0 to a and is applied to the solution of an integral equation.

1o In this paper, an asymptotic expansion of the integral

(1.1) F(z, a) e--Z(t-a)tz- g(t) dt

will be obtained as z --, oe, valid uniformly for a >= 0.
For fixed a, the asymptotic expansion of the integral is well known. If a > 0,

the expansion is

htk)(a)z-k-1,

where h(t) - ig(t) if a 0 the expansion is

r(k + )
k!

g()(O)z - .
Except when 2 is a positive integer, the expansion based on a direct application of
Watson’s lemma clearly cannot hold uniformly in a for a > 0.

The lack of uniformity is due to the presence and possible coalescence in
(1.1) of two critical points" the end point of integration, a, and the singularity
of the integrand, 0. There are known methods for obtaining uniform asymp-
totic expansions of integrals involving two critical points. The two best known
methods are based respectively on two-point expansions of the integrand, used in
the case of two saddle points by Chester, Friedman and Ursell [2], and on a skill-
fully arranged procedure of integration by parts, used in the case of a stationary
point and an algebraic singularity by Bleistein [1.

Let us indicate the first step of an integration by parts procedure. Writing

F(z, a) e-Z"-")t- lg(0) dt + e-Z(’-")t- l[g(t) g(0)J dr,

Received by the editors November 9, 1972.
"t" Mathematical Institute, University of Edinburgh, Edinburgh EH1 1HZ, Scotland.

A different procedure is outlined in a letter from N. Bleistein to me. A.E.
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and integrating by parts in the second integral, we obtain, with the notation

d
dt{t- l[g(t) g(0)]} - lgx(t),

f(z, a) [g(0) + z- g 1(0) e -z(t- a)f) all2

+ a- lg(a g(0)]z -1

+ z- e-(-t- [g(t) g(0)l dr.

This can be shown to be the beginning of a uniform asymptotic expansion,
and it is not difficult to repeat the process, but it does not appear to be easy to
write down explicit expressions for the successive terms, to estimate tlae remainder
term, or determine conditions of validity for the resulting expansion.

If 2 n + happens to be a positive integer, this difficulty can be overcome
by representing tg(t) h(t) as the n times repeated integral of h((t), and then using
straightforward integrations by parts. It will be shown in this paper that in case of a
general 2, a representation of x- g(t) as an integral of fractional order, followed by
fairly straightforward integration by parts leads to the desired expansion. Explicit
expressions for the generic term of this expansion, and an estimate of the remainder
term will be obtained.

For the sake of simplicity it will be assumed that 2, a, z are real. The extension
to complex 2 and z is almost automatic, and the extension to complex a and analytic
functions f does not seem to present any difficulties. Also for the sake of simplicity,
f will be assumed to be sufficiently often differentiable. It is well known that in case
a is restricted to an interval [0, A], it is sufficient for fto be differentiable in [0, A x[
for some A1 > A.

It seems likely that fractional integration can be used for the asymptotic
evaluation of other types of integrals but this has not so far been tested.

2. For f CI0, b and > 0, the operator I of integration of order is
defined by

For c > 0, fl > 0,

(2.2)

Uf(t) (t s) f(s) ds.

UItf U+f
can be proved by interchanging the order of integrations in the repeated integral
I(If), and using Euler’s integral for the beta function.

If f e Cl[a, b[ and e > 0,

d p+ *j’(t) Pf(t)
f(O) + P+ *f’(t)(2.3) t F( + )

since

f(t) f(O) + If’(t)
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and

Pl(t)
U(z + 1)"

Equation (2.3) can be used to extend the definition of Pf to > -1 if
f C10, b and, by repeated application, to > n if f C"0, hi. The addition
theorem (2.2) remains valid for this extension. In particular,

(2.4) If(t) f(O) + I xf’(t) f(t).

We can now represent - lg(t) as an integral of order 1.
LEMMA 1. Let 0 < 2 1, let g C[0, b[, and let k O, 1,..., n. Then f,

given by

f(t)

( )
(t s)-s- g(s)as if o < < ,

has the following properties"
(i) f C’[0, b[ and, if O < 2 < 1, then

t--k
f((t)

F(1 --2) (t- s)-Xs+X-g(s)ds;

(ii) f((0)= [F( + 2)/]g((0)and

if((t) N
r(k + 2)
kmax {Ig((s)l "0 s t};

(iii)

(iv)

F(1- k, l A ;1;1- u)g()(ut) du

t;t- lg(Q Ia- f(t).

Proof. For 2 1, the lemma is trivially true. Let 0 < 2 < 1. Then

F(1 2)f(t) (1 u)-auz- lg(ut) dt

clearly shows that f e C"[O, b[, and (i) follows by differentiation under the integral
sign followed by a change of variable, s ut. (ii) follows from (i).

To prove (iii), interchange the order of integrations in

IZf((t) (t r)z-
r

F(1 2)
(r S)- 2sk + a- lg(kI(s ds dr

to obtain

fl sk+)-I r-(t-- r)a-l(r- s)- adr ds.
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With r s + (t- s)x,

F(2)F(1 2)
(r- s)-X(t- r)x-r- dr

;/ [-’
_( x)x- -(1 x) dx.

By Euler’s integral representation of the hypergeometric function [4, (2.1.10)]
this is

t-F(2, k ;1;1 s/t),

and by Euler’s transformation [4, (2.1.23)] this can also be written as

sl--xtx- 1F(1 k, 2; 1; s/t).

Thus,

IAf(k)(t A- F(1 k, A;1;1 s/t)g(k)(s)ds,

and this proves (iii).
Lastly, we have from (2.3),

f(O) Ut_I;I,- lf(/) -4- IXf’(t),

and since

f(o) g(o)r()

from (ii), and F(O, 2; 1; s/t) in (iii) with k 1,

14- if(t) g(0)t2-1 -F ’-1 g’(S) ds - lg(t),

thus proving (iv).

3. For the sake of simplicity we assume in (1.1) that a, 2, z are real, and
g C"[0, [. We further assume that 2 is fixed, and without loss of generality take
0 < 2 < (2 is covered by existing results); and also assume that a >__ 0, and
z . It is reasonable to take g and its derivatives exponentially bounded, and
without further loss of generality we may assume that g and its derivatives are
bounded (by a constant). In this case Lemma shows that t-lg(t) can be
represented in the form I-lf(t) with j’eC’[O, [ and f and its derivatives
bounded.

Thus, in place of(1.1) we consider

(3.1) f(z, a) e-(t-")I;- if(t) dt

with 2 fixed and 0 < 2 < 1, a >= 0, z --, + , f C"[a, [ and f and its derivatives
bounded.
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The simplest integral of the form (3.1), corresponding to f(t) 1, is

fo zt- a)t;-Q
F(2)

e dt.

This can be expressed in terms of the incomplete gamma function 4, (9.1.2)] in
the form

e, (o e"F(2, az)
(3.2) Q

F(2)z3,
e-"uX-du

F(2)z

Q is used as a comparison integral as it were.
In (3.1) we set f(t) f(O) + If’(t)and note that I- I Ix to obtain

F(z, a) f(O)Q + e-"-If’(t) dr.

Here we integrate by parts noting that, by (2.3), (d/dt)lXf’(t) Ix. f’(t). Since f’
is bounded and 2 > 0, we see from (2.1) that IlXf’(t)l <= ctx, so that, for z > 0, the
integrated parts vanish at infinity, and we have

F(z, a) f(O)Q + z-If’(a) + z- e-"-"I- f’(t) dr.

The integral on the right is of the same form as (3.1) and with f’(0 f’(0) + If"()
we obtain

F(z, a)= z-IXf’(a) + If(0) + f’(0)z-Q

+ z- e-"-")If"(t) dt.

This process can be repeated and finally leads to

n-1 n-1

(3.3) F(z, a)= Z z-If)(a) + Z z-f)(O)Q + R,.
k=l k=O

The remainder is given by

(3.4) R z e-" a)I’f")(t) dt.

We shall show that (3.3) is a finite "general" asymptotic expansion in the sense of
[3].

Since f and its derivatives are bounded, there exist c, dependent on f and 2
but independent of a, such that

(3.5) IlXf(t)l <_ ct, k O, 1,..., n, > O.

Then

(3.6)
IR.I -< CnZ1 e-(t-")t dt

c,z-"- e"ZF(2 + 1, az).
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Now, clearly {z -"-x e"ZF(2 + 1, az)’n 0, 1,2, ...} is an asymptotic sequence
as z--, oc, and (3.6) shows that (3.3) is a finite asymptotic expansion holding
uniformly in a for a >= 0 with respect to this asymptotic sequence (which itself
depends on a). Division ofboth sides of(3.3) by e"ZF(2 + 1, az) results in an asymp-
totic expansion holding uniformly in a with respect to the asymptotic sequence
{z-"- ’n 0, 1, 2, ...} which is independent of a.

4. Returning to (1.1) we see that if 2 is fixed, 0 <
g e C"[0, oc[, and g and its derivatives are bounded, then (3.3) represents a uniform
asymptotic expansion of (1.1). The coefficients in this expansion can be expressed
in terms of g by means of (ii) and (iii) of Lemma 1. At first it would seem that the
coefficients in the first sum in (3.3) involve all values of g on the interval [0, a].
This is not so. For k >= 1, the hypergeometric function appearing in (iii) ofLemma 1
is in fact a polynomial of degree k- 1, and the integral can be evaluated by
successive integrations by parts in terms of the values of g and its derivatives at

0 and a, thus confirming the existence oftwo critical points for this integral.
The actual expression is

if,k,(a
a-" [ (k 1),F(m- 2)gk

m=t(k;-- m)’
(--1)m-1

(m 1)!F(1 2)

F(k+2-m)g(k_,0(0)] k= 1 2
m + i)

/,/.

This formula, together with k(k)(0) F(k + 2)g()(0), gives the explicit form of
the expansion of (1.1) which is not easily obtained by a direct integration by parts of
(1.1).

5. Superficially it might seem that the first sum in (3.3) represents the con-
tribution of the critical point a and corresponds to the "outer expansion" of
singular perturbations, while the second sum represents the contribution of the
critical point 0, is significant only if a is small, and represents a "boundary
layer" effect. This is not so. The explicit form in terms of g given in the last section
shows that the behavior of g at 0 enters also in the first sum. Moreover, it will be
seen from certain estimates to be developed presently that the behavior of F(z, a) as
a function of a is somewhat different from that encountered in singular perturba-
tions. The same estimates will also enable us to replace the asymptotic sequence
{z-"- eaZF(2 + 1, az)} by an asymptotic sequence of elementary functions and
to show that the estimate (3.6) is an effective estimate in the sense that in general the
first neglected term of the expansion will be of the order of the right-hand side of
(3.6).

LEMMA 2. There are positive numbers a1,.", a4 independent of x but de-
pendent on such that

al(1 + x -,)- eXF(e, x) __< a2(1 -+- x -")- 1, 0<0= 1, x0,

a3(1 + x- 1) _<_ eXF(, x) __< a4(1 + x 0>= 1, x>=0.

and
Proof. It is known [4, 9.2] that F(, 0) F() if e > 0, F(e, x) > 0 for x > 0,

x eXF(, x) -, as x --+ oo.
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Thus,

(1 +x1-’)exF(,x) if0<_<_ 1,

(1 + x-l)-1 e:T(z,x) if >= 1

approach positive limits as x ---, 0 + or x --, + oo, are positive and continuous on
]0, oo[ and are thus bounded and bounded away from zero. This proves the lemma.

This lemma will enable us to estimate the terms and the remainder in the
expansion (3.3). The constants implied by the O symbols are independent of a
but may depend on 2 as well as f.

For the terms of the first sum in (3.3) we have

A 2-kIf(k)(a)-- O(z-ka.)
from (3.5), and for those of the second sum,

B z- kf(k)(O)Q O(Z- k- ,[ 1 + (az) 4] 1)

from (3.2) and Lemma 2. If ftk)(o) =/= 0 we also have

B- O(z+X[1 + (az)a-x]).
Thus,

A/B O((az) + az) iff)(0) -0

showing that A is small in comparison with B if az is small, i.e., a o(z-),
while A predominates over B if az is large. However, in order for the first sum in
(3.3) to be small in comparison with the second sum (to any number of terms) we
must have

Ao/Bk O(zk[(az) + az) if f)(0) -0,

small for all k, and this demands a O(z -m) for all m. Likewise, for the first sum
to predominate over the second, we must have

A,/B,, O(z"-’[(az)’ + az])

small for all k’ for which f’)(0) 0-and for all k, and this demands that az-" be
large for all m. It then seems that while there are comparatively narrow regions of
a in which one or the other of the two sums in (3.3) predominates, yet over a much
wider range both sums contribute significantly, although the number of terms
which must be retained in the two sums in order to achieve a given accuracy may
differ.

For the remainder term we have, from (3.6) and Lemma 2,

(5.1) R, O(z-"-x[1 + (az)X]),

and this appears to be a best possible result in the sense that it cannot be improved
for all bounded f with n continuous and bounded derivatives.

The first "neglected" term in the expansion (3.3) is A,. + B, and this is bounded
by a multiple of

z-"a" + z-"-x[1 + (az)l-x] -1 z-"-[1 + (az) + az][1 + (az)-x] -1
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so that in the "general case" when the estimate (5.1) is realistic in the sense that

z"+’[1 + (az)’-]-lRn
is not only bounded but also bounded away from zero, we have

A. + B
=0

+(az)’+az
[1 + (az)Z][1 + (az)1-]

Since (1 + xX) 1(1 + xl-’) 1(1 + x;t -+- x) is bounded and bounded away from
zero for x __> 0, we have that, in the general case, A, + B, and R, are precisely of
the same order, uniformly in a, as z -, .

Let us now envisage a dependent on z. Under all circumstances, the two sums
in (3.3) represent F(z, a) to the accuracy stated in (5.1). Under certain circumstances
it may happen that some terms of one or the other of the sums are themselves of the
order stated in (5.1) and can be omitted, that is, incorporated in the remainder
term without changing the estimate (5.1).

First consider the first sum, Ak.
zn+;t[1 + (az)Z]- lAk O(zn-k(az)’[1 -+-(az);t] -1)

shows that if (az)-1 O(1), so that (az)X[1 + (az)Zl is bounded and bounded
away from zero, all terms of the sum must be taken since z"-k is unbounded if
k < n 1. On the other hand, if (az) O(z-0) with p > 0, only those terms with
k < n p of A need be considered since

z"- (az)Z[ 1 + (az)] -1 O(Z k- p)

is bounded if k _>_ n p. In particular, the first sum may be omitted altogether if
(az)Z O(zl-n).

As to the second sum, B, here

z"+Z[1 + (az)Z]-lB, O(zn-k[l + (az)" + (az)1- -k- az]-l),
and considerations similar to those carried out for Ak show that all n terms of

B must be taken if az O(1), while only those terms with k < n p need be
retained if (az)-i O(z -p) with p >__ 0. In particular, the second sum may be
omitted altogether if (az)-1 O(z-").

In 3 it was shown that

f(O)Q + [If)(a) + f’)(O)Q]z -’
k=l

is an asymptotic expansion of F(z, a) with respect to the scale

{z -"- e"ZF(2 + 1, az)}.
It follows from Lemma 2 or (5.1) that this scale may be replaced by the scale

{z-"- 411 + (az)Z]}
of elementary functions. The asymptotic expansion is valid uniformly in a for
a => 0 in this simplified scale.

The identity (3.3), with R, given by (3.4), holds with z > b > 0 for all f in
C"[O, oo[ (with F defined by (1.1) for all g in cn[o, OO[) for which e-btf(k)(t) [e-btg(k)(t)
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in the form (1.1)], k 0, 1,..., n, > 0 is bounded. The analysis of Ak and Bk
depends on (3.5) and will not hold if b > 0, nor will (3.6). If one is interested only in
the validity of (3.3) as a general asymptotic expansion, then it is not necessary
to make further assumptions on f, f’, ..., f"-1). Further conditions imposed
on f") will determine the asymptotic scale. For instance, if f") is bounded, then
(3.6) will hold and all statements on asymptotic scales made in 3 and the present
section continue to hold.

If it is assumed that ttsf")(t),/3 < 1, is bounded, then (3.5) is replaced by

(5.2) IIf")(t)[ <__ c.t-,
and (3.6), by

(5,3) IR.I =< c,zts-"- eaZF(2 -/ + 1, az).

This gives the asymptotic scale in the present case. In particular,

e"ZF(1, az) 1,

and if tl")(t) is bounded, then (5.3) simplifies to [R,I =< c,z-", and (3.3) holds
uniformly with respect to the asymptotic scale {z-"}.

6. The integral

(6.1) Fl(z, a) e-Z’I- if(t)dt

can be treated similarly. Alternatively, the expansion ofF can be derived from that
of F since

F1(z, a) F(z, O) e-aZF(z, a).

In the expansion of F(z, 0) we have IZf)(O) 0. If we set

fx3 ztt)tP=F(2).Io e dt e- Q

or [4, (9.1.1)]

ff ztt,-
F(2)

e dt

(6.2) P
7(2, az)
F(2)z

and use (3.3) both for F(z, 0) and F(z, a), then the asymptotic expansion of F1
emerges in the form

(6.3)

where

(6.4)

n-1 n-1

F (z, a) Z z- e-"ZlXf()(a) + Z z-f(k)(O)P + S,,
k=l k=0

Sn Z1-n e-WZf(")(t) dt.
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For bounded j’(") the remainder S, can be estimated by means of (3.5) in the
form

(6.5)

IS,I CnZ1 e-Zttx dt

c,z-"-x?(2 + 1, az).

This estimate shows that (6.3) is a generalized asymptotic expansion with respect
to the asymptotic sequence

{z-"-x?(2 + 1, az)’n 0, 1,2, ...}.

A detailed analysis of the order of the terms in the expansion (6.3) may be
based on the observation that for fixed e > 0,

7(, x)(1 + x-)

is bounded and bounded away from zero on [0, c[. The work is similar to that
carried out in 5 but the results are somewhat different. It turns out that for small
az the contributions of the two sums in (6.3) are of the same order of magnitude,
while the first sum is exponentially small in comparison with the second one and
may be neglected if az is large.

7. The results obtained in the preceding section will now be applied to the
solution of an integral equation investigated by Olmstead and Handelsman [5].
The integral equation in question may be written as

(7.1) u(t) + z1/ZI1/Zu(t)= zl/ZI/Zf(t)

(see [5, eq. (1.7) with n 1]), where z (=e-2 of [5]) is a positive parameter, and f
is a given function which we assume to be in C"[0, oc[. We shall first find the
explicit solution of (7.1).

Using (2.2) we have

I/2u + z/2Iu zl/2If,

and from this and (7.1),

U- zIlu Z1/211/2f zIf.
This relation shows that u(0)= 0 and also that every continuous solution u
of (7.1) is continuously differentiable and satisfies the differential equation

u’ zu z/2I /2f zf.

Hence the explicit solution of (7.1) in the form

(7.2) u(t) eZ(’-S)[zl/2I /2f(s) zf(s)] ds.
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u is the difference of two integrals. For the first of these we have from (6.3) with

et-sI 1/2f(s) ds z-’I’/2fOO(t)
k=l

n-1

+ y z-f(o-’/ e"-s / s
k=O

+ z e"-sI/[((s) ds,

while for the second one, straightforward integrations by parts yield
n-1

e"-(s) ds z-- [f(t) f(O) e’
k=O

+ z e"-s((s) ds.

We now substitute this in (7.2), note that

g- 1/2 (-s)S- 1/2 ds Z- 1/2 t g- 1/2 (t-s)S- 1/2 ds,

and obtain

u(O (tI f(Oz/ / e--s / s z-k=O
(7.

k=l

with

(7.4) R, z eZ’-S)[za/Zla/Zf")(s) f")(s)] ds.

This is in effect (3.14) of[5] except that Olmstead and Handelsman carry the second
sum to n- or n terms according as their M is even (and n- =M/2

[(M + 1)/2]) or odd (and n 1 [M/Z] (M + 1)/2 1).
We shall now show that an alternative expression of the remainder term,

valid under the additional assumption that f") is exponentially bounded, is

(7.5) R, z1-" e-Z(s-t)[f(")(s)- zl/2I/2f(")(s)] ds.

This will follow from what is in effect a simple case of fractional integration by
parts.

LFMMA 3. Assume that > O, h C[0, oe[, e-bth(t) is bounded on [0, oe[, and
z > b. Then

e-Ph(s) ds z e-h(s) ds.
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Proof. The left-hand side is

e
IF(

Here it is permissible to interchange the order of integrations and as

fu _ZS(s
F()

e uy- ds= z e

one obtains

z e-Z"h(u) du,

thus proving Lemma 3.
It follows from Lemma 3 that

o’
e-Z[zl/ZI1/Z.f(")(s) f(")(s)] ds O,

and so (7.4) and (7.5) are equivalent. The latter expression of the remainder leads to
better estimates. If f(") is bounded, then much as in 3 one can prove

R, O(z-"[1 + (zt)I/2])
uniformly for >= 0, and if tl/zf(")(t) is bounded, then f"), being continuous at 0,
is bounded and (5.2) shows that I/2f") is also bounded. This being so,

e-2(s-’f(")(s) ds 0 e -(s-’) ds O(z- 1),

e-(s-’)I1/Zf(")(s) ds =0 e -(*-t) ds O(z-1),

and it follows from (7.5) that

(7.6) R.-- O(Z 1/2-n)
uniformly for => 0 in this case.

Olmstead and Handelsman analyze the asymptotic behavior for z of
a nonlinear integral equation which includes (7.1) as a special case. Even in the
linear case 5, 3] they derive their results, under conditions on f which differ
somewhat from ours, directly from the integral equation rather than using the
explicit solution (which is available for (7.1) but is not available for the nonlinear
equation). Their conclusion agrees with (7.6) if M of [5] is even; if M is odd, then
they take n rather than n 1 terms in the second sum in (7.3) and thereby improve
(7.6) to R, O(z-").
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ON TWO-POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR
SECOND ORDER SYSTEMS*

PHILIP HARTMAN"

Abstract. This note deals with a priori bounds for solutions (and their derivatives) and applica-
tions to existence theorems for two-point boundary value problems for systems of nonlinear, second
order, ordinary differential equations. The methods are based on those of the author and McLeod

employed in the particular case of the swirling flow problem in fluid mechanics. It depends on the
construction of general "Lyapunov-type" functions and comparison theorems for (scalar) second
order equations.

1. Introduction. In [2 (cf. [3, pp. 428-434]), we considered the boundary
value problem

(1.1) x"=f(t,x,x’) and x(a)= xa, x(b)= Xb

for a system of equations, where x (xl, xd) d. Existence was proved by
first obtaining a priori bounds for Ix(t)l, Ix’(t)l of a solution of (1.1) under assump-
tions involving inequalities for x .land Ifl. For papers giving related results and
analogues of [2, see, for example, [1], [5], [6] and [7]. In Lemmas 2.1-2.2 of [4, we
combined methods of I2] with an argument of McLeod [83 to prove an existence
theorem for a particular second order functional-differential equation arising in
fluid mechanics. In view ofthe importance ofthe problem (1.1), it seems worthwhile
to extract general results from the methods of [43.

2. Two lemmas. An a priori bound for Ix(t)l will be obtained from the follow-
ing comparison theorem.

LEMMA 2.1. Assume that (a) H(t,u,v)eC([a,b] x {u > 0} x N1) has the
property that there exist a constant co > 0 and finctions q(to, ao, zo, Vo) > 0 and
Ho(to, ao, Zo, Vo) >= O, where a < to < b, Zo > Cao > 0 and -o < Vo < oc, such
that

(2.1)
H(t, T, ZU2) H(t,a, 0"/)1) -->-- HolVl /)2

q7 o"

when It tol < tt, la aol < tt, [z Zol < tt, Iv Vol < r/, I/) 2 V0[ < t/ (cf. the
remark below);

(b) there exists w(t) such that 0 < w(t) C[a, b] (q C2(a, b) and

(2.2) w" <= H(t, w, w’) for a < < b.

Let u(t) Ca, b] C2(a, b),
u(a) u(b)

(2.3) Co max
w(a)’ w(b)’

cO > O,

(2.4) u" > H(t, u, u’) whenever u(t) > CoW(t).

Then u(t) <= CoW(t)for a <= <= b.
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Remark. The condition concerning the existence of r/, Ho and (2.1) holds if

(2.5)
H(t, z, zv) H(t, 0, or)

>0 fora<t<b, z>co, -oe <v< o.

It holds, for example, with co if either H(t, z, zv)/z is a strictly increasing func-
tion of > 0 for fixed (t, v) (a, b) x [R or if H(t, z, zv)/z is a nondecreasing func-
tion of z > 0 and H(t, u, v) is locally uniformly Lipschitz continuous in v. The
function H(t,u,v)= -[1 + (2u) 1/2 + Iv13 occurring in [71 satisfies these condi-
tions. The use of such functions H in [1], [71 is quite different from that below.

A simpler result below could be used in place of Lemma 2.1.
PROPOSITION 2.1. Assume that (a) H(t,u, v)6 C(a,b] x {u => 0} x N1) has

the property that there exist functions rl(to oo to, Vo) > 0 and Ho(to, Oo, Z.o, Vo) >= O,
where a < to < b, ro > Oo and - < Vo < oo, such that

(2.1") H(t, T, U2) H(t, o, v) >= -Holy2 UI[

when It tol < r/, Io Ool < q, Ir 7ol < q, Iv1 Vol < r/and Iv2 Vol
(b) there exists w(t), 0 <= w(t) C[a, b] f"l C2(a, b), satisfying (2.2).
Let u(t) e C[a, bl C2(a, b) satisfy

(2.3*) u(a) <= w(a) and u(b) <= w(b),

(2.4*) u" > H(t, u, u’) whenever u(t) > w(t).

Then u(t) <= w(t) for a <= <= b.
The proof is similar to that of Lemma 2.1 with r(t) u(O w(t), and will be

omitted.

Proof of Lemma 2.1. Let r(t) u(t)/w(t). If the conclusion r(t) <= Co on a, b]
does not hold, then r(t) has a maximum r(to) > Co >= co at some point to, a < to < b.
It can be supposed that r(t) < r(to) on Ia, to). In a vicinity of to, (2.2), (2.4) and
r’ (wu’ w’u)/w2 give

wZr + 2ww’r’ (wu’ w’u)’ >= uwH(t, u, u’)/u H(t, w, w’)/w].

If v2 u’/u and v w’/w, then r’(to) 0 implies Vz(t0) V(to) SO that

(2.6) wZr + 2ww’r’ > 7(t)r’

near o by (2.1), where 7(t) w2 Ho sgn (u’/u w’/w) and Ho Ho(to W(to),
U(to), w’(to)/W(to), u’(to)/U(to)). The function 7(0 is bounded and measurable.
Hence, the inequality (2.6) and the fact that r(t) has a maximum at to implies
that r(t) is a constant in a vicinity of to. But this contradicts r(t) < r(to) on
a, to) and completes the proof.

After obtaining an a priori bound for [x(t)l, we can obtain bounds for Ix’(t)l,
for example, by the methods of I2] or of [13, I7]. The former gives the following
which involves a Nagumo type of condition

(2.7) Ixl _<- R, Ix"l =< 4(Ix’l) and 0 < b(s)e C[0, o), sds/c o;

cf. [3, Exercise 5.1, p. 431.
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LEMMA 2.2. Let p > O, R > O, K1 > 0 be constants, b a p, and p(t)
C2[a,b] satisfy Ip(t)[ KI. Then there exists a number M MIp, R,K, c]

with the property that x(t) C2a, b], (2.7) and

(2.8) Ixl <-_ R and Ix"l
imply [x’(t)] <= M for a <= <= b.

In applications (cf. 21 or [3, pp. 434-435] or [4]), it is useful for M to be inde-
pendent of b a, hence the introduction of the parameter p.

When d dim x 1, condition (2.8) can be omitted Nagumo, cf. [3, p. 428].
As observed in I1 and I7], one obtains an easy, but still useful, result if one assumes
a bound for ]p’(t)[ rather than for ]p(t)]. We state this assertion which does not in-
volve the Nagumo condition (2.7) (and we replace p by p’) as follows.

PROPOSITION 2.2. Let R > O, Ko > 0 be constants and p(t) Cla, b] satisfy
]p(t) <= Ko. Then the number M 2K0 + 2R/(b a) has the property that x(t)
C2[a, b] and

(2.9) Ixl <= R and Ix’l p’

imply Ix’(t)] M for a <= <= b.

3. Existence theorems. We shall use a Lyapunov type function E(t, x), more
general than Ixl 2, as in I1], [41 and I71.

THEOREM 3.1. Assume that (A) f(t, x, x’) C([a, b] 2a);
(B) H(t, u, v) satisfies conditions (a), (b) of Lemma 2.1
(C) E(t, x) C2([a, b] [R’) satisfies

(3.1) E(t, x) o as Ix[o uniformly in e [a, bl,

E(a, xa) E(b, Xb) O)(3.2) CO =max w(a) w(b)
,c >0,

(3.3) E >= H(t, E, E’) for 0 <__ <= 1, whenever E(t, x) > CoW(t),

where E’ E’(t, x, x’) and Eg E(t, x, x’, ) are given by E’= E + E x’ and

E =Ett + 2Etx. x’ + Exxx’. x’ + 6E,. f;

(D) finally, f satisfies a Nagumo condition

If(t, x, x’)[ =< 4(Ix’l) for a <__ <= b,

where 0 < 4 e C[0, oel, s ds/qb , and for some constants K >= 0 and e > 0,

(3.4) E >= -K + e6lf[ fora <__ <__ b, [xl =<R, x’e[’, 0__<6__< 1,

where R is the constant given by Lemma 3.1 below.
Then (1.1) has at least one solution.
Remark 1. When H _< 0 and

(3.5) U(t, x) Ett + 2Et. x’ + Ex,X’. x’ >= O,

it is sufficient to assume (3.3) with 6 1 (cf., I2], [3, p. 432] or [1]), for then E;’
6E’ + (1 6)U >= 6E’ >= 6H >_ H. Also, when (3.5) holds, it suffices to assume

(3.4) for 6 1.
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Remark 2. Condition (3.4) can be omitted when d dim x 1 or when every
component fk of f (fl, ,fa) satisfies Ifl __< 4(Ix’l) for a _< =< b, Ixl _-< R,
x’e [a. In general, E in (3.4)can be replaced by another function E E(t, x)
e C2([a, b] x [e). In some theorems of Ill and [7], conditions on (3.3) are strength-
ened to permit an estimate for IE’I (as well as E);in which case, the Nagumo con-
dition can be omitted and an appeal made to Proposition 2.2 (instead of Lemma
2.2). For example, if H(t, u, v) is nonincreasing in u, E(t, x(t)) < Ro (as in Lemma
3.1), and (3.3) holds for all (t, E, E’), then we obtain a first order differential ine-
quality E >= H(t, Ro, E’) for E’ which might be useful in estimating IE’I; cf., [1,
Lemma 3].

LEMMA 3.1. Assume conditions (A),(B),(C) of Theorem 3.1. Let 6(t,x,x’)
6 C(a, b [2d), 0 _<_ 6 =< 1, and let x(t) be a solution of
(3.6) x" 6(t, x, x’)f(t, x, x’) and x(a) Xa, x(b) xb.

Then E(t, x(t)) <= CoW(t) for a <= <= b. If Ro Co max w(t), then there exists an
R R(Ro) such that

(3.7) E(t, x)<= Ro = Ixl R,

by (3.1); hence Ix(t)l R for a <= <= b.
Proof. If u(t) E(t, x(t)), then (2.4) follows from (3.3) and (3.6), and the result

is a consequence of Lemma 2.1.
LEMMA 3.2. Assume the conditions of Theorem 3.1 (including (D)) and of Lemma

3.1, and b a >= p > O. Then there exists a constant M M(p, , K, Ro, qb) such
that Ix’(t)l <= M for a <= <= b.

Proof. This follows from Lemma 2.2 with p(t) [E(t, x(t)) + K(t s)2/2]/;
cf., (2.8) and (3.4). Note, that for suitable choices of s, [p(t)[ =< (Ro / Kp2/8)/ on
subintervals of [a, b] of length p.

Proof of Theorem 3.1. We follow the procedure of [2]. Let 6(t, x, x’) C([a, b]
R2d) satisfy 0 _<_ 6 _<_ 1, 6 =_ 1 if[xl <= R and Ix’[ _<- M, while 6 =_ 0 iflxl >= R +

or [x’[ >= M + 1. Then 6(t, x, x’)f(t, x, x’) is bounded. Hence (3.6) has a solution
x(t) by a theorem of Scorza-Dragoni cf., [3, Theorem 4.2, p. 424]. But, in view of
Lemmas 3.1 and 3.2, this solution satisfies Ixl =< R, Ix’l =< M. Hence 6(t, x(t), x’(t))
=_ 1 and so, x(t) is a solution of (1.1). This completes the proof.

Because of condition (b) in Lemma 2.1 and its analogues, Theorem 3.1 and the
results of [1], [7] may not be as useful as those of[2] in dealing with singular bound-
ary value problems on 0 =< < oc. No condition of the type (b) appears in [4].
We give an analogous result here. We replace x by a (d + 1)-vector (x, y), where
x c Ne, y e , and consider a boundary value problem

(3.8) g(t, x, y, x, y’),x" f(t,x, y,x, y’), y"

(3.9) x(a) xa, y(a) ya > 0 and x(b) Xb, y(b) Yb > O.

THEOREM 3.2. Let d dim x >_ and dim y 1. Assume that
(A) f, g C([a, b] 2a+ 2);
(B) if (t) Cl[a, b] and 6(t) C[a, b] 0 <__ 6 <= 1, are arbitrary, then a solution

(3.10) y" 6(t)g(t, x(t), max (0, y), x’(t), y’)
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on Ia, b] satisfying y(a) > O, y(b) > 0 cannot vanish on [a, b] (e.g., suppose that
g(t, x, O, x’, y’) <__ go(t, x, x’, y’)y’ for some continuous go for small

(C) E(t,x,y), D(t,x,y)6 CZ(Ia, b] {y > O)) are such that D> O,
there exist constants Co > 0 and R > O, satisfying

E(a, x.,_ y,) E(b, X___b,_ Y)I(3.11) Co >= max D(a, x, y)’ -D-I x,
(3.12) E/D <= co = Ixl R, lyl R,

and there exist continuous functions rl(6, t, a, , v) > O, Ho(6, t, a, , v l,/)2) 0

for O <=6 <= 1, a < < b, > Coa > O, - < v < ,lVl-V21 =<r/suchthat

(3.13) DE ED >= Ho(b, t, D, E, D’/D, E’/E)ID’/D U/EI

whenever E> coD> 0 and [D’/D U/EI < rI(b,t,D,E,D’/D) where E’ E
+ Ex.x’ + Eyy’,

t2E =Ett+ 2Etx.x’ + 2Etyy + Exx .x’ + 2Ey.x’y + Eyyy + 6(E,.f + Eyg),
and D’, D’’ are similarly defined;

(D) finally, f, g satisfy a Nagumo condition

(3.14) Ifl,lg] -< 4(Ix’[ +]y’l) fora<= t<=b, ]xl =<R, [Yl =<R,

where 0 < 05 e C[0, ), s ds/dp , and jbr some constants K >= 0 and > O,

(3.15) E >= -K +6(]/1 +]g]) fora<= t<__b, [xl =<R, lY] =<R,

0 <= 6 < 1, and arbitrary (x’, y’).

Then (3.8)-(3.9) has at least one solution (x(t), y(t)) [satisfying y(t) > 0 and
E(t, x(t), y(t)) <= coD(t, x(t), y(t))].

Remarks analogous to those following Theorem 3.1 are applicable here. The
proof is similar to that of Lemmas 2.1-2.2 of [4] and of Theorem 3.1, and we only
indicate it.

Proof. Let 6(t, x, y, x’, y’) C([a, b] x R2d+ 2), 0 t 1, be arbitrary and let
x(t), y(t) be a solution of

(3.16)
x" 6( ’)f( ’)t,x,y,x,y t,x,y,x,y

y" 6(t, x, y, x, y’)g(t, x, max (0, y), x, y’)

satisfying the boundary conditions (3.9). Then y(t) > 0 by condition (B). Hence
(x(t), y(t)) is a solution of (3.16) even if max (0, y) is replaced by y. By condition (C),
E(t, x(t), y(t)) <= coD(t, x(t), y(t)) for a __< =< b, and so Ix(t)l _-< R, ly(t)l N R; cf. the
proofs of Lemmas 2.1 and 3.1. By condition (D), there exists a constant M, inde-
pendent ofthe function 6, such that ]x’(t)l N M, ]y’(t)] < M cf. the proofs ofLemmas
2.2 and 3.2. The proof can now be completed as above.
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THE SOLUTION OF LINEAR EQUATIONS

IN NORMED SPACES BY AVERAGING ITERATION*
J. J. KOLIHA

Abstract. Averaging iterations are applied to the approximate solution of the linear equation
(I T)x f in a normed space. The theory obtained by Kwon and Redheffer for the Picard iteration
is extended and generalized. Three cases of averaging iteration suitable for numerical computation
are introduced, and the convergence subspace associated with an averaging iteration is discussed.

1. Averaging iterations in normed spaces. Suppose 7" is a linear operator on
a normed linear space X. Kwon and Redheffer [9 investigated the Picard itera-
tion xn / Tx,, + f for the approximate solution of the equation

(1) (I- T)x= f
assuming nothing more than the continuity of T on X. Our objective is to extend
these results to the general averaging iteration introduced by Dotson [2], [4]
without imposing severe restrictions on the operator T (such as asymptotic A-
boundedness or asymptotic A-regularity) adopted in [21, [4] and [7].

1.1. An infinite real matrix A [an], where n,j >= O, will be called admissible
[7] if A is nonnegative, lower triangular with each row summing to 1. Following
Dotson [2], [4] we define the polynomials

an(t) anjt, bn(t
1 an(t

n=01
j=0 1 -t

whose coefficients are based on the entries of an admissible matrix A. Suppose
T is a continuous linear operator on X. Define linear operators A an(T) and
B, bn(T) for each n >= 0. Clearly, Ansco {T:j 0, ..., n} and Bnssp {T"
j 0, ..., n 1}, where co and sp denote the convex and linear hull respectively.
Furthermore, A and B commute with T, and

(2) (I T)B Bn(I T)= I An, n O, 1,....

We consider the approximate solution of (1) by means of the averaging iteration
[2],

(3) Xn Anxo + Bnf, Xo given.

If A is the infinite unit matrix I, (3) reduces to the Picard iteration Xn Tnxo
TJ)f. Note that any solution x of (1) is a stationary point for the iteration

(3) in the sense that x, x for each n => 0 when Xo x. Indeed, if (I T)x f
for some x X, then x, Anx + B,(I T)x A,x + (I- A,)x x. Let Q be
the operator defined by

(4) lim Anx Qx,
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whenever the limit exists in the strong topology of X. In the sequel, the symbols
D(U), N(U) and R(U) will be used to denote the domain, null space and range of
an operator U in X respectively. Since A,T TA, for each n >= O, {ATx} con-
verges strongly whenever {A,x} converges strongly, i.e. D(Q) is invariantunder T,
and TQx QTx for all x D(Q). We shall require that the matrix A and the
operator T satisfy

(5) TQx QTx Qx for each x D(Q),

or the more restrictive condition

(6) A,xo+B,f--,x implies x= Tx+f for anyx0andfeX,

where "--," is used to denote strong convergence in X. It is easily verified that
(6) implies (5). If A is the iifinite unit matrix I or the Cesfiro matrix C, (6) holds
for each continuous linear operator T on X. Indeed, the sequence {x} {Axo
+ B,f} satisfies the inductive formula x, Tx,_ + f if A I, and the formula
x, n(n + 1)- Tx,_ + (n + 1)- ixo + n(n + 1)- f if A C. The result follows
on letting n --, c in these formulas.

LEMMA 1.2. Let A be an admissible matrix and T a continuous linear operator
on X satisfying (5). Then" (a) QA,x Qx for each x D(Q) and each n >= O, (b)
Q2x Qx for each x D(Q), (c) br each x D(Q) and each n >= O, QB,x p,Qx,
where {p,} is a real sequence with the property that limp, + whenever
lim a 0 for each j >= O.

Proof. (a) We deduce from (5) that QTx Qx for each x D(Q) and each
a,Qx=Qx for each n>0 asa.QTx =oj>0. Hence QA,x==o

=o a,j 1. (b) follows immediately from (a). To prove (c), we observe that

B, b,(T) a,j J Ti.
j=l i=0

For each x e D(Q) and each n >= O, QB,x (j=oja,j)Qx. Setting p, j=oja,j,

we obtain QB,x p,Qx. Suppose lim, a,j 0 for each j _>_ 0. Given a sequence
{s,} of real numbers, define {t,} by t, =o a,s. Since the matrix A satisfies
the Toeplitz conditions, t, ---, s whenever s, ---, s [5, p. 75]. Let K be an arbitrary
real number. For any integer N, N > 2K, the sequence {t,} associated with
{s,} {1,2, ..., N- 1, N,N,N, ...} converges to U. Hence there exists a
positive integer no, no > N, such that p, > t, > K for all n > no. This proves
lim, p. + o.

The preceding lemma contains Theorem 2 of [2] as a special case when X
is a Banach space, and D(Q) X.

LEgNA 1.3. Suppose the condition (5) is satisfied. Then

D(Q)= R(Q) N(Q), R(Q)= N(I- T), N(Q) R(I- T)-,

where bar indicates closure in X.
Proof. According to Lemma 1.2(b), Q:D(Q) D(Q)and Q2= Q. Hence

D(Q) R(Q) ( N(Q). If u N(I T), Tu u, and A,u u for all n => 0. Thus
Qu u, and u R(Q). If, conversely, u R(Q), u Qx for some x D(Q), and
(I-T)u=(I-T)Qx=O in view of (5). To establish N(Q) cR(I-T)-,



180 J.J. KOLIHA

suppose Qx 0. Then x x Qx lim, (I A,)x lim, (I T)B,x by (2),
and x lies in the closure of R(I T).

In the case when X is a Banach space, Koliha [7] has proved that N(Q)
R(I T)- under the additional hypotheses that the sequence { [[A,[I is bounded

and that (I T)A,x 0 for each x e X ("---" denotes weak convergence in X).
PROPOSITION 1.4. Suppose (I T)y f. Then the sequence {x,} in (3) con-

verges strongly if and only if xo y O(Q). If, in addition, (5) is .fulfilled, the strong
limit x of {x,} is a solution of (1).

Proof. If (I- T)y f, y is a stationary point for the iteration (3), i.e.,
y A,y + B,f for all n >__ 0, and x, y A,(xo y). Hence {x,} converges
strongly to x Q(xo y) + y if and only if Xo y e D(Q). If this is the case and
if (5) holds, (I T)x (I T)Q(xo y) + (I T)y f.

Remarks 1.5. (a) Setting A I in the preceding proposition, we obtain
Remark of [9].

(b) Suppose A, II} is bounded and suppose (I- T)A,x--, 0 for each
x e X. Then it follows from Eberlein’s mean ergodic theorem [5] that x D(Q)
if and only if {A,x} has a weak cluster point. The condition (5) is clearly satisfied.
If f (I T)y and if {x,} has a weak cluster point, also {A,(xo y)} {x, y}
has a weak cluster point, and Xo y D(Q). Then {x,} converges strongly to a
solution x of (1) in accordance with 1.4. Thus we have generalized Theorem 2 of
[41.

(c) Proposition 1.4 has been proved in 7] under the hypotheses that X is a
Banach space, IIA is bounded, and (I T)A,x 0 for each x e X.

POPOSITION 1.6. Suppose the condition (6) is satisfied. If {x} converges
strongly, (I T)xo f N(Q).

Proof. If x x, (I T)x f by (6). Moreover, (I T)x A((I T)xo
-f) + f as follows from (2), and A((! T)xo f) --, O.

The following proposition generalizes Remark 2 of 9]; apart from con-
sidering a general admissible matrix A in place of I, the proposition replaces the
strong cluster point considered in [9] by a weak cluster point.

PROPOSITION 1.7. Let (I T)xo f N(Q). If {x,} has a weak cluster point
x, f R(I T), and x is a solution of(l).

Proof. Define a sequence {y,} by y, A,xl + B,f, where Xl Axo + Bf
aoXo + aTxo + aaf.Thenx, y, A,(xo x)= aA,((I T)xo-f).

Suppose x,-- x as n nj c. Then also y,----x as n nj c in view of the
hypothesis (I- T)xo- f e N(Q). After a short calculation based on (2), we
obtain y, Tx, aloA,((I T)xo f) + f. Passing to the weak limit as
n nj oc, we obtain x Tx f since T is strongly (and also weakly) con-
tinuous and since the weak topology of X is Hausdorff.

As an application of Proposition 1.7, consider the case when A,x 0 for
each x e X. Then D(Q) N(Q) X, N(I T) {0} and R(I T)- X in view
of Lemma 1.3. An element f e X belongs to R(I T) if and only if {x,} has a
weak cluster point x for some Xo e X x is then a solution of (1).

An infinite matrix A [a,j] will be called Toeplitz if A is admissible and if
lim, a, 0 for each j >_ 0.

PROPOSITION 1.8. Suppose A is a Toeplitz matrix satisfying the condition (5).
Let f and Xo D(Q), and suppose 0 is a weak cluster point of Qx,/p,}, where {p,}
is the sequence described in Lemma 1.2(c). Then f N(Q), and (I T)xo f N(Q).
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Proof. Since D(Q) is invariant under each A, and B,, x, e D(Q) for each
n >= 0, whenever Xo and f D(Q). Hence Qx, QA,xo + QB,f Qxo + p,Qf.
Suppose Qx,/p, 0 as n nj . Then Qx,/p, Qxo/p, + Qf Qf as n
in virtue of Lemma 1.2(c), and also Qx,/p,-- Qf as n nj . Thus Qf 0
as the weak topology of X is Hausdorff. Finally, Q((1 T)xo f) Q(! T)xo
-Qf 0, as follows from (5).

Remarks 1.9. (a) The preceding proposition has been proved in Remark 3
of [9] for A I under the hypothesis that 0 is a strong cluster point of {Qx,/n}.

(b) Suppose A is a Toeplitz matrix satisfying (5), and suppose Q is continuous
on D(Q) X. If x is a weak cluster point of {x,}, 0 is a weak cluster point of
{Qx,/p,}, and (I T)xo f N(Q) by 1.8; Proposition 1.7 shows that (I T)x

f, and Proposition 1.4 implies that x, ---, x. Hence we have generalized Theorem
4(b) of [2].

PROPOSITION 1.10. Suppose (6) is satisfied. Then the sequence {B,f} con-
verges strongly if and only iff (I T)D(Q) (I T)N(Q).

Proof Let (I- T)x= f for some xD(Q). Then B,f= B,(I- T)x
(I A,)x (I Q)x. If, conversely, {B,f} converges strongly to x, (1 A,)f
(I- T)B,f (I T)x, and (I- T)x f in view of (6). Setting Xo 0 in

Proposition 1.4, we obtain x D(Q). The equality (I- T)D(Q)= (I- T)N(Q)
follows from Lemma 1.3. Note that the sequence {Axxo + B,f} withfe (I T)D(Q)
converges strongly if and only if Xo D(Q).

Remark 5 (and consequently also Remark 4) of [9] are obtained by setting
A I in Proposition 1.10. Proposition 2 of[7] establishes the equivalence "{B,f}
converges strongly if and only if f (I T)N(Q)" under more restrictive condi-
tions on X, A and T, but without the hypothesis (6).

PROPOSITION 1.11. Suppose I T has a continuous inverse (I T)-1 on the
subspace R(I T), which is assumed to be closed. If f N(Q), B,f y, where y
is the unique solution of (1)in N(Q).

Proof. The existence of (I T)- on R(I T) implies that N(I T) {0},
so that D(Q)=N(Q)IV(I-T)=N(Q), and 1V(Q) cR(I-T)in view of
Lemma 1.3 and the hypothesis R(I T)- R(I T). Suppose f e N(Q). Then
(I- T)B,f (I- A,)f f, and the sequence {B,f} {(I- T)-I(I- A,)f }
converges strongly to y (I T)- f. Proposition 1.4 with Xo 0 yields y N(Q).

Suppose X is a Banach space and suppose I- T admits a left inverse
(I T)- which is bounded on R(I T). Then R(I T) is closed and (1) with

f e IV(Q) has a unique solution y N(Q). Thus we have generalized Remark 6

2. Special cases. As in the first part of the paper, X is a linear normed space,
and T a continuous linear operator on X. The general averaging iteration (3) is
rather impractical for the actual computation of the successive approximations
x,. In fact, each x, is completely independent of the preceding approximations
x, where 1 =<j =< n 1, and all the elements Xo, Txo,..., T"xo,f, TJ;...,
T"-f are needed for its construction. In the case when T is an m x m matrix
with large m, the iteration (3) in its general form can be hardly used for the approx-
imate solution of the equation (I T)x f by a computer as the requirements
on the memory are enormous. We suggest three special cases of the averaging
iteration that seem to be particularly suitable for numerical computation.
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PROPOSITION 2.1. Let {c,,} be a sequence of real numbers satisfying 0 <= c, < 1.
Each of the iterations

(7) x.+ (1 c.)Tx. + C.Xo + (1 e.)f, Xo given,

(8) Y.+ (1 c.)Ty. + c.Tyo + f, Yo given,

(9) z.+ (1 c.)Tz. + c.z. + (1 c.)f, zo given,

is an averaging process as defined in (3)./f lim. c. 0, each of the processes (7),
(8), (9) is based on a Toeplitz matrix and satisfies the condition (6).

Let us remark that if c. 0 for all n >= 0, (7), (8) and (9) reduce to the Picard
iteration X.+l Tx. + f. Setting c. (n + 1)-1 in (8), we obtain the iteration

Y.+I n(n + 1)--1Ty. + (n + 1)-lTyo + f introduced and investigated by De
Figueiredo and Karlovitz in [1] in connection with a modified version of the
Kakutani-Yosida mean ergodic theorem. When c. c for all n >__ 0, 0 < c < 1,
(9) becomes z.+ (1 c)Tz. + cz. + (1 c)f, which is an iteration investigated
by many authors, particularly the nonlinear case (cf. [1]). Dotson [3] studied the
iteration (9) for a nonlinear operator T under the assumption that 0 < c. =< 1 for
all n and that (1 c.) + (the so-called normal Mann process).

Proof of 2.1. Put G. co {TJ:j 0,.-., n}, H. sp {TJ:j 0,..., n 1}
for each n >= 1, Go {I} and Ho {0}.

(a) Consider the iteration (7). Put Ao I and Bo 0. For induction assume
that, for a certain n => 0, x. A.xo + B.f with A. G. and B. 6 H. satisfying
I A. (I T)B.. The relations are obviously true for n 0. Since

x.+l (1 c.)T(A.xo + B.f) + C.Xo + (1 c.)f

((1 c.)TA. + c.I)xo + (1 c.)(TB. + I)f,

we have x. + A. + lxo + B. + f, where

(10) A.+I (1 c.)TA. + c.I, Bn+ (1 c.)(TB. + I).

An + lies in G.+ as a convex combination of TA. and I G.+ 1, and B.+ clearly
lies in H.+ 1. Furthermore, (I- T)B.+I (1 -c.)(I- T)(TB. + I)= (1 -c.)
(I- TA.)= I- A.+I. This proves that A. a.(t) and B. b.(t) for each

n >__ 0, where the polynomials a.(t) =o a.t are based on the entries of an
admissible matrix A, and where b.(t) are the polynomials (1- a.(t))/(1- t).
From (10) we deduce that the entries a. of the matrix A satisfy the relations

aoo 1; an+ 1,o Cn, an+ 1,i (1 Cn)a.,j-a (1 =< j _<_ n + 1),

for each n >= 0. If lim. c. 0, also lim. a.o 0. By induction, lim. a.j 0 for
each j >= 1. Hence A is Toeplitz. Suppose x. x. Passing to the limit as n oe
in (7), we obtain x Tx + f in view of the continuity of T and the relation c. 0.
This proves the validity of (6).

(b) Putting Ao I, Bo 0 in (8) and assuming that y. A.yo + B.f with

A. G. and B. H. for some n => 0, we obtain

(11) A.+x (1 c.)TA. + c.T, B.+I (1 c,,)TB. + I.

Then A.+ G.+ and B.+ e H.+ whenever A. e G. and B. H.. It can be
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easily verified that (I T)B.+ I A.+ whenever (I T)B.
Hence the iteration (8) is based on an admissible matrix A [a.j] with

aoo 1; al0 =0, all= 1;

an+ 1,0 0 an+ 1,1 Cn a.+l,j=(1-c.)a.,j_l (2<_j<_n+ 1)

for all n __> 1. Suppose c. --. 0. Then a.+ 1,0 ---’ 0, and lim. a.+ 1,j lim. (1 c.)
an,j- 1, so that lim. a.j 0 for each j >= 0 by induction, and A is Toeplitz. Clearly,

(6) holds for the process (8).
(c) To prove the assertion about the process (9) we follow the same pattern

as in parts (a) and (b). We find that z. A.zo + B.f, where

(12) A.+ ((1 c.)T + c.I)A., Bn+ ((1 c.)T + c.I)B. + (1 c.)I,

and that A. e G., B. e H. for all n >_ 0. Then the process (9) is based on an admissible
matrix A [a.j] with ao0 1 and

a.+ 1,o c.a.o, a.+ 1,j c.a.j + (1 c.)a.,j_ (1 < j =< n),

a.+1,.+1 (1

for all n >= 0. By induction on j we establish that lim. a.j 0 for each j _>_ 0, when-
ever lim. c. 0. Statement (6) is obviously true.

COROLLARY 2.2. Let {c.} be a real sequence such that 0 <= c. <= 1 and
lim. c. c. Then (9) is an averaging process satisfying the condition (6). (This
follows immediately from Proposition 2.1.)

All the results of 1 apply to the averaging iterations (7), (8) and (9).

3. The subspace D(Q) in a Banach space. The development of suggests
the importance of the subspace D(Q) for the averaging iteration (3). Our objective
in this section is to establish certain relations for D(Q), and to find D(Q) explicitly
in some special cases.

X denotes a Banach space, T a continuous linear operator on X, and A an
admissible matrix. By a,(t) we denote the polynomials with coefficients based on
the entries of A introduced in the first section, and by Q the operator defined by
Qx lim, a,(T)x whenever {a,(T)x} converges in norm. In addition, Q1 denotes
the projection operator associated with the infinite unit matrix, i.e., the operator
defined by Qlx lim, T"x whenever {T"x} converges in norm. The spectral
properties of operators used in this section can be found in [5, Chap. VIII or in
[11, Chap. 5.

PROPOSITION 3.1. Let A [a,j] be an admissible matrix such that lim, a,j
exists for each j >= 0. Then

D(Q1) D(Q).

Proof. Suppose x is an element of D(Q1) with T"x z. Then T"x zll K
for some K > 0 and all n >= 0. Let e be a real positive number, and N a fixed
positive integer such that IlT"x zll < e for all n > N. There exists an integer
p, p > N, such that the inequality [a.,j a.j[ < e/(N + 1) is satisfied for all m,
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n>pandalljwith0__<j=<N. Ifm, n>p, then

a,,( T)x am( T)x

anjTjx E a,Tx
j=0 j=0

j=O j-O

=< [a,,2 a,,,2] T2x z + a,,2 T2x z + Z amj[ T2x z
j=0 j=N+I j=N+I

< Ke + e + e=(K + 2),

and {a,(T)x} converges in norm in the Banach space X. Observe that in the case
when A is Toeplitz, i.e., when lim, a,j 0 for each j _>_ 0, the inequality

a.(r)x- z <= aj rJx- z + aj rJx z n > N,
j=O j=N+I

can bc used to prove that a.(T)x z whenever T"x z.

3.2. As an illustration we consider an operator T whose spectrum a(T) is
the union al U 0-2 [--J 0"3 [,-J 0"4 of pairwise disjoint spectral sets 0"i of T, i.e. sets
both closed and open in the relative topology of 0"(T) 0"1 and 0"4 are contained in
the interior and exterior of the unit circle respectively, 0"2 {1}, where 1 is a
simple pole of (21 T)-1, and 0"3 is a finite collection of poles of (2I T)-
lying on the unit circle. Let E be the projection associated with 0"i [5, p. 573],
and let Xi be the range of Ei, 1 =< =< 4. Then X i Xi, and T is completely
reduced by Xi’s. Furthermore, the spectrum 0"(T) of the restriction T/of T to
is the set 0"i. Let Q1 be the projection operator associated with the unit matrix,
Q ix lira, T"x. Then

(13) N(Q1) X1, D(Q1) X1 ( X2.
First, Tfl[ 0 since 0"(T1) is contained in the open unit disc [8]. Hence X1 c N(Q1).
Next we show that N(QI) f3 X {0} for i= 2, 3, 4. According to [5, p. 573],
X2 N(I T), and

(14) X3 @ N((2I T)V(x)),

where v() is the order of the pole . If x X2, Tx x for all n 0, and
converges to 0 if and only if x 0. Let x X3. In view of the decomposition (14)
we may assume that x N((2I T)v)) for some 0"3. If x 0, there is a positive
integer p <__ v(A) such that (M T)p- ix v 0 and (M T)Px 0. The vectors
u1,..., Up defined by ui/l (T- 2I)ix, where 0 __< p 1, are linearly
independent. We can easily verify the formula

P

tn-i +(15) T"x E Ci- ui H p
i=1

2n-i+1 > 1 for all n > p and all i, 1 < < p.Then T"x -/, 0 since C’_ Ci_
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Hence T"x - 0 if and only if x 0. This proves the first formula in (13); the
second formula follows from Lemma 1.3 and the equality X2 N(I- T). It
was proved in [83 that {T"} converges in the uniform operator topology if (and
only if) a(T) 1 } is contained in the open unit disc and 1 is a pole of (21 T)-
of order <1. Therefore IT[’ T Q - 0 in the uniform operator topology
of D(Q1) X ) X2, and Q1 0 ( I in X1 X2

Let Q be the projection operator associated with the Ceshro matrix, i.e.,

1
Qx lim

,- n + - TJx’
j=0

whenever the limit exists in the strong topology of X. Then N(Q1) is a proper
subset of N(Q) since

N(2I T)= N(Q).

To prove this inclusion we select x N(2I- T) for some 2 a3. Since 2 1
and 2 1,

1 TJx= 1
2ax=

1 1-2"+1
n+ lj= 0 n+ 1j=o n+ 1 1-2

x0 asnm.

In the following proposition we give a complete description of D(Q) in the
case when T is an operator with rational resolvent.

OPOSITION 3.3. Let T be an operator with rational resolvent and A an
admissible matrix satisfying the condition (5). Then

(16) N(Q) @ N((2I T)Ua)), D(Q) U(I T) N(Q),
ea(T)

where (2) is either the smallest nonnegative integer for which the sequence of
the -th derivatives {aU)(2)} does not converge to zero or the order of the pole 2 if
such does not exist.

Proof. If (21- T)- is rational, a(T) is a finite collection of poles of
(21 T)- . Then 11, p. 317]

X N((2I T))),
2o’(T)

where v(2) is the order of the pole 2, and T is completely reduced by the subspaces
occurring in this direct sum. Suppose x N((2I- T)()) for some 2 a(T),
x 0. As in the preceding paragraph, T"x is given by the formula (15) with
ua,.-., up linearly independent, p v(2). From (15) we obtain the following
explicit expression for a,(T)x"

j-i+l ai-1)()
a,(T)x aC]_ ui i 1) ui, n p.

i= j=0 i=1

Hence a,(T)x 0 if and only if a- 1)(2) 0 for each with 1 p, and the
conditions

(a) a.(T)x O,

(b) p =</(2),

(c) x 6 N((2I T)utz))
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are equivalent. If x is an arbitrary element of X, the decomposition x x
with xz N((2I T)t)) shows that a,(T)x 0 if and only if a,(T)x --, 0 for
each 2 a(T). This completes the proof.

The formula (16) is, in particular, valid in the case when X is finite-dimen-
sional. The following result follows immediately from Proposition 3.3.

COROLLARY 3.4. Let T be an operator with rational resolvent and let Q1 be
the projection operator associated with the infinite unit matrix and with the operator
T. Then

N(Q1) E N((2I T))),
;ta(T),[.[

D(Q1) N(I T) N(Q1),

where v(2) is the order of the pole 2.
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DOUBLY ASYMPTOTIC SERIES FOR nth ORDER
DIFFERENTIAL EQUATIONS IN UNBOUNDED DOMAINS*

ANTHONY LEUNG"

Abstract. This paper is concerned with the asymptotic behavior of the solution, as 0 or z
tends to infinity in the complex z-plane, of the differential equation

enu(n)(z) n- lpn I(Z)U(n- 1)(Z n- 2pn_ 2(Z)tl(n- 2)(Z) pO(Z)l,l(Z) 0,

where pi(z), 0, 1, ..., n 1, are polynomials in z with some restrictions on their degrees.
A series of transformations of the dependent variable transforms the equation into a convenient

almost diagonal system. Then, asymptotic series solutions are found by iterative solution of an equiva-
lent integral equation. A careful study of the regions of validity in the z-plane of the asymptotic series
shows that for every sufficiently narrow sector a full fundamental system of n asymptotically known
solutions can be found.

1. Introduction. This paper is concerned with a study of the asymptotic
behavior of the solution, as e 0+, or z tends to infinity in the complex z-plane,
of the differential equation

(1.1) e"u")(z) "- p._ l(Z)U<"- )(z) "-p._(z)u"-)(z) po(z)u(z) O,

where n _>_ 3, pi(z), 0, 1, ..-, n 1, are polynomials in z, po(z) has degree m > 0,
and pj(z) has degree less than (m/n)(n j) for j 1, 2, n 1.

Evgrafov and Fedoryuk have studied the equation

(1.2) :u"(z) p(z)u(z)= O,

where p(z) is a polynomial of degree m. They construct certain unbounded regions
in the complex z-plane, called canonical domains, in which they calculate a funda-
mental system of solutions. They use an iterative method to construct a "doubly
asymptotic" series for the solutions such that successive terms of the series become
smaller in the sense of increasing orders of magnitude both as e 0 + or z .

To solve equation (1.1), a series of transformations of the dependent variable
is made to transform (1.1) into a convenient system of integral equations. Then
series solutions are found by iterative methods similar to that of Evgrafov’s and
Fedoryuk’s. Such series are valid, however, only in certain sectors tending to
infinity in the z-plane. In this paper such series solutions will be constructed
corresponding to any sector with central angle less than (n/n)(m/n + 1)-1. This
results from the fact that only in such sectors can we construct suitable paths
satisfying the key properties necessary for our iteration procedure. More general
results of the region of validity may be possible by a global study of Stokes
curves [2]. Such studies were made by Evgrafov and Fedoryuk, and Wasow [6.
The extension of the global theory to nth order equations, is, however, beyond the
scope of the present paper.

The following main theorem will be proved in 4.

* Received by the editors November 17, 1971, and in final revised form November 17, 1972.
f Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221.
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THEOREM 1.1 (Main Theorem). Let 0)1, 0)2 be angles such that 0 < 0)2 0)1
< (n/n)((m/n) + 1)- 1; then for L sufficiently large, sufficiently small, (1.1), where
n >__ 3, has in the region

(1.3) S(L; o, )- {zllzl L, 0)1 =< arg z __< 0)2}, 0 < e < 4,

n linearly independent solutions uj(z,e), j 1, ..., n, satisfying the following
asymptotic relation for each j"

(1.4)
uj(z, ) z -tm/")("- a)/2 exp -1 2() d Ujk(Z)ek

k=O

,h+ 1Mjh(2, )lzl-m/),<- 1)/2 exp 2() d{

in region (1.3)for each nonnegative integer h. Here b is an arbitrary fixed point in

S(L; 0)1,0)2), and the 2j(z), j 1, n, are n distinct roots of the equation

(1.5) 2" p,_ k(Z)2"- 0
k=l

in the region S(L; 0)1,0)2). The functions Ujk(Z can be explicitly calculated and
are of the order O(Izl -kt’/"+l)) as z v in S(L; 0)1,o92). Both 2j(z) and Ujk(Z),
j 1,..., n, k O, 1, 2,..., possess convergent expansions in decreasing powers
of z 1/" in S(L 0)1,0)2). The functions Uio(Z) tend to 1 as z in S(L 0)1,0)2) for
j 1, n. The functions mjh(Z, e) are of the order O(Iz[ -th+ 1)(m/,+ 1)), uniformly
in e, in region (1.3).

Most of the iterative techniques in this paper are related to those of Turrittin
4] and of Evgrafov and Feforyuk 2].

2. Preliminary transformations. Consider the differential equation (1.1)
where po(z) is a polynomial in z of degree m > 0 and pj(z) is a polynomial in z of
degree less than (m/n)(n j) for j 1, 2, ..., n 1. The reason for this last condi-
tion will become apparent presently. An equivalent system, with u Y l, eu’ Y2,
eZu" Y3, 3n- lu(n-1) y, is

(2.1) e Y’ A(z) Y,

where

A(z)

-0 1 0 0

0 0

-Po

0 1

P P,- 2 P,- 1- Y,

The characteristic equation of A(z) is

(2.2) q(z,,)-- ," Pn_l(Z)2"-1 pn_e(Z),n-2 po(Z)-- O.
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Let
Sp {z[01 < arg z < 02, 02 01 < (m/n + 1)-in, p < Izl < },

(Sp depends on the choice of 01 and 02 and the reason for restricting z to such sectors
will appear later.) Employing a technique due to Newton [1], we find that the n
roots, 2j(z), of the characteristic equation (2.2) are meromorphic functions of
z-1/, and are distinct in a neighborhood of z . For p sufficiently large, the
functions z-m/"2j, j 1, ..., n, have uniformly convergent series in Sp of the form

(2.3) z-m/n’j Z akJz-kIn"
k=o

We assign a fixed choice of z 1/" in Sp for the n equations in (2.3), and aoj, j 1,
.., n, are the n distinct roots of the leading coefficient of po(z). The distinctness
of the n roots 2j and the simplicity of the equations (2.3) are the results of our
assumption on the degrees of the n polynomials pi(z).

Let T(z) be the n x n matrix whose kth column, 1 =< k =< n, is the column
vector function col(1,2k,2,..., 2-1) which are eigenvectors of A(z). The
transformation

(2.4) Y= T(z)W

takes (2.1) into the system

(2.5) W’ [diag (21(z), ..., 2,(z)) T- 1T’(z)]W

whose coefficient is diagonal to within terms of order O(e).
The matrix T(z)can be assumed to have the form

(2.6) T(z) diag (1, (ao zm/n), (ao zm/n) 1)’-((D) [I + To(z-

where co e(2=i)/n, (o9) is the n x n matrix whose (i,j) entry is (co- 1)i-1, =< i,
j __< n, and To(x) is a matrix holomorphic in a neighborhood of x 0, To(0) 0.
Thus

T’(z) diag 0, ---m(aolzm/n) 2m(aol ",z,,/,)2 (n 1)m (aolz’/") (co)
nz nz nz

(2.7)

ii + To(z-I/,,)]
1 1/,,-1 zm/,),-1)z diag (1, (ao

f(co)T,o(z- 1/,,).
Using equations (2.6) and (2.7), we see that

(2.8) zT- l(z)T’(z) [f(co)] -1 diag 0,
rn 2m (n 1)m

f(co) + o(Z- 1/,)

where o(X) is holomorphic in a neighborhood of x O, o(0) O.
We now write equation (2.5) in the form

(2.9) eW’ z"/"[H (ez-"/"- 1)M] W,
where H(z)= z -m/" diag(21, ..., 2,), m(z)= zT-1T’. The matrices H(z) and
M(z) both tend to finite limits as z oe in Sp, from our computations above.
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After having diagonalized the leading term of the coefficient matrix in (2.1)
by transformation (2.4), we next diagonalize the remaining terms successively
by a variant of a method of Turrittin.

THEOREM 2.1. There exists a transformation
(2.10) W R(z, /)V, with [ ,Z -m/n-

which changes the differential equation (2.9) into theform
(2.11) eV’ z’/"D(z, #)V,

and has the following properties:

(a) D(z, #) is holomorphic in both variables z, p for
(2.12) zeSt, 0 < e < o,

(b) D(z, l) Dr(z)# as p O,
r=O

uniformly in the region (2.12).

(c) The matrices Dr(z) are diagonal and holomorphic for z Sp, possess con-
vergent expansions in descending powers of z 1/" for [z > p, and tend to

finite limits as z oo in S;; Do(z)= H(z). (Observe that this does not
imply that D(z, #) is diagonal.)

(d) The matrix R(z, l) is holomorphic in the region (2.12) and possesses there a
uniformly asymptotic expansion:

(2.13) R(z, #),- Rr(z)p as # --. O,

with Ro(z) I. The R(z) are holomorphic and tend to finite limits, as z oc in S;.
The Rr(z) also have convergent expansions in descending powers of z 1/" for Iz[ > p.

Proof. We begin by setting

(2.14) W- [I +/aQl(z)]V1,

where Q l(z) is the matrix whose (i, j) entry is

(2.15) [Ql(z)]ij (1 6ij)zm/"mij(z)(2i(z)- 2j(z))-1.1

Here, 6gj is the Kronecker delta and mj(z) is the (i, j) entry of M(z). The transforma-
tion (2.14) takes (2.9) into

(2.16) e,V zm/n{H nt- ll[-m- Q1H -+- HQ1 -+-... }Vl,

where the matrix D1 -M- Q1H + HQ1 is diagonal (exactly the diagonal
part of -M(z)), and the dots indicate a convergent series in powers of p if [/[ is
small, beginning with terms of O(p2).

The differential equation (2.16) is next subjected to a sequence of transforma-
tions of the form

(2.17) Vj_ [I + #JQj(z)]V, j 2, 3,...

This means [Ql(z)]u 0, 1,...,n.
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Each of them leaves the coefficients of #o, #1,..., #j-1 unchanged. Qj(z) is deter-
mined so as to diagonalize the coefficient of/J; it can be made as Q l(z) to be holo-
morphic in Sp and tend to finite values, as z c in Sp. Finally, multiplying all
these transformations, we arrive at the formal matrix

R(z, l.t)-- 1-I (I + laiQi(z))= Rr(z)lat.
i=1 r=0

Apply the "Borel-Ritt" theorem [3] to conclude that there exists a holomorphic
function R(z, la) which satisfies property (d). This proves the theorem.

We now perform a transformation whose effect is to annul one diagonal
entry in Do(z) and also the whole matrix Dl(Z). Let Zo e Sv such that arg z0

(01 -F 02)/2. Write

F=F(z)=diag exp m11()-ld ,...,exp
go

Set

(2.18)

We obtain

V=FXexp -1 21({)d
g

(2.19) X’ { [diag (1, ", n) l(Z)I’] "-]- gG(z (c?,)} X
where G(z, e) is holomorphic in z,/ in region (2.12) and

(2.20) G(z

as/ ---, 0 uniformly in the region (2.12). We have such a convenient expansion for
G(z, ) because F(z) and Dr(z) are diagonal and commute with each other. The
matrices Ok(z)z-re k---2,3, ..., are holomorphic in Sp, of the order
O(Izl-m/,-2) as z --+ oo, and possess convergent expansions in descending powers
of z 1/" for Izl > p.

3. An associated integral equation. We shall transform the differential
equation (2.19) into an integral equation by the method of variation of parameters.
We begin with a careful definition of an unbounded subdomain in Sp, and construct
paths in it extending to infinity. These paths satisfy other essential properties which
are necessary for our iteration procedure later on.

Let S(O 1, 02) {ZI01 < arg z < 02} Cj (m/n + 1)- l(aoj aol), jl(Z)
cjzm/"+ 1. Let S1(01 O2) be the image of S(01 ,02)with respect to rtjl,j 2, n.

(The root z /" is taken to be the same as that in equation (2.3), and we shall follow
this convention in the remaining part of this paper.) Assume S(01,02) satisfies the
following hypothesis.

[H10]. sJl(O1,02) contains a ray 7 in the right half-plane, for each integer
j#l,l<=j<=n.

(Conditions under which [H0] is satisfied will be discussed in the proof of
the main theorem.) There exists a small 6 > 0 such that the rays 7 with larg ?
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arg /j[ < sin-1(26), j 2, ..., n, are contained in the intersection of the right
open half-plane and S1(01,02), for the corresponding j. Let

h,(z) -1 + (ao, aol)Z’/"{2,(z) 21(z)}-1, k 2, ..., n.

Then Ihk(z)l < 6, if z e Sv for a sufficiently large constant p. Recall that we let
zoeSv with argzo 1/2(01 + 02). Let 2 be the image of z0 in the gzl-plane.
From 2 construct two rays to infinity parallel to the images of the rays arg z

01,02 respectively. (Refer to Fig. 3.1.) Denote the unbounded open domain,

z-plane

arg z 02

0 Zo Dp

rzl-plane
(or its rotation)

arg z 01

2

FG. 3.1
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bounded by these two rays from 2, by bp2. Define Dp to be the preimage of/3p2
in the z-plane. (Note that the image/3 of Dp in the rCjl-plane, j 3, ..., n, is just
the rotation and stretching of bp2.)

From each point z Dp, let ajx(t z) be the solution to the initial value problem

d
(3.1) [/j(ajl(t Z)) 21(aj1(t, z))]-(O’jl(t Z)) bj, O’jl(0 Z) Z,

j 2, ..., n, where is a nonnegative real parameter, bj is a constant, bj exp
{i(arg 7j)}. We consider the image of the solutions ajl(t, z) on the rtjl-plane, j 4: 1.
In view of equation (2.3), we write (3.1) in the form

(3.2) rjl(ajl(t, Z)) 7jl(Z -[- bj + hj(ajl(U z)) du j 2, n.

The image of ajl(t, z), z e Dp, in the rjx-plane is confined to a sector l(Z)
(with the image of z as vertex, central angle 2 sin-1 , and with angular bisector
at an angle of arg 7j with the horizontal positive direction). This is true because
Ibj and Ihj(s)l < 6 for all s Dp c Sp. (Refer to Fig. 3.2.) Since the sector
x(Z) always stays in D, we can continue aj(t, z) as - and it will remain in Dp.

DErYITOY. For each z e Dp, Cj(z), j 2, ..., n, is the path in the z-plane
parametrized by aj(t, z), 0 =< < (as defined in (3.1)). For each z in the closure
of Sp, C1 (z) is the path in the z-plane parametrized by o’11(t z) z q- exp {(i/2)
(01 + 02)}t 0 < .

By our construction, it is evident that the following hypothesis holds.
[H1]. The paths Cjl(z), j 1, ..., n, z Dp, are contained in Dp.
The paths Cjl(Z) begin at z and tend to . Furthermore we have the following

property.
[H2]. If 01 < < fl < 02, then there exists a positive number B such that

S(B; , fl) = Dp, where

S(B;e,) {zle =< arg =< fl, Iz >= B}.
From (3.1), we see that forj 1, z e Dp,

jl(t,z)
[2j(U) /I(U)] du [/j(Ojl(S z)) l(ojx(S, z))](jl(S, z)) ds

-bit,

where Re bj > 0. Furthermore, if cjs
"/’+ jl(Z) with Isl large compared with Izl,

the integral y, [2j(u) 21(u)] du is closely approximated by cjz
m/" + cjsm/, + 1.

Thus, the orientation of the sector Wjl(Z)implies that Re [y2 (2j 21) du] --, as

Isl --, with CjS
m/n+l jjl(Z). Let k(s, z) . [2j(u) 2k(u)] du for s, z e Dp,

1 =< j, k < n. We have the following two important properties for our paths.
[H3]. For 2 <_ j =< n, z e Dp, 0 < e =< eo, the limit exp {(1/e)jl(S,Z)} 0 as

Isl --, with cs’’/’+ e l(z), (in particular, if Isl --, along Cjl(z)).
[H4]. If Z(z) is defined and holomorphic in z for z e Dv and Iz(z)l _-< Izl -,

and if z Dv for some real constant k, then the functions

%l(Z’ g) ;C exp {g- Ijl(S Z)}Z(S ds, j 2,...
l(z)
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rJl-plane
jl

0\
sector ,’ (z)

/ , 2sin- image ofal(l,

/
/ / ",, , image z.of

(i, image of z.

e,fl, described in

FIG. 3.2

are holomorphic in z on Dp for 0 < e =< eo and IOjl(z,e) =< Kllzl -k, z Dp,
0 < e < eo for some constant K1 independent of Z. If -k < -1, the assertion
remains true for j 1, if in the last estimate k is replaced by k 1.

The details for proving the conditions [HI] to [H4] are tedious but straight
forward, and will be omitted.

We can now consider the integral equation associated with the differential
equation (2.19), for z Dp, 0 < g < go"

(3.3) X(z, ) Xo El(s, z, e)G(s, e)X(s, ) ds,

where Xo col (1, 0, 0, 0), E(s, z, e) diag (exp {(1/e){ I(S, Z)}, exp
{(1/e){,(s,z)}); and C(z) represents the system of n paths Cjl(z), j 1,..., n,

while we integrate the jth entry of the column vector along C.i(z).
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For convenience, let gjk(Z, e), 1 <= j, k <= n, be the (j, k) entry of the matrix
function G(z, e). By (2.20) and Theorem 2.1, part (c), we have for j 4: k, g,ik(Z, e) 0
as / 0 uniformly in the region (2.12).

4. Solutions of the integral and differential equations.
THEOREM 4.1. Assume S(Ox, 02) satisfies hypothesis IH10]. There exists

0 e eo, such that there exists a bounded solution to (2.19) in the region z Op,
0<e=<e.

Proof. Let 6, max, =<j__<, {j,} where

j 1, ..., n. Properties [H41, Theorem 2.1 part (c), and equation (2.20) together
imply that i < . Write (3.3) in the form X(z, e)= Xo + KX(z,e) for z e Dp,
0 < e < eo, where KX is the integral operator

[KX] (z, c.) c, fc E,(s, z, e)G(s, e)X(s, e) ds.

Writing KJXo col (xj,, .-., xj,), j 0, 1, 2, ..., we can prove that we have the
following inequality for all integers > 0"

(4.1) IXtk(Z, e)l =< for all 0 < e =< e < e0, Z Dp,

k 1,-.., n. This can be clearly proved by induction after choosing 0 < e,
< min 1/(26,), eo }.

Although the paths of integration for the integrals K[KXo] (z, e) do not tend
from z to a fixed point, the contribution for the integrals when ]sl is large compared
with Izl will be small if [KJX0] is bounded for s e Dp, 0 < e < eo. This is true by
[H3] and the comments before it. Also, integrals of these same integrands along
an arc of radius r inside ,(z), z e Dp, can be made arbitrarily small for sufficiently
large r >> [z[. Thus the functions KXo, j 0, 1, ..., are holomorphic for z e Dp,
0<e<eo

Inequality (4.1) implies that the series i=o KiXo converges uniformly and
absolutely for z Op, 0 < e el, and X "--’=o KiXo is a holomorphic solution
of (3.3)in this region. Finally,

dz ,(z)

diag (I(Z), ,n(Z)) 2,(z)I]E(s, z, e)G(s, e)X(s, e)} ds

+ G(z, )X(z, ),

and X is therefore a solution of (2.19) for z Dp, 0 < e el, with its components x
satisfying

(4.2) ]Xk(Z, e)] =< + 1/2 + 2.

Before constructing an asymptotic series for V(z, e), related to X(z, e) by
(2.18), we remark that the limit of M(z) zT- 1T’ as z in Sp is given by (2.8)
to be the matrix f(og)] -1 diag(O,m/n, ..., (n- 1)m/n)f(o9), whose diagonal
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elements are all equal to (re (n- 1)/2 (see Wasow [7]). Therefore we have
mj(z) (re (n 1)/2 + O(Iz[-1/,), as z c in Sp, j 1, ..., n. In reference
to F(z) in (2.18) we denote for simplicity

(4.3) :(z)=exp m()-ld j= 1,...,n, zeSp.

Then, we have

rj(Z) Zm/n)(n- 1)/2z-(m/n)’(n- 1)/2 exp -mj;()- + - d
zo n 2

where the last exponential factor on the right tends to i as z in Sp.
THZOZM 4.2. Let < , - < (m/n + 1)-a. Assume S(e, ) satisfies

hypothesis [H0]. Then for c > 0 sufficiently large, and e > 0 sufficiently small,
(2.11) has a solution V(z, e) satisfying the following inequality (Eh) for each integer
h O. Let V col (v, ..-, v,).

v(z, :) r(z) exp 2() d %(z, e)e
o =0

(h
eh+ (z) exp -1 1() d Kh(z, )

for j 1, n, z e S(c , ), 0 < , where the function Kh(z, ) is uniformly
of the order O(lz-(h+ (/+ ) for z e S(c; , ), 0 < . The functions %(z, )
are defined for z e S(c; , ), 0 < recursively by the followingformulas"
(4.4) %o(Z,e)=%(z,e)=0 forj 2,3, n, eo(Z,e) 1,

i=0 q=l
(4.5)

fork= 1,2,..., j 2,3, n,

where

d
Lj(f(x, e)) x[f(x, 0(21(x) 21(x))-1],

L+ I(f(x, )) Lj(L(f(x, ))).

C1 l(z)are paths as defined in 3 with 01,02 replaced respectively by , ft. Furthermore

ojk(z ,) O(izl-k(m/,+l)) as z o, j 1,..., n,

uniformly for z e S(c e, ), 0 < e _< 1.
Proof Choose 01 < e < fl < 02 such that 02 01 < rc(m/n + 1)-1, 02

e 01. Choose p as in 3 and B as in [H2]. Choose e as in Theorem 4.1. We
now prove the theorem with S(c; e, fl) replaced by Dp. Then it holds on S(B;o, )
and consequently on S(c;e, ) for c >= B.
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Let (z) be a holomorphic n-vector on Dv such that

(4.7) [(z)[ _<_ [z[ -a

if z Dv. Here d is a constant, d > 1. Then define

(4.8) [9] (z, ) gx(s z, 8)l/l(s) ds.
,c l(z)

By [H4], [,O](z, e) is holomorphic in z if z Dr, 0 < e =< el and there exists a
constant Ko independent of , z and e such that

(4.9) I[A-,](z, e)[ KoIZ l-a

if z e Dp, 0 < e __< el. For notational simplicity, let

Vj(Z)-- [,j(Z)- 21(Z)] -1 ifj - 1,
(4.10)

ak(z, e) col (alk, "’", a,), k 0, 1,

If f(z) is a scalar holomorphic function in Dp, denote the jth component of the
vector [(fej)] (z, e) by ff’where e.i is the column n-vector whose ith component is
the Kronecker delta 6ij. Finally, denote the jth row of G by Gj.

Partial integration in (4.8) leads to

N-1

(4.11) jOj e’vjL-l/j + eN{jLJOj + vjLf-lOj} ifj 4: 1,
r=l

where Oj is the jth component of. The operator K defined in Theorem 4.1, when
expressed in terms of the operator A", becomes KO -e,Y.GO. Hence

N

(4.12) X KJXo Xo eGX_ 1"
0

We shall prove
N

(4.13) Xu 2 ’hOh -- F’N + 1RN, N O, 1,
h=0

where eh is defined by (4.4)-(4.6), (4.10) and the jth component Rjr of Ru satisfies

(4.14)
RI(Z’;)-- fc glqRq’-l(S’e)ds’

q= x(z)

N-1

RjN Z {JLrf-hGjah + vjLy-h-lGjah} + jGjRu-1
h=0

if j 2,..., n. (R-1 0.) Moreover, there exist constants, Ma,k 0, 1,...,
independent of z and e such that

(4.15)
]g(z, )l Mg]l

if zeDv, O<gg

We prove these formulas by induction. If N- 0 and k 0, then (4.13),
(4.14), (4.15) are evident. Suppose the formulas are valid for N replaced by N
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and for k __< N 1. Then (4.12) implies
N

eN + 1/GRNXN Xo Z 13h’GOh 1"
h=l

From this, (4.4), (4.6) and (4.14) we deduce that the first components of both sides
of (4.13) are equal. Using (4.11) we obtain

N N-h

[XN]j 2 13h 2 13rvjL 1GjOh -1
h=l

(4.16) 13N+1 Z {JLlf-h+lGjOh-1 + vJL;-hGjh-1 sN+XjGjRN-1
h=l

ifj- 1.

Using (4.4), (4.5) and (4.14) we deduce (4.13). Furthermore, (4.15) with k N
follows from (4.15) with k =< N 1, (2.20), (4.4)-(4.6), (4.14), (4.9) and the last
two statements of Lemma 4.1.

Finally (4.12) implies

X Xu -13AG(X Xu_ 1)"

From this, (4.2), (2.20) and (4.9) we deduce

(4.17) X Xv O(p + 1)

as z --, uniformly for z e Dp, 0 < 13 131 for N 0, 1, 2,... successively.
The theorem now follows from (4.17), (4.13), (4.15), (2.18) and (4.3).

The following lemma has been used in the proof of Theorem 4.2 and will be
used for proving Theorem 4.3. We omit the proof of the lemma because it involves
merely straightforward induction using properties [HI] to [H4].

LEMMA 4.1. The notation is that of Theorem 4.2. The functions Ojk(Z 13), j
1,..., n, k O, 1,..., can be extended by means of formulas (4.4)-(4.6) to be

defined in the set S(/; 01, 02) containing Dp, with / < [Zo[ 01 < 01 < 02 < 02,
02 -01 < zt(m/n + 1) -1. They satisfy

(4.18) zk(’/"+ 1)Ojk(Z 13) Z OJkr(Z)r as # 0
r=0

uniformly for z e Dp, 0 < , <- 131, J 1,... n, where ejkr(z), k va 0, r 0, 1,
possess convergent expansions in descending powers of z 1/" in Dp and are of the
order O(1)as z in Dp. Furthermore, asymptotic series in powers ofl 13z -m/"-

for any derivative of zj(z, 13) in Dp can be found by formally differentiating (4.18)
termwise. Forj va 1, the operator Li reduces the order with respect to z of the coeffi-
cient of #h in the asymptotic expansion of the function = gjq%(z, 13) by -s(m/n
+ 1) in Dv. (For the asymptotic s.eries of the derivatives of ej(z, 13), see W. Wasow
[5, Theorem 9.4, p. 44] .)

Remarks. Because glq are 0 for j 4: q, the functions zj(z, 13) 0 as # 0
uniformly for z e Dp, 0 < 13 __< 131, k 0, 1, ..-, for all j - 1 by (4.4), (4.5).

Remarks. Note that in (2.18), (2.19) the root 21(z) plays a particular role among
all other roots 2j(z). Actually, transformation analogous to (2.18) can be made with
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/1() replaced by any 2k(), k - 1. Let Sg(01,02), 1 <= k,j <= n, k 4: j be the image
of S(01,02) {zl01 < arg z < 02} on the (m/n + 1)-l(aoj aok)Zm/"+l-plane.
Suppose S(01,02) satisfies the following hypothesis.

[Hk0]. SJk(01,02) containg a ray in the right half-plane, for each integer
j4:k,l<=j_<n.

We can construct paths Cjk(Z), 1 <= j <= n, satisfying properties analogous to
[H1] to [H4] with the role of 21 replaced by 2k. Then we shall arrive at theorems
analogous to Theorems 4.1, 4.2 with the role of 21(z replaced by 2k(Z). Of course
the formulas in Theorem 4.2 should be changed in the same manner.

THEOREM 4.3. Let 01, 02 be angles such that 0 < 02 01 < n(m/n + 1)-1.
Let r be an integer 1 <_ r <= n. Assume S(01,02) satisfies hypothesis H0]. Let , fl be
angles 01 < < fl < 02. Then there exist constants c > 0 sufficiently large and
> 0 sufficiently small, such that for z, e in the region

(4.19) z e S(c; e,/3), 0 < e =< e,

equation (1.1) has a solution ur(z, ) with the following asymptotic property"

(4.20)

in region (4.19) for each nonnegative integer 2, where a is an arbitrary fixed point
in S(01,02). The functions Uk(Z), k O, 1,... are of the order O([z[ -k(m/"+ 1)) in

S(c , fl) and possess convergent expansions in descending powers of z 1/" there;

Uro(Z) exp mr()-1 +
m n-1 _J }n 2

d

which tends to 1 as z in S(c; 0, fl). The functions Mz(z, e), 2 0, 1, ..-, are

of the order O([z[ -(z+ 1)tm/,+ 1)) in the region (4.19).
Proof By the remarks immediately above, it suffices to show the case when

r 1. Refer to (2.4), (2.10) and part (d) of Theorem 2.1, which together express u
in terms of V. We only have to apply Theorem 4.2 and (4.18), rearrange terms, and
express u in terms of V and R to obtain an asymptotic series for u in powers of/k,
as # 0. Finally, let Ul(Z, ) be an appropriate constant multiple of u to deduce
formula (4.20).

COROLLARY 4.4. The asymptotic formulas for Uk(Z), r 1,..., n, k O,
1,..., can be explicitly constructed by using the expansion for R(z, #) in (2.13),
the expansion for V in Theorem 4.2 and (4.18).

COROLLARY 4.5. The asymptotic series in powers of ak as # 0 for any deriva-
tive of ur(z, e), r 1, ..., n, with respect to z in region (4.19) can be found by formally
differentiating the left of (4.20).

Proof Refer to W. Wasow [5, Theorem 9.4, p. 44].
Proof of the main theorem (Theorem 1.1). Let Cbl, (2 be angles such that

< (D1 < 0)2 < (’92, (2 (’)1 < (zr/n)(m/n + 1)-1. There exist an angle 0)3 and an
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integer k such that

and

13 jl <nn
m )_1 for j= 1,2,

2k- 1
"c< arg{ aolexp [ico3

m

Without loss of generality, we assume

2grci
aog + ao exp

n
g= 1,2,...,n- 1,

and define

ao= aor ifs=r(modn).

If we consider two angles to be equal if they differ by an integral multiple of 2z,
then

2g+j
arg (aog+ l+j aog+ 1)= arg (iaol) + t,

j- 1,...,n- 1. Let

(4.21)

Then

(4.22)

-x+--+arg -aoexp ioa + 1 -e -,
forj 1,2, ..., n 1. Let

SxS o---+1 1- ,
Equations (4.21) and (4.22) imply that the xg+ -image of the ray arg z
belongs to xg+(S) {Rez > 0}, j 1,2,..., (n 1), whenever 0 N k + g
< n/2, where

xi(z) (m/n + 1)- (ao aoi)Z/+

Thus, if + 1 g + 1 (mod n), 1 N + 1 N n, then S satisfies [H+0] when
ONk+g<n.

In the same way, let

m )-,S2 S ,oa + --+ 1 1
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S2 satisfies [H+ 10], if + g + 1 (mod n), 1 <__ + _< n, -1/2n < k + g _<_ 0.
Since S((51, cb2) c $1 $2, we may apply Theorem 4.3 and find n linear indepen-
dent solutions uj(z), j 1, ..., n, in S(L; COl, co2) which satisfy (1.4).
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ON OBTAINING GENERATING FUNCTIONS OF
BOAS AND BUCK TYPE FOR ORTHOGONAL POLYNOMIALS*

MOURAD EL-HOUSSIENY ISMAIL"

Abstract. In this paper we introduce a method to obtain all generating functions of Boas and
Buck type for any given orthogonal polynomial set. We also characterize the orthogonal polynomials
that satisfy

xP[,(x) nP,(x) + (- 1)"-kokPk(x with Ck O, k O, 1,....

1. Introduction. A polynomial set {P,(x)} is said to have a generating
function of Boas and Buck type if there exists a sequence of nonzero numbers
20,21,..., 2,, such that

(1.1) 2tP(x) A(t)dp(xH(t)),
0

where

A(t) a,t", H(t) hktk, qb(t) kt.
0 0

The condition aohl ok, :/= 0 is necessary to make P,(x) of exact degree n.
Given any polynomial set {P.(x)} we can construct a sequence #, so that

n-1

(1.2) xPT,(x) la,P(x) + nP,(x).
k=0

From now on we restrict ourselves to orthogonal polynomials P,(x). Let

gn6m’n f Pn(x)Pm(x) do(x),

with 0(x) of bounded variation on the interval I.
In 2 we give a method for obtaining generating functions of Boas and Buck

type for a given orthogonal polynomial set. Later in 2 we apply this method to
the classical polynomials. In 3 we investigate polynomials that are orthogonal,
have a generating function of the above type and for which

2. A method for obtaining generating functions. All the operations we perform
are formal ones and we shall pay no attention to questions of convergence.

Define

kn 22,g,, f(x)= k,x, and G(x, t)= A(t)c(xH(t)).
0
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Clearly,

(2.1) f(st) J1 G(x, t)G(x, s)de(x).

Differentiating (2.1) with respect to and using

G A’(t) H’(t) cG(x, t)
G(x, t) +xt A(t) H(t) cx

we get

A’(t) H’(t) f cG(x, t)
sf’(st) --(( f(st) + - xG(x, s) cx de(x).

It is easy to see that

(2.2) [sH(t) tH(s)]
[H’(t)

+
H’(s)J

f’(st):
a(t)H’(t)

+ A’(s)H(s)]
AJf(st) + g(s, t)

where

(2.3)

Let

g(s, t) Xx6(x, s)G(x, t) d(x).

0 0

It is obvious that 7,,k 7k,,. Equating coefficients of and the constant terms in
both sides of (2.2) we get

(2.4)
A’(s)H(s) F(s)

and
H(s)

-s
sF(s) Fl(S) 71,o

A(s)H’(s) ko H’(s) ko kl
as well as

70,0 0 and 7, 2kl.

EliminatingA’(s)/A(s) and H(s)/H’(s) between (2.2)and (2.4) we obtain

FI(S)- 71,0F(t)- 7a,o +
kit klS

2 nk,(st)" + Fo(t)- 70,1

+S(Fl(t) 71,0 71,1 t) O{I-’o(S) + Fo(t)} ’, (n 1)k,(st)" -i- t"F,(s).
2 2

By straightforward induction we have

(2.5) 7, 2jka,

(2.6) Fj(S)-- 71,iS + kas
j 1-’1(S)- 71,0 (J- 1)Fo(S

/=0 S k0
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and

(2.7)

On the other hand,

(2.8)

where, by (2.3) and (1.2),

Therefore,

F l(t) 71,o 2 nk,(st)" + S 71,mtm
kit ,,=j /=0 m=j

(Fo(s)+ Fo(t)) (n- 1) (st)" + t"F,(s).
n=j n=j

g(s, t) )cmnAm,nsmt
m,tl 0

/,"=n, p,=0 ifm>n.

(2.9) Fj(s) j Z mAj,mSin"
m=0

Comparing (2.6) and (2.9) we get

(2.10)

and

2j2mAj,m 7re,j, m < j,

(2.11) i JAj,m+j gj 71,m+1 2go

Equation (2.11) may be written as

(2.12)
"m+j Aj,m+j --JAl,m+ 12m+

(J 1)/mAo,m,
)j gj g121 2ogo

or equivalently,

(2.13) m+j m+j + /m+ Am
x u JuT (j 1)u o

Therefore for any given set {P,(x)}, the Am,n’s and the g,’s can be evaluated.
The equations (2.10) and (2.13), if solvable give the 2’s and the y’s. Then the first
order differential equations (2.4) allow us to calculate A(t) and H(t). To evaluate
b(x) we note that

/j A(t
o

and as --+ 0 we get

where

(x) --,
j= ao

P2(x) qjx +
We may assume, without loss of generality, that h ao 1.
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applied the above method to the classical polynomials, namely the Jacobi,
Hermite, Laguerre and Bessel polynomials and the result is the following theorem.

THEOREM 1. The only generating functions of Boas and Buck type for the
Jacobi polynomials P(,’a)(x + 1), Hermite polynomials H,(x), Laguerre polynomials
L(,)(x) and the Bessel polynomials dp,(c, x) are

( / fl / 1), o(,)(1,, + x)t
o (/ 1),

(2.14)

--(1-t)-=-a-12F1[. /2fl + 1, a+f12 +2;+ 1’(1" 2xt))2.j,-]

( + fl + 1),[a + fl + + 2n
tnPn,fl)(x / 1)

o (+ ii, +fl+
(2.15)

l+t [ +fl+3+fl+222
2xt1-t)2(1 t)+/+2 2F1 z + 1,(1

with the two corresponding limiting cases when + fl + 1 0,

oHZn(X) tZn H2n+ 1(X) tZn+ e-t2[/o cosh 2xt + 21 sinh 2xtJ(2.16) 20 -n. / /1 Z(2n / 1)’0

(2.17)

(c)" I4:’(x)t" + o (c + 1/2).
/0

(2n / 1)!

(1 / /2)-c{2o 1F
H2n+ l(x)tZn+

(c).
(2.18)

o ( / 1),

X2t2
c;2’t2 + 1

L(,)(x)t" (1 t)-c 1F
--xt

c; + 1;1

2 2 t2+l

(2.19) L(,)(x)
o (a+ 1),

etoFl( ;1 + o; -xt),

1 -4xt
’2.20) 2 (n’c’ X)tn ’1 /?)-c 2F0 2, C;2C /; t)2

(2.21) (2n+c)dp,(c x)t’-
c(1 +t) -4xt

o (1 t)c+1 2F C + 1,C / ;--’(i --2]"
Remarks. The class of generating functions (2.17) is contained in Brafman’s

class of peculiar generating functions [2J. All the other generating functions are
essentially in [3. The special Jacobi polynomials P(,)(x), i.e., the Gegenbauer
polynomials C, + /2(x) possess two more generating functions of the required type.
They are

’0 2 CV2n(X)t2" / /1 2 CV2. + 1(x)t2"+
0 0

(2.22) 1/2(20 + 21)(1 2xt + t2) / 1/2()0- 21)(1 / 2xt + t2) -v,
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20 (2n + v)Cz,(X)t2" + ,1 2 (2n + v 4- 1)C, +I(X)t2n+l
0 0

(2.23) V -v-1](1 t21[(2o + Xl)(1 2xt + 2) -1 4- (’0 /],1)( 4- 2Xt + 2)

which are again essentially in [3.

3. Orthogonal polynomials with/ (-1)"-kpk, pk 4: 0. Let P,,(x) be such
a set, so that

n-1

(3.1) xP[,(x) nP,(x) + (-1)’-kpkPk(X),
0

and assume that

(3.2) P,+ l(x)= (xA, + B,)P,(x)- 2,P,_ (x),

(P_,(x) =0, Po(x) 1, 2,A, v O),

is the three term recurrence relation satisfied by P,(x). Differentiate (3.2), and use
(3.1) to eliminate Ply(x). The result is

1)" kpkPk(X 1)" kpkPk(X
k=O k=O

n-2

(3.3)
+ 2, 2P,_ (x) + (- 1)"-kpkPk(X)

0

n=l

+An
o A
p
(- 1)n-[P+ I(X) + 2P_ (x)

un(x),

and hence,

Bn Pn Pn-(3.4)
A, A An-

2. (1 4- Pn) 2p2-’
4- Aff-(Pn_l- 1),(3.5)

A._,

(3.6)

Equality (3.6) is equivalent to

B 2
(3.7) 4-+=h,
and

(3.8) P- +p,A_
BPk+ 1_ 2k+ 4- h

pkAk +

for some constant h, independent of k or n.



GENERATING FUNCTIONS FOR ORTHOGONAL POLYNOMIALS 207

Eliminating B, and 2, from (3.4), (3.5) and (3.7), we get

(3.9)
(1 + p,)(2 + p,_,)

2 P"-’ (1 + p,_,)+
P,-2

A, A,_, A--_z(p,_ 1)= 2h.

Similarly (3.8), with k n 1 implies

(3.10) +2 (1 p,) +A, A,_

Subtracting (3.9) from (3.10) we get

+ p,
2
p’- +A, An_

or

P,-z(P, 2)
An- 2Pn-

(P.- 1) 2h

])n+l (c + 2n)(c + 2n + 1)
4{h(n + 1)n + an + b}"

If h 4: 0, then the solution of (3.16) is

(c/2), (c/2 + 1/2), 7o
7,

(A), (A2), h"’

(3.16)

Now (3.11) and (3.15) will imply

(3.15) A, 4(,+ 1/’))n).

The first alternative is impossible by (3.5) since 2, is never zero. Thus

p, c + 2n,

where c is an arbitrary constant. Now the solution of (3.9) is

(c + 2n)(c + 2n + 1)
(3.11)

A,
hn(n + 1) + an + b,

where a and b are arbitrary constants. Note that c - 0 since Po - 0. Set

(3.12) G(x, t) P,(x)t".
o

It is easy to see that (3.1), with p c + 2k, implies

c3G \G c
(3.13) X-x 1 + t) cx +tG x

If we set G(x, t) (1 t)-4)(x, t), substitute in (3.13), change the variables x, to
4xt/(1- 02 and r/= and then solve the resulting simple equation, we

obtain

(3.14) P,(x)t" (1 t)-c
4xt

(1 -t)2]
where 4)() 7,’, say, is an arbitrary function. Clearly,

Pn Pn-1 2.

Pn-2 (Pn-1 1)
--0,

An-2 Pn-1
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with

hn(n + 1) + an + b h(n + A x)(n + A2).

In this case, there is no loss of generality to assume h -1 and 9’o 1.
Consequently we have

L[ -c - 4x1(-(3.17) P,(x)t" (1 t)-c 3F2 , + 1 Az,  pj.o

The ase 0 can be teated similal7 and both cases mpl7 that (B.I?) s valid
f we adopt the convention that the B means a 1 (o) if one (two) of the
nomnato parameters vanishes. The expfict fom of P()

P() BG[- + c i :1 B:].

If i and AB 0 then P() educes to the Bessel polynomial (c ). If
l B + I c + + l then P() educes to ( + + I)d(i + )

P)(I 2x) where P)() s the acob polynomial of ode .
nall Theorem I ofN. Al-Salam [I shows that these ae the onl

polynomials in this class. Thus we poved the follown& characterization of the
Bessel and acobi polynomials.

THBOaM . Te ol orol polynomials (B.1) i 0
Bessel Jcoi polynomials.

l.I wsh to express m7 deep afitude to Pofesso
Al-Salam fo hs udance help and encouragement thou&hout the pepaafion
of ths paper.
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INTEGRAL REPRESENTATION, ANALYTIC CONTINUATION AND
THE REFLECTION PRINCIPLE UNDER THE COMPLEMENTING
BOUNDARY CONDITION FOR HIGHER ORDER ELLIPTIC

EQUATIONS IN THE PLANE*

CHING-LING YU]"

Abstract. Let a’(x, y) be analytic functions for x, y in the z x + iy plane. Consider the equation
A"u + "k 1Lk(A’-ku) 0, where Lk S"P+q<-k aq(x, y)OP+q/OxPOYq. The following three areas will/-ap,q=O

be investigated: (i) integral representation for solutions of the above equation to the boundary 0G
of a simply connected domain G, (ii) the reflection principle for solutions of the above equation under
the complementing boundary conditions, (iii) analytic continuation and nonexistence for solutions of
the Cauchy problem.

Introduction. The main purpose of this paper is to study the integral repre-
sentation for solutions of elliptic equations of the type

A"u + Lk(A"-ku) 0,
k=l

(0.1)
(2 (2 p+q<-k p+q

A= x2 + Lk aq(x Y)y2 p,q=O xPtYq"

in a closed domain G of the z x + iy plane, and its applications to the Cauchy
problem and the reflection principle under the complementing boundary condi-
tion for solutions of (0.1), where the coefficients of (0.1) are real- or complex-
valued analytic functions of two real variables x, y in a neighborhood of

The theory described in the work of Vekua 14] has established the complex
integral representation (1.1) for the solution of (0.1) in a simply connected domain
G. However, his theorem cannot immediately be applied to G I,.J 3G, except
under some very restrictive conditions, where c3G is the boundary of G. In a
variety of applications, due to the generality of the boundary conditions, the
abovementioned representation is not general enough to be applied to some wider
classes of solutions. These are also the main difficulties encountered in applying
the method of Lewy [8] to study the reflection principle under complementing
boundary conditions and the Cauchy problem for solutions of (0.1).

We shall overcome these difficulties by an elementary method in 2.
Until now the main emphasis in the study of the Cauchy problem for elliptic

equations has been on the question of uniqueness. Very little has been devoted to
the question of existence of solutions, except for specific equations, data, and
geometry (see, e.g., Payne 10]). The existence question is an extremely difficult
one since, frequently, in order for a solution to exist, very strong compatibility
relations must exist among the data.

By investigating the relations between A2u + 2u 0 and A2u 0, whose
solutions share Cauchy data, Lewy [8] gave very interesting sufficient conditions
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for the analytic continuation and the nonexistence of the solution of the Cauchy
problem for the equation A).u + 2u 0; but his results are local, and the domains
of which continuation is possible are not made explicit. Yu later [17] extended
these results to elliptic systems of two first order equations.

In the present paper the relations between two different differential equations
of type (0.1) whose solutions share Cauchy data are discussed. We obtain explicit
information of the domain of continuation and sufficient conditions for the non-
existence of the solutions of the Cauchy problem for (0.1).

The classical reflection principle for the Cauchy-Riemann equations has been
generalized by many authors, to solutions of various types of elliptic equations
with analytic coefficients under analytic boundary conditions in the plane. Second
order equations have been investigated by Lewy [8], biharmonic equations by
Poritsky [11], Duffin [4, Bramble [2, Sloss [12], polyharmonic equations by
Huber [6], Kraft [7], and systems of two first order equations by Yu [16], [17].

Some higher order equations with constant coefficients have been treated
by Brown [2] and Sloss [12]. Yu [15] demonstrated a reflection principle for (0.1)
under analytic Dirichlet boundary conditions. Morrey [9] studied the analyticity
at the boundary for general elliptic systems under the complementing boundary
conditions. (See Agmon, Douglis and Nirenberg [1.)

In connection with these, it is interesting to consider the reflection principle
for elliptic equations with the complementing boundary conditions. In this paper
we shall study such a kind of reflection principle for (0.1).

In we introduce some notation and give a brief summary of Vekua’s
theory of the representation ofthe solutions of (0.1) in a domain G. In 2 we extend
Vekua’s integral representation to the boundary t?G of G. In 3 we study the
analytic continuation and the nonexistence ofthe solutions of the Cauchy problem
for (0.1). In 4 we establish the reflection principle for (0.1) under the complement-
ing boundary condition.

1. Notation and integral representation on G. Throughout this paper let D
denote a simply connected domain of the z x + iy plane whose boundary
contains a segment a, a {x:a < x < b}. It is assumed that a contains the origin
as an interior point. Also let G denote a simply connected domain such that
GI.JcGDUaU and a G, where /= {zlzC, D} and c3G is the
boundary of G.

According to the theory of functions of several complex variables, there
corresponds a function called the analytic continuation of aq(x, y) in (0.1), which
is holomorphic in a domain of the space C2 of the two complex variables x, y,
and which coincides with atq(x, y) when x, y are real. We shall denote the analytic
continuation of aq(x, y) again by aq(x, y).

Let us introduce new variables z, ( by the relations

z= x + iy, x- iy;

the variables z and ( are conjugate if and only if x and y are real. We put

Aq(z, ) aq(x, y).

We further assume that Afq(z, ) are holomorphic functions for z, e D U a U .
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We now state Vekua’s formula [14 for expressing the solution of (0.1) in G
in terms of holomorphic functions of one complex variable.

THEOREM 1.1. Every C2"-solution u(x,y) of (0.1) in the domain G can be
analytically continued into a domain of complex values of x, y. Set z x + iy,

x- iy. The resulting function U(z, ) is an analytic function in the domain
(G, G) and has the following integral representation formula"

n-1 n-1

U(z, ) g(z, [)%(z) + f(z,
(1.1)

,:o ,:o

(t, z, )(t) at A(, z, )’()
k:0 zo k=0

where

Gk(t, 50, z, )

fk(z, ) (- 1) G(zo, r, z, )

k+
Bk( Z, ) (-- 1)kk+ ak(’ 0, Z, ),

k+
A(, z, ) (-1)6(Zo, , , ), k 0, 1, ..., n 1,

the functions (z), () are analytic for z G, G, the functions G are analytic
for z, t, , D , depend only on the coecients A, and are given ex-
plicitly in Vekua [14, p. 188]. Conversely, the representation (1.1) gives the analytic
continuation of a solution of (0.1) in domain G. Moreover, if the coecients of (0.1)
are realfunctions, then theG(zo, 5o, z, 5),k 0, 1, ..., n 1,arereal, G(t, 5o, z, 5),
G(zo, , z, 5) are conjugate functions, and all the real solutions of (0.1) are given by
(1.1), where () (z), k 0,1, n 1.

THeOreM 1.2. The jbllowing relations hold for the indicated Wronskians
(Vekua [14, p. 223])"

(1.2) W1 (z, )

(1.3) W2(z, )

kgi(z, )

ef,(z, )
czk

=exp B,,,_l(z,r) dr -0,

=exp B,_ ,,(t, ) dt #0,
Zo

i=0,1,...,n- 1; k=0,1,...,n- 1,

where Bn, I(Z, ), B,_ 1,n(Z, ) are analytic functions for z, e D U a U , and are
given explicitly in Vekua [14, p. 1841.

2. Integral representation on G U 8G. One ofthe main difficulties encountered
in studying the reflection principle is that the complex representation (1.1)
established by Vekua for the solution u(x, y) of (0.1) in the domain D cannot
immediately be applied to D U a. This means that the properties of qSo(Z), ...,
4,-1(z), 05(0, q,*-1() near a are unclear.
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We are going to overcome this difficulty by studying some properties of
Volterra integral equations.

LEMMA 2.1. If K(z, t), f(t) are holomorphic for z, D (J a (.] , then

K(z, t)f(t) dt f(O) K(z, t) dt + f’(O) K,(z, t) dt

(2.1)

+ + f(- (0) K_ (z, t) dt + K(z, t)f((t)dt,

where

(2.2)

Ki(z,t Ki_l(Z,t’)dt’.

COROLLARY 2.1. Iff(z) is holomorphic for z D U a U , then

f(z) f(O) + f’(O)z + + f"- 1)(0) Jo (n 2)!
(Z t)n-1

+
(n 1)!

f(")(t) dt.

--dr

LEMMA 2.2. Let G be a simply connected domain in z-plane. If w(z) is uniformly
continuous on G, then there exists a unique continuous function g(z) on G 13 cOG
such that g(z) w(z) on G.

Proof. See Graves 5, p. 117].
TI-IORFM 2.1. Let u(x, y) be a solution of the differential equation (0.1) in D,

continuous along with its (n- + m)-th derivatives in D 13 a, m >= n. Then its
analytic continuation U(z,O has the complex integral representation (1.1) for
(z, ) (D U a, 13 a). Furthermore, the functions Co(Z),..., dp,_ (z), dp(O,...,
dp*,_(), which are given in (1.1), and their m-th derivatives are continuous for
zDUa,Ua.

Proof. It is easy to see that for + j n + m, the functions

(i +
(2.3) hj(z) hj(x, y) c3zc3uu(x, y)

are continuous for z D U a, where

c (c y) c 1(c3 y)(2.4) z - = +i

Let us differentiate (1.1); for j n 1, we get

hmj(Z #zmj U(Z, )

(2.5)
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and

(m +

hj.,(z) czjc5,
U(z, 5)

nl m+j nl m+j
(2.6) 63zj5-[gk(z 5)d/)k(z)] nt- 0Z)(5 Ilk(Z, 5)(’(5)]

k=O k=O

nl m+j fzZ nl m+j

o oz o

for z x + iy 6 D.
By Lemma 2.1, Corollary 2.1 and Leibniz’s rule, we may rewrite (2.5) and

(2.6) as

nl j nl ;zhj(z) g(z, ) 4m(z) + Gmj(t, Z, )4m(t) dt
k=0 k=0 zo

(2.7)

+ Gmj(t, z, ))(t) dt + Hj(z, )
k= 0 o

and

(2.8)
hjm(Z A(z, 5 )(m)(5) -at- Fkjm(t Z, 5)(])7)(t) at

k=O k =0

+ Gj(t, z, ))(t) dt + Hjm(Z, ),
k=0

where the gk(Z, ), fk(Z, ), Fkmj(t, Z, ), Gk,,(t, Z, ), Fkj,,(t, Z, ), Gkjm(t Z, ), Hmj(Z, )
and Hj,,(z, ) are holomorphic for t, z, ( D U a U .

Let JW/(z, 5) denote the matrix obtained from the Wronskians W/(z, 5) by
replacing the jth column of W/(z, 5) by the vectors

h,.o(Z) Hmo(Z, 5)

h,.(._ 1)(Z) Hm( 1)(z, 5)

respectively, for 1, 2. Set

JWI(Z, 5
(2.9) Kj(z)

WI(Z 5)’

hm(Z) Hm(Z’ )

h(n-1)m(z) H(n_ 1)m(z,

K(z)
W(z, )
W(z, )

According to Theorem 1.2, the Wronskian Wl(Z, 0 # 0 and W2(z, 0 4:0 for
z, e D U a U/; hence Kj(z) and Kf(z) are continuous for z e D U a. Therefore
(2.7) and (2.8) can be written in the forms

(2.10)
")(z) + Fj(z, , t)dp(m)(t) dt

k=0

+ 6jk(Z, , t)Ck(m)(t) dt gj(z),
k=O



214 CHUNG-LING YU

k=O zo
(2.11)

+ G]k(z, , t)qsm)(t)dt K](z),
k=0

j 0, 1,..-, n 1, where Fjk(z, , t), Gj(z, , t), V(z, , t) and G(z, , t) are
certain functions holomorphic for z, , D U D, j(z) and ([) are holo-
morphic for z D, D.

Define %(z)= y)(z), #j+.(z)= &(), ks+.(z)= k(z), Fs+.)(z, , t)
6(, , ), V+.)(z, , t) F(z, , t), Fs+.+.(z, , t) 6s(z, , ), for

j=O, 1,...,n-l,k=O, 1,...,n-1.
Using matrix notation, (j), F(z, t)= (Fij(z,, t)), K (ks), we have

that systems (2.10) and (2.11) may be written as

(. O(z + (z, 0(0 (z.

Recall that (2.10) and (2.11 are independent ofpath in D. Let Do be an arbitrary
open half disc in D, whose boundary Do contains a segment o, o c , and
Do U Do c D U . Let G be a simply connected compact subset of D U ,
which contains Do and Zo. Then the function F(z, t) is bounded by a constant
M for(z,t)e(6, 6), that is, If(z, t) < M for(z,t)e(6, 6).

Ifwe can prove 0(z) is continuous on Do U o, then the proof will be complete.
Let z, z be any two arbitrary points in Do. Let 2(0), 0 N 0 N 1, 2’(0)1

N q, denote a simple smooth path in G for which Zo 2(0), z 2(B), 0 N B N 1,
and this path connects z and z. We also can choose a path such that q is in-
dependent of z and z for z, z e Do Hence (2.12) is equivalent to

In view of the method of successive approximation, 0(2()) has the representa-
tion

This means along the path 2(0),

20

and

(2.16) IF(2(fl), 2(0))1 =< M exp (Ml2(fl)- 2(0)1)=< M1.

Therefore, we have

(2.17) O(z2)- I//(21)= k(22)- k(zl)-t- F(z,t)k(t)dt.
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Finally, we use (2.16) to estimate

(2.18) [p(z2)- (Z1)
where p max,G1 [k(t)[.

Since k(z) is uniformly continuous in Do, by (2.18), O(z) is uniformly con-
tinuous in Do therefore, O(z) has a continuous extension to Do U c3Do (Lemma 2.2).
This completes the proof.

By a similar argument we have the following generalization.
THEOREM 2.2. Let G be a simply connected domain whose boundary OG is a

piecewise C"-l+m, simple, closed curve and G U OG D U a U . Then every
solution u(x, y) of the differential equation (0.1) in G, continuous with its (n- 1
+m)-th derivatives in G [_J c3G, m >__ n, has the integral representation (1.1), where
the functions Co(Z),..., dp,_l(z), dp(), ..., P*,-I() and their m-th derivatives
are continuous for z

3. Analytic continuation and the nonexistence of the solutions of the Cauchy
problem. Let us now consider the following two differential equations"

Anu + Lki(An-ku) =0,
k=l

(Mi)
p + <- p + q t2 2

Lki E A"q[ki [Z, ) A 4-
v,q=0 xVy,l’ y2

1 2, where APqtz
i ) is holomorphic for z, s D U a U O.

The following theorem is concerned with the analytic continuation and the
nonexistence of the solutions of (M) and (M2).

Tnzoz 3.1. U" fii(x) C2"- -(a), 0 2n 1, are the Cauchy data of
a solution u(x, y) of (M) in D, and also are Cauchy data of a solution Uz(X, y) of
(Mz) in D, then 6i(x is analytic on a, and its analytic continuation 6i(z is holo-
morphic in D U a U O. Furthermore, u(x, y) and Uz(X, y) can be continued analytic-
ally into the whole of D U a O as solutions of (M) and (M2) respectively.

The following corollary of Theorem 3.1 is a generalization of well-known
criteria for the analytic continuation of a holomorphic function.

COROLLARY 3.1. ff 6i(X) C2n- 1-i(ff), 0 2n 1, are the Cauchy data
of a solution U l(X, y) of (0.1) in D, and also are the Cauchy data of a solution UE(X, y)
of(0.1) in , then there is a solution u(x, y) of(0.1) in D U such that

(x y) in D,
u(x, y)

2(x, y) in ,
ibl(X =Y) 6i(x on a, O, 1, 2n 1.

c3y’

If we further assume that 6i(x), 0, 1, ..., 2n 1, is nowhere analytic on
a, then Theorem 3.1 is equivalent to the following theorem.

THEOREM 3.2. Let 6i(x C2"- 1-i(a), 0 <= <_ 2n 1, be nowhere analytic on
a. If 6i(x), 0,..., 2n 1, are Cauchy data of a solution uz(x, y) of (M2) in ,
then the Cauchy problem for (M 1) has no solution in D.
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Proof of Theorem 3.1. It is easy to see that the functions

(3.1)
(i + i +

ha(x) zyu(X, Y)ly=o ziju2(X, Y)[y=O,

+ j =< 2n 1, can be expressed in terms of 6k(X) and their derivatives, 0 =< k
_<2n- 1.

According to Theorem 2.1, the analytic continuations Ul(z, ) of Ul(X, y)
and Uz(z, ) of Uz(X, y) have the complex representation

(3.2)

n-1 n-1

U,(z, ) gki(z, )bk,(z + fk,(z, )dp,()
k=0 k=O

Bki(t, z, )dPki(t dt Aki(t, z, )dPi(t dt,
k=O k=O

zeD U a, U a, i= 1,2,

where gki(z, ),.i(z, {), Bki(t, z, ), Aki(t, z, )are holomorphic for t, z, { D U a (_J/3,
bkl(Z), b’2(z), b’l({), bk2( are holomorphic for z D, { D, and continuous with
their nth derivatives for z D U a, { e U a.

Let us differentiate (3.2), as we did in the proof of Theorem 2.1. We get

n+j
h,j(x) cqz"cU U,(z, ’)]z=x (i 1,2)

gkl(Z, .) dp)(x) q- Fknjl(t, X, X))(t)dt
k=0 k=0

(3.3) + Gknjl(t x, x)dpn)(t) dt + Hnjl(X x)
k=O

nl [jgk2(Z t nlxdp)2(x) + Fk,j2(t, X, x)dP)2(t)dt
k=O k=O o

+ Gknjz(t, X, x)dp’{zn)(t) dt + Hnjz(X, x),
k=O zo

where the gki(z, ), Fknji(t, z, ), Gknji(t, z, ), Hnji(z, ) are holomorphic for t, z,
eD (_J a (.J O, l, 2.

Hence, (3.3) suggests the relation

(3.4)

gk,(z, c)l(X) + Fk,j(t, x, x)cfl)(t) dt
k=0 k=0

Gknj2(t, X, X)bk2 (t) dt
k=O
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where

Fj(x) g2(z, 5 2)(x) + F,j2(t, x, x)dp)2(t) dt
k=0 k=0

+ Gknj2(t, x, x)dP2n)(t) dt + Hnj2(x, x)
k=O zo

k=O

G(t, x, x)(t) dt H(x, x).
k=0

Similarly, by applying the differential operator +/z" to (3.2) we get the
relation

=0 k=O
(3.5

+ G2(t, x, x))(t) dt F+(x).
k=0

According to Theorem 1.2, we know the Wronskians

(I (,0 o,
=

(z A(z, 0 o.
=

It is also clear that F(z), F+(z) are holomorphic for z e D, and continuous in
U , and these facts suggest a system of Volterra integral equations (3.4), (3.5)

for the unknowns ., _(z) in the domain
U .Therefore, a unique solution (4(z) (z)(z) ..., (_*(z))

exists that is holomorphic in and continuous in U (cf. Vekua [14). Hence
the (z) 4(z) a*(- *o o t-, .., (_(z) are defined and holomorphic
for z e D U U . By the same argument, we can continue (z), ., (,_a*((z),
o() L()analtiall into D

In consequence of ths extnsions (3.2) holds for
U . This mans that u(x 7) U( ) and u(x 7) U( ) ar dfind and
satisf$ (M) and (M) for D U U respetivl$. This ompletes th proof.

Proo o Gorollar7 3.1 and Theorem 3.2. Thse ar immediate consequences
of Theorem 3.1.

4. The reflection principle under the complementing boundary conditions.
We now introduce n differential operators {Bk}= of respective orders r/k, given
by

Bk Z, ,-X,
i+j<-m, txiYj’

and also let B, denote the highest order part of Bk.
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We shall impose the following conditions.
Analytic condition. The functions Bis(z, (), + j <_ nk, are holomorphic for

z,DUaU.
Complementing condition. For every point z D U a U and every fixed

real -0 the polynomials B’(z, z, , z) (in z) are linearly independent mod
i11)".
The following theorem is concerned with the reflection principle for the

solution of (0.1).
THeOreM 4.1. Let 6i(z be holomorphic jhnctions in D (.J a , 1, ..., n.

Also let u(x, y) be a solution of (0.1) in D, continuous with its derivatives up to order
max (2n + 1, n + 1)in D a. If u(x, y)satisfies

(4.1) B x, x, cx’ u (x), x e o"

where the boundary operators B, k 1,..., n, satisfy the analytic condition and
the complementing condition, then u(x, y) can be cominued analytically from D into
the rest of the domain D U a U that is, there exists a unique u(x, y) which is a
solution of the differential equation (0.1) in D U U and which agrees with the
given u(x, y) in D U .

LEMMA 4.1. If the boundary operators {Bk(X X, C/X, c/cy)}7,: satisfy the com-
plementing condition, then the boundary operators {(C’k/xm)Bk(X, X, C3/CX,
again satisfy the complementing condition.

Proof. For every > 0, let

bsk(Z, z),-S+ lz;- B’(z, z, , z) (mod (z i)"),
j=l

and also let Ak(x, x, /c?x, c/@) be the leading part of (cm/cxm)Bk(x, x,
Then

(4.2)

Moreover,

(4.3)

Ak(x, x, , "c) Bj(x, X)i+m’T,j.
i+j=nk

b2k(z, Z)mk + nk-j+ 1Tj- Ak(Z Z, , "[) (mod (z i)").
j=l

Therefore the A are linearly independent rood (z i)" for every > 0.
Similarly we can prove A are linearly independent mod (z + iQ" for every

< 0. This completes the proof.
Assume that the boundary operators B are of the same order K and satisfy

the complementing condition. Let

(4.4) 1Tj

__
Z Bbj(z z)-+ i(z z)ir (mod ( + iQ") < 0,

j=l i+j=K

and let

(4.5) 2 lrj-1 z)iz (mod(z i)n), >0.dz, z) J+ ,(z,
j=l i+j=K

Then the complementing condition implies the following.
LEMMa 4.2.

d l(Z) det bj(z,z)l 0, zsD U a U ,
d2(z) det 2bdz, z)ll #0, zsDUaU.
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Introducing the differential operators-- xx
we can write

(_y) (i +j
B x, x, x’ i+jK xiY

(4.6)

and

(4.7)

K
aj(x x)

j=
zK-j+ j- + A lk

a)(x x)Bk x, x, -x’ j=
K-j+ IZj-

+ A2k X, X, -Z’ Z .at- C2k X X -Z
where Alk, A2k are differential operators of order K n and having only terms
of highest order, and C1, C2 are differential operators of order K 1.

LENMa 4.3.
det akj(z z)[[ O, Z D U a U ,
detl 2aj(z, z)[[ : 0, z 6 D (_J a 12 .

Proof. The formulas (4.4) and (4.5) are equivalent to the formulas

and

i+j=K

+ -1Bj(z, z)iT, P(z, z, , r)(z / i) nt- bkj(z z)K-j IT,
j=l

Pu(z, z, , z)(z i) + b.i(z z)K-j lj
i+j=K j=l

where P, P are polynomials for z, of order K n. We set

X (r i), Y (r + i);
then

+ -1P(z, z, , )( + i)" + bj(z, z)
j=l

P(, z, i(x Y), x + Y)2" Y"

+(i)-.+l(x y)-.+l bdz, z)(i)"-J(x Y)"-(x + Y)J-
j=l

,i(x Y),X+Y)Y"+ aj(z z)X-+YJ-2 P(z, z
j=l

A l(Z, z, X, Y) Y" + aj(z, z)X + 1yj
j=l
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where aki(Z,Z) a linear combination of the functions b],l(Z,Z), ..., bk,(Z,1 z).
Similarly,

2 ’ 2Pk(Z, z, , z)(Z i{)" + bkj(Z, z){K-j+ 1.Cj-1
j=l

2 -j+A2k(z, Z, X, Y)X" + akj(Z, Z) yK 1X
j=l

where 2aki(Z, Z) a linear combination of the functions b],l(z, z),... bkn(Z,2 Z).
-Jzj- k 1,..., n, are linearly in-Since the polynomials j= bkj(Z, z)"

dependent, the polynomials

bkj(Z, z)(i)"-J(X Y)"-J(X + y)j-1
j=l j=l

k=l,...,n,

also, are linearly independent. By some elementary calculations, it is easy to see
det I[aj(z, z)[[ 0 for ze D , 1, 2; k 1, n; j 1,... n. This
completes the proof.

Proof of Theorem 4.1. By a well-known result of Agmon, Douglis and
Nirenberg 1], we can assume that u e C(D ). And by Lemma 4.1 we shall
assume that B are of the same order K, that is, n K, k 1, 2, ..., n.

From (4.6) and (4.7), it follows that u satisfies

+ j-1 k(X) A lk X X, , nj=l
(4.s)

-C x,x, , u

and

(4.9)
ak(X X)

CkU
6k(X)- A2K + Zj-

C2k X, X, -, IA

on a.
Using Lemma 4.3, we see that (4.8) and (4.9) become

cKu
Klj x,x, u(4.10) zK_jsj hlj(x Hlj x, x,, 5

and

(4.11)

where hli(Z), h2i(z are holomorphic in D U a U , Hlj, H2j are differential
operators of order K n and having only terms of highest order, and K j, Kzj
are differential operators of order K 1.
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By Theorem 2.1, (4.10) becomes

I= Io [-z gk Z Z I C/)(kK Z

n-1 K-j-1

Z Z (given analytic function)4i)(z)
k=0 i=0

n-1

(4.12)
+ (Volterra integral of Ck(t))
k=0

n-1

+ (Volterra integral of b’(t))
k=0

n-1

+ (given analytic function)
k=0 i=0

+ given analytic function,

for zea, that is, z xecr.
Applying differential operator c/cx on (4.12) for z e , we have

gk(Z, 5) 4f(Z) (given analytic function)4i(z)
k=O k=O i=0

n-1

+ (Volterra integral of k(t))
k=O

(4.13) n-
+ (Volterra integral of b’(t))
k=0

n-1 2j

+ (given analytic function) (/)(i)(t)
k=0 i=0

+ given analytic function

for z
By Lemma 2.1, Corollary 2.1, and Leibniz’s rule, (4.13) may be interpreted

as

gk(Z, ’) )(k)(Z) Fkjl(t Z, 5)dp)(t) dt
k=O k=O

(4.14)

+ Gkjl(t, Z, )(2n-1)(t dt + Hj(z)
k=0 o

for z e a, where Fkj(t, z, ), Gkja(t, z, ) are holomorphic for z, D a ,
and Hj(z) is holomorphic in and continuous in U a.

Similarly, (4.1 l) can be interpreted as

nl )A(z, () F(t, z, )4"-(t)at
k=O k=O

(4.5)

+ Gj2(t, z, )4(t) at + Hj2(z)
k=O
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for z e a, where Fkj2(t, z, ), Gkj2(t z, ) are holomorphic for z, e D U a U ,
and Hj2(z is holomorphic in D and continuous in D U a.

According to Theorem 1.2, the Wronskians Wl(z, ) 4= 0 and W2(z, ) 4:0 for
z, " e D U a U . Hence (4.14) and (4.15) can be written in the forms

(4.16) +
k=0

(4.17)
k=0

for z

pj(z) are holomorphic in , continuous in U a, and qj(z) are holomorphic in D
and continuous in D

Therefore, a unique solution ()(z), (z)) of (4.16) exists that is
holomorphic in and continuous in U a. Hence o(Z), ,_ (z) are defined
and holomorphic for z

Similarly, by (4.17), the (z) can be defined as holomorphic functions in
DUaU.

After these extensions, (1.1) holds for z, e D U a U . This means that
u(x, y)= U(z, ) is defined and satisfies the differential equation (0.1) for z e D
U a U . This completes the proof.
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LOCAL UNIQUENESS THEOREMS FOR A CLASS OF HIGHER
ORDER ELLIPTIC EQUATIONS*

SHUI-NEE CHOW AND D. R. DUNNINGER"

Abstract. Local uniqueness theorems are obtained for higher order elliptic equations using
integral inequalities and monotonicity properties for eigenvalues.

(1.1)

1. Introduction. Let u be a solution of the boundary value problem

ao(x
u c3u

X/j -- i:1

bi(x) zr- c(x)u 0
i,j=l

u=O

in D,

on t3D,

where D is a bounded domain in R", and all coefficients are uniformly bounded. If
D is sufficiently small, then it follows from the generalized maximum principle
(see [6, pp. 73-74]), that the only solution of(1.1) is u -= 0. Alternately, as is indicated
in [6, p. 74], if the positive maximum of c is sufficiently small, then the only solution
of (1.1) is u 0.

In this paper we prove analogous results for boundary value problems
involving higher order elliptic equations. In particular, boundary value problems
involving the equations

and

Aku -+- C(X)U O, k >- 1,

O{(x)A2u -- 2fl(x)Au + 7(x)u 0

will be considered. The latter equation has been chosen to illustrate that our method
can be extended to classes of non-self-adjoint equations. (Here Ak is the kth iterated
n-dimensional Laplacian.)

Due to the lack of a well-defined maximum principle for higher order elliptic
equations, our method will depend upon some elementary integral inequalities
and the monotonicity property of eigenvalues with respect to domains.

then

(2.1)

2. Preliminaries. Our results will depend upon the following lemma.
LEMMA 2.1. If

U Au A U 0 on D,

//2 dx - (AmU)2 dx
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D
u2 dx) 2

Consequently,

and

fD fD Am_ dx,(2.2) u2 dx =< 2 Igrad ul 2

where 21 is the first eigenvalue of the fixed membrane problem.
Proof. We establish the inequality (2.1), using induction. If u 0 on cD, it is

well known [2] that

(2.3) u2 dx <= -2- ]grad Ul 2 dx.

Applying Green’s identity

f f u
(2.4) [uAu + ]grad ul 2] dx u-8 ds

D

and Schwarz’s inequality on the right-hand side of (2.3) and recalling that u 0
on cD, we obtain

<= 1 uAu ctx <= u clx (Au) clx.

(2.5) f,uax<=);,,(au)ax,
which establishes (2.1) in the case m 1. Assume (2.1) is true for all positive in-
tegers less than or equal to m. Suppose

(2.6) u Au Ainu =0 onD.

Since Ainu 0 on D, it follows from (2.5) that

f l2 fl(Am+ lu)2 dx(2.7) (Ainu)2 dx

Moreover, in view of the induction hypothesis, it follows from (2.1), (2.6) and (2.7)
that

fD 1 fD lU)2 dx,u2 dx 2im+ 1)
Am+

which establishes (2.1) for all positive integers.
In order to establish (2.2), we note that since A lu 0 on 8D, (2.3) yields

fD Am dx,(Am- 1/,/)2 dx Igrad lu[2

which combined with (2.1) implies the desired result:

fo 2ml f-"-!" ;o12
2 dX " (Am-l/g)2 dx -...,,,_, [grad A ul 2 dx.
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(2.8)

and

We shall also have need for the following integral identities:

uA2mu dx (Ainu)2 dx + AZu
i=0 D

A+iu (Am- -iu)] ds

[UA2m- lU -+" [grad Am-- lu121 dx

ml fo (A2m-2-iu)
(2.9) Aiu ds

:o cn

The identity (2.8) is obtained by setting k m and v Ainu in the following
Green’s formula [4]

fo  iz=if [ (Ak- I-iu) 63(A- -iu)](2.10) (uAkv- vAku)dx
D

Aiu Air - ds.

The identity (2.9) is obtained by setting k m and v A lu in (2.10) and then
adding to it the obvious identity

[Igrad A lU[2 -i
t- A luAmu] dx A lU ds.

D cn

3. Main results.
THEOREM 3.1. Let cl(x) and C2(X be continuous in D*, where D* is a bounded

domain in R". If the domain D
_
D* is sufficiently small, then u 0 is the unique

solution of the problem

A2mu nt- C (X)U 0 in D,

(3.1) u

Ai+mu(Am-i- lu)
ds 0

D (n
i=0,1,..-,m- 1.

Similarly, il" the domain D
_
D* is sufficiently small, then u =- 0 is the unique solution

of the problem

A2m- lu + c2(x)u 0 in D,

(3.2) u=Au Am-lu=0 one’D,

A + u
63(Am- -iu)

ds 0 1 1.m
D (n
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Prooj Let

m minc >
xeD*

Since the eigenvalue 21 increases to infinity as D* shrinks to the empty set [2, it
follows that there exists a domain D

___
D*, sufficiently small, such that

(3.3) Cl m > _,,m
for all x D. From the identity (2.8)and the boundary conditions in (3.1) it follows
that

/,/2E(AmU)2 -1- C dx 0

which combined with (2.1)yields

(3.4) 0

In view of (3.3), equality holds in (3.4) and therefore u 0 in D.
In a similar fashion, the result is easily seen to be true for the system (3.2). In

this case one uses the identity (2.9) and the fact that there exists a domain D D*,
sufficiently small, such that

(3.5) c2 m2 < ,21m-1,
where

m2 max c2
xeD*

The details will be omitted.
Remark. If inequality (3.3)((3.5)) holds in the original domain D*, i.e., if the

negative (positive) minimum (maximum) is sufficiently large (small), then we have
uniqueness in D* which is an improvement over the usual uniqueness criteria,
namely Cl -> 0 (c2 =< 0)in D* for (3.1)((3.2)).

4. A non-self-adjoint problem. The preceding method can also be applied to
non-self-adjoint problems. As an illustration we consider the following theorem.

THEOREM 4.1. If the domain D
_
D* is sufficiently small, then u =- 0 is the unique

solution of the problem

(x)AZu + 2fl(x)Au + 7(x)u 0 in D,

(4.1) u =0 onc3D,

o AUn ds 0,

where a(x) > O, fl(x) and 7(x) are continuous in D*.
The proof of Theorem 4.1 depends upon the following lemmas.
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LEMMA 4.1. Consider the eigenvalue problem

fl(x)
D*Av +-v + pv =0 in

(4.2)
v O on 3D*.

Then, as D* shrinks to the empty set, the first eigenvalue p increases to infinity.
Proof. Suppose to the contrary that pl is bounded above by some constant

K for all subdomains of D*. Let

m max (fl/oO.
xeD*

Consider the eigenvalue problem

Aw+cow=0 inD,
(4.3)

w 0 on cD,

where D
_
D* is sufficiently small such that the first eigenvalue co of (4.3) satisfies

o91 > m + K. Consequently, by Sturm’s comparison theorem [3], applied to the
problems (4.2) and (4.3) in D, the first eigenfunction Wl must have a zero in D.
This, however, contradicts the well-known property that w > 0 in D.

LEMMA 4.2. Let D be as determined in the preceding lemma. If u 0 on c3D,
and if # is the first eigenvalue of (4.2), then

(4.4) u2 dx <= p2
Au + dx.

Proof. By Rayleigh’s characterization of the first eigenvalue of (4.2) we have

(4.5) //2 dx <= Igrad ul 2 -u2 dx.

Applying Green’s identity (2.4) and Schwarz’s inequality on the right-hand side of
(4.5), we obtain

fou’xlfo[ )1 fl)
1/2fl) )2 /1/2=- u Au +-u dx - U2 dx Au +-u dx

]A (Z 1

which gives (4.4).
Proof of Theorem 4.1. Let

m mi__n ’ fl
xeD* O2

GO.

Arguing as before and taking into account Lemma 4.1, there exists a domain
D __. D*, sufficiently small, such that

(4.6) a7- fl
02

> m3 :> #

for all x e D.
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If u is a solution of (4.1), we have

U2 dx.Au + flu dx + 2

Therefore, in view of (4.4) we obtain

fD( (X7 f120 + 2
lg
2 dx

which together with (4.6) implies u 0 in D.
Remark. In [1], Bremekarnp considered similar results for (4.1), basing his

proof upon a device due to Picard 5]. However, Bremekarnp made the assumption
that a?- f12 has a fixed sign throughout the domain under consideration. In
the case in which (4.6) holds in the original domain D*, (which implies uniqueness
in D*) we have a definite improvement over Bremekamp’s results.

5. Final remark. The preceding results are readily generalized to the case in
which the operator A is replaced by a more general second order elliptic operator.
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REMARKS ON SINGULAR PERTURBATIONS WITH
TURNING POINTS*

HEINZ OTTO KREISS" AND SEYMOUR V. PARTER

Abstract. Boundary value problems are considered for the differential equation eft’ + f(x, e)y’
+ g(x, e)y’ + g(x, e)y 0, where f(x,e,)x < 0for x g: 0. Let {y(x,e,)} converge to y(x) as e,, 0+.
In rare situations y(x)

_
0. This report studies such a phenomenon.

1. Introduction. In this paper we consider solutions of the boundary value
problem

ey"(x) + f(x, e)y’(x) + g(x, e)y(x) O,

y(-a) A, y(b) B,

-a<__x<__b,

where a, b > 0,0 < e, and f(x, e) has a single simple zero in [-a, b]. Without loss
of generality we assume f(0, e) 0 (hereafter referred to as the turning point).
Many authors (Wasow [14], Cochran [2], Sibuya [13], O’Malley [10]) have
studied asymptotic solutions of (1.1) as e 0+. However, the recent work of
Pearson [12] and Ackerberg and O’Malley [1] is of particular interest to us and
motivated the present study. More recently A. M. Watts [15] and W. D. Lakin [7]
have also discussed these problems.

We restrict our attention to the case where f and g are Lipschitz continuous
and

f(x,e) > O, -a <__ x <0,

f(x,) < O, 0 < x <- b,

and (uniformly)

(1.4) f’(0, ,) __< - < 0, 0 =< t < %,

for some e > 0 and some e0 > 0.
In the case where f(x, ), g(x, e) are analytic in (x, e), Pearson [12] and Acker-

berg and O’Malley [1] proved the following basic result" Let

(1.5) -g(O, O)/f’(O, O) =_ I.

Suppose 4: 0, 1, 2,... and {y(x, e,)},= is a sequence of solutions of (1.1), (1.2)
which converges (pointwise, as e, 0 + to a function Y(t) for a, 0) U (0, b).
Then

(1.6) Y(t) O, e a, O) U (0, b).

* Received by the editors December 28, 1971, and in revised form January 22, 1973. This research
was supported by the Atomic Energy.Commission under Contract AT(30-1)-1480 with the Courant
Institute, and by the Office of Naval Research under Contract N00014-67-A-D128-0004.

" University of Uppsala, Uppsala, Sweden.

: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
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However, when is a nonnegative integer the situation is "cloudy." Pearson 12]
seems to have ignored these cases; Ackerberg and O’Malley [1] have an analysis
for them, but do not make a precise statement of their hypothesis or results. And,
as we shall see, their results are incomplete.

In 2 of this paper we establish certain basic estimates on the regularity of
solutions y(t, e) of (1.1) and (1.2).

In 3 we discuss some results and examples in the exceptional case when is a
nonnegative integer.

Let us consider an example to show how delicate the situation can be. The
solutions of

(1.7) y" 2xy’ O, -1 <= x <__ 1/2,

(1.8) y(- 1) , y(1/2) ,
can easily be computed and are given by

y(x) z + (fl z)A(x)/A(1/2), A(x) e- e_ ,- 1(1 {2) d{.
-1

and

Let

2x for -1 =<x=<1/4,
a(x)=

1/2 for x>__1/4,

0 for -l_<x<1/4,
b(x, e)

bo bo(e) independent ofx for x>1/4.

(1.11)
/i 16boe)

1, (1 / + O(bo),

1
--(1 x/ 16boe)= 2bo + O(eb)N2

be the solutions of the characteristic equation

gK;2 1/2N -1
I- bo 0.

The solutions of (1.9), (1.10) are given by

0 + )],2A(x), _< x _< 1/4,
y(x)

la e’’- /2 + #2 e’- 1/,, x >= 1/4,

For e --+ 0 these solutions are uniformly bounded and only the left boundary
condition is lost.

Consider now the modified problem

(1.9) ey"- a(x)y’ + b(x, )y 0, -1 < x < 1/2,

(1.1o) y(- 1) , y(1/2) =/,

where
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where the parameters 22,121,122 are determined from

/21 e-’/4 + 122 22A(1/4) ,
12111 e -1/4 + 1222 22A’(1/4 ,2e-1 e-15/16e

121 -Jr- 122 e2/ ft.

After a direct but unpleasant calculation, we are led to the following result.
If ev 0 + and

lim 4evbo(e) e 1/8v 7 - 1,

1,

then we have in general for the corresponding solutions of the differential equation,

lim y(x, e) finite,

in every subinterval -1 < -a N x =< b < 1/2.
If we choose, for example,

bo 1/4- e- t/8(sin l/e)2 + e- /l(sin 2/e)2,

then there are subsequences e 0 for which any of the above situations hold.
The coefficients of this example (1.9) are not smooth. However, it is an easy

matter to use this example and smooth out the coefficients near x 1/4 to obtain
an example with coefficients a(x, e), b(x, ) which are in COO[ 1, 1/2] for all e > 0.

This example emphasizes two facts about this problem.
Fact 1. It is not reasonable to demand general results as e 0 +. It is necessary

to consider sequential limits. That is, it is necessary to consider sequences of
solutions {y(x, e,)} which have certain properties.

Fact 2. Exponentially small perturbations of the coefficients which occur
outside of a neighborhood of the turning point can cause large changes in the limiting
behavior of the solutions.

2. Regularity. Let y(x,e) be the solution of (1.1), (1.2). Suppose f(x,e),
g(x, e)e Ck[-a, b] as functions of x, uniformly in e. That is, there is a constant
L > 0 such that

(2.1)

=<L, 0<j<k,_ 0<e<eo,=

__<L, 0<j<k, 0<e<eo



SINGULAR PERTURBATIONS WITH TURNING POINTS 233

Let

(2.2) vj(x, e)

Then a simple induction shows that

(2.3a)

where

(2.3b)

O<=j<=k.

j-1

ev(x) + f(x, e)v)(x) + {g(x, e) + jf’(x, e)}vj Ajsvs(X, e),
s=0

We now recall some basic estimates. For any O(x)e C[a, fl], let

(2.4) ,,a max {lO(x); a =< x =< fl}.
LEMMA 2.1. Let q)(x)e CN[a, fl]. Let > 0 be given. There exist constants

Cj(t) < ,j 1,2,..., N- 1, such that

(2.5) qCJ) , < tlloN)ll, / Cj(0 I1o I,a, J 1,2,..., N- 1.

Proof This result is well known. See [8] for a very general statement of this
theorem.

LEMMA 2.2. Let be defined by (1.5). Then in the neighborhood of the origin
(say -A <= x <= A) the solution of the reduced equation

(2.6)

can be written in the form

f(x, O)u’(x) + g(x, 0)u 0

21Xl exp /(t) dt A <= x < O,

(2.7)

22xlexp /(t) dt O < x <= A.

Moreover, suppose k is a natural number (i.e., a nonnegative integer) with k > and
u(x) e Ck(- A, A). Then 21 22 and:

(i) is not a natural number, then

(2.8) 21 22 0 and u(x) 0;

(ii) is a natural number and u(x) 0 in -A, A], then u(x) 0 for x 0 and

(2.9) u(x) o.
x=0

Proof We rewrite (2.6) in the form

(2.6’) [xf’(o, o)+ xf(x)u’(x) + [g(O, o)+ x(x)u(x) o.
Set

u(x) x’o(x).
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Then (2.6’) takes the form

If’(0, 0) + xf(x)]co’(x) + [(x) + /.(x)]co 0.

Thus (2.7) follows with

O(x) -[(x)+ f(x)]/[f’(O, O)+ xf(x)]

The remaining parts of the lemma follow from the representation (2.7).
For the remainder of this section we shall always assume"

H.1. f(x,e)and g(x,e)eC+l[--a,b] as a function of x uniformly in e with
k > max (l, 0).

LEMMA 2.3. Let 0 < 6 < a. There exists an eo eo(6) > 0 such that, for all
e satisfying 0 < <= o and all F(x) C[-a, -6/2], the boundary value problem

eco" + f(x, e)co’ + g(x, e)co F(x), -a <= x < -6/2,

co( a, ) co( 6/2, e) 0

has a unique solution. Moreover, there is a constant K such that

(2.10) co(., e) -a,-a/2 <= K IF[I-,,-o/2.
And if co(x, e) satisfies the homogeneous equations

eco" + f(x, )co’ + g(x, )co 0, -a =< x =< -6/2,

co(- a, e) A, co(- (5/2, e) B,

then there is a constant Ko such that

dJco
< go[IBI /(2.11)

-a+,,-,/2

j=0,1,2,..-,k + 1.

(2.13)

(2.12) YlI-.,b go[ Yl-,,, + IA[ + IBI],

d...iy <-_ Ko[llyll-,,, + e(Ihl / Inl)],
-a+f,b-6

j=0,1,2,...,k+ 1.

Proof Consider the equation (2.3a) for j k + 1. Without loss of generality
we may assume that e and 6 are so small that

g(x, e) + kf’(x, ) < O,

Thus, the maximum principle implies

dk+
dxk + y(b, e) dx+ y(-6, e) +

j=o

-6<x<_6.

Proof These results follow easily from standard estimates on singular per-
turbation problems;see [10], [14]. For a complete proof see [6].

TI4EOREM 2.1. Let 0 < 6 < min (a, b). There exist an eo %(6) > 0 and a
constant Ko(6) such that, for 0 < <= eo, the solutions of (1.1), (1.2) belong to
C + [_- a, b] and satisfy
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The inequalities (2.12), (2.13) now follow from (2.10), (2.11) (and the corresponding
results for 6/2 <__ x <__ b)and Lemma 2.1.

This theorem emphasizes the fact that the global behavior of y(x, ) depends
on the local behavior of y(x, e) _,. Thus if {y(x, e,,)} is a family of solutions of
equation (1.1) which are uniformly bounded, there is a subsequence which together
with their derivatives of order 1, 2, ..., k converges uniformly on every subinterval
[- a + 6, b 6]. Moreover, using the identity of "weak" and "strong" derivatives
(see [4, [5), the limit function, say Y(x), satisfies the reduced equation (2.6).

Suppose {y(x, e,)} is such a convergent sequence and Y(x) O. Then there
are constants m, M such that 0 < m <= ly(-a + 6, e,)l =< M. Thus on the interval
[-a + 6, b 6] the functions

o91(x, e,) y(x, e,)/y(-a + 6,

satisfy:
(i) o91(-a + 6, e,)= 1,

(ii) co’ II- + ,b- K 1.

Indeed, suppose that there is a fl(e,) such that

and the solutions {y(x, c,)} of (1.1) together with boundary conditions

y(-a, e,) 1, y(b, ,)

converge to a nontrivial solution Y(x) 0 of the reduced equation. Suppose also
that this convergence is uniform on all of [-a, b], i.e., there is no boundary layer.
Then these functions satisfy:

(i’) y(-a, e,) 1,
(ii’) ]]y’ 11_ a,b K 1.

The bounds in (ii’) over [-a + 6, b 61 follow from Theorem 2.1. In the two end
intervals I-a, -a + di, [b 6, b] the bounds follow from standard theory [10],
[3] for the case without turning points.

These remarks lead to the following definition and lemma.
DEFINITION 2.1. A sequence ;, 0+ satisfies Condition B (for "bounded")

if there exist a constant K1 > 0 and functions {oJl(x, ,)} which satisfy (1.1) and

(2.14)

LEMMA 2.4. Let {e,,} satisfy Condition B. Then l( -g(0, O)/f’(O, 0)) is a natural
number and there is a unique solution gt of the reduced equation (2.6) with

(2.15) lim Io1(’, e,) l]-a,b 0

and

(2.16) fi(-a) 1, fi(b) - O.

Proof. The functions col(x, e,) form a compact set. Therefore we can find a
convergent subsequence which converges to solution fi of(2o6) for which fi(-a) 1.
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Furthermore, by Theorem 2.1 and (2.14) we see that
k+ 10.)1( n)

-a/2.b/2

for some constant C2 Thus fi Ck[-a/2, b/23. Therefore, Lemma 2.2 implies that
is a natural number (since fi(x) 0) and (2.16) holds. Thus fi is uniquely determined
and the entire sequence col(x, e,) converges to fi(x).

LEMMA 2.5. Let {e,} satisfy Condition B. Assume that

(2.17) I f(x, O)dx > O.

Then there is a corresponding sequence {co2(x, ,)} of solutions of (1.1)(with
for which

(2.18) lim (D2(X, gn)
f(-a, o)

eXp f(-a, O)(x + a
-a,b

Proof Let col(x, e,) be the solution of (1.1) as described in Lemma 2.4. All
other solutions co2(x, e,) of (1.1) are solutions of the first order equation

(2.19) cocol co2co’ 2exp{ f }f(x, e) ds
" -;

Let r/ be a constant which satisfies 0 < r/< min (a/2, b/2) and choose 2 1.
Then it follows from Lemma 2.4 and (2.19) that there is a solution co2(x, e,) which
satisfies (2.18)on the restricted interval -a __< x =< -q. Furthermore,

(2.20) lim =0, j=0,1,2,...,/+2.

Therefore, Theorem 2.1 and Taylor expansions give

d/+l
lim sup 092(" n) -t/,, - (2r/)t+ lim sup /xl + 092(’’

(2.21)
dl+

__< (2r/)/+ lim sup ,,/xl + 1-092( ", En)
n -a/2.b/2

-< Ko(A)" (2r/)+ lim sup Ilco2(’, en) -a/2,b,

where

(D2(X, n) (DH(X, gn) _qt.. (_Dp(X, ’n),

(DH(X gn)
0")2(’ ’n)

and COp(X, e,) is the solution of (2.19) with 2 and COp(r/, e) 0. By Lemma 2.4
the function CO(x, e,) converges to the solution fi 0 of the reduced equation
and therefore Lemma 2.2 implies that there is a constant C3 > 0 such that, for all

where A min (a/2, b/2) and Ko(A is independent of r/.
For x __> t/we may write this solution CO2(x, e,) in the form
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sufficiently small

1601(],/3n)l - C311.
Furthermore, for every fixed r/> 0,

lim sup 11ogp(’, ,)II,,b 0.

Thus (2.20) and (2.21) imply

lim sup 11(.02(" ’n) -a/2,b lim sup (_D2(" gn) -r/,r/
-}- lim sup Ilco2(-

where

__< Ko(2r/)t+ lim sup Ilcoa(’, ,) -,b -4- I -,,b" lim sup

=< K I(F]) lim sup Ilco2(’, n) -a/2,b,

K 1(/]) 2Ko[(2q) + 21C 11
Choosing q so small that Kl(r/) < 1/2 we see that

lim sup 1o2(-, e,) -a/2,b 0
and the lemma is proved.

In exactly the same way we obtain our next result.
LEMMA 2.6. Let {e,} satisfy Condition B. Assume that

(2.22) I f(x, O) dx < O.

C3rl

Then there is a corresponding sequence of solutions {co2(x, e,)} of (1.1) (with
for which

(2.23) lim o)2(., e,,)
f(b, 0)(b)

exp + ,0)(b x) 0.
" -a,b

I f(x, b) dx O,

Finally if

(2.24)

then there is a corresponding sequence of solutions {(D2(X /n)} of (1.1) (with
for which

lim c2(’,e,) { f( )}f(- a, 0)
exp a, 0)(x + a

f(b, O)(b)

(2.25)

A consequence of the last two lemmas is the following theorem.
THEOREM 2.2. Let {e,,} satisfy Condition B. Let

I f(x,O)dx.

Then there exists an g, > 0 such that"
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(i) for all A and B and all , <= iz (e, in the given sequence), (1.1) and (1.2) have a
unique solution y(x,

(ii) there is a solution u(x) of the reduced equation (2.10) such that

lim y(x,,%) ul -,+a,b-, 0,

(iii) if I > 0, then u(b) B and there is no boundary layer near x b,
(iv) if I < O, then u(a) A and there is no boundary layer near x a,
(v) if I O, then u(x) 2fi(x), where ft is described by (2.15), (2.16) and

Af(- a, O) Bf(b, 0)i(b)
f(- a, O) f(b, O)](b)l 2

Proof. The general solution of (1.1) can be written in the form

y(X, ’n) (-DI(X,/3n) -+- 0(-D2(X,

where o92(x, e,) satisfies one of the inequalities (2.18), (2.23) or (2.25) and o91(x,
fi(x). The theorem follows without difficulty.
The results of this theorem should be compared to the claims of Ackerberg

and O’Malley [1]. These results are consistent with their results in cases (iii) and
(iv) and yield a different value of 2 in case (v).

Motivated by the results of Ackerberg and O’Malley [1] and the results of
Watts [15], we now consider sequences e, for which bounded sequences {y(x,
must converge to zero.

DEFINITION 2.2. A sequence e, 0+ will be said to satisfy Condition ZB
relative to the interval [-a, b] if, for any sequence of uniformly bounded solutions
y(x, ,,) of (1.1), we have

(2.26) lim Y(’, tO;n) --a+6,b-6 O.

DEFINITION 2.3. A sequence e, 0+ will be said to satisfy Condition Z
relative to the interval [-a, b] if there exists an > 0 such that, for all choices of
A and B and all e,, < i, there exists a unique solution y(x, e, A, B) of(1.1) and (1.2)
and there is a constant C, C4(A, B) > 0 such that

(2.27) ly(x, , ;A, B)I _-< C,,

(2.28) lim y(.,e,,; A,B) -,+,b- O.

THZOREM 2.3. Suppose e, 0 is a sequence which satisfies Condition ZB relative
to the interval [- a, b]. Then the sequence , also satisfies Condition Z relative to the
interval - a, b]

Proof Suppose that for some value of e there are two solutions yl(x, e) and
yz(X, e.) of the boundary value problem (1.1), (1.2). Then there are infinitely many
solutions, for example,

y(x, ) y(x, ) + [y(x, ) y(x,

Moreover, the solutions of (1.1), (1.2) are not bounded. Thus, if we show that all
solutions of (1.1), (1.2) (with t: , =< ) are bounded we shall have established
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the existence of y(x, ,,, A, B) for all A and B. Finally if the sequence {e,) satisfies
Condition ZB we shall also have proved (2.28). Thus it suffices to prove (2.27).

Suppose there is a subsequence e,, 0 + such that the associated solutions
y(x, e,,) of (1.1), (1.2) are unbounded. Let

(2.29) Z(x, e,,,) y(x, e,,)/ y( ,,) -a,b"

Using Theorem 2.1 we may extract a subsequence {Z(x, e,,,)} which converges
uniformly to a function u(x) Ck[-a/2, b/2] which is a solution of the reduced
equation (2.6). However, the sequence {Z(x,e,,,)} also satisfies Condition ZB.
Thus u(x)=_ O. Now consider Z(x,e,,,) on the intervals [-a,-a/2], [b/2, b].
When n" is large enough, IZ(x, e,,,)l assumes its maximum on one of these intervals.
Thus,

(2.30) IIZ(., n")[[-a,-a/2 _qt_ I[Z(. ’n")llb/2,b
while

(2.31) IZ(-a, e,,)l / IZ(-a/2, e2)l / IZ(b/2, e,,)l + IZ(b, e;,’)l 0.

However, (2.30) and (2.31) are impossible in view of Lemma 2.3.
Suppose one has a problem (1.1), (1.2) for which one can show that every

sequence {e,} satisfies Condition ZB. Then every sequence satisfies Condition Z.
Using a simple contradiction argument one sees that, without recourse to sequences,
we have’there is an eo > 0 such that, for all e satisfying 0 < e =< eo, the boundary
value problem (1.1), (1.2) possesses a unique solution y(x, e, A, B). Moreover, there
is a constant C(A, B) such that

(2.32) IN(x, e, A, B)I =< C(A, B).

In particular, we obtain the following theorem.
TH;ORFM 2.4. If 4: O, 1, 2, ..., then there exists an :o > 0 such that, for all

satisfying 0 < e =< eo, there is a unique solution of the boundary value problem (1.1),
(1.2), say y(x, , A, B). Moreover, there exists a constant C(A, B) such that (2.32)
holds. Finally,

lim y( ) + 6,b- 6’ O
e0

Proof. Following the remarks above it is merely necessary to prove that every
sequence {e,} satisfies Condition ZB. Let {y(x, e,)} be a uniformly bounded se-
quence. Then the estimates (2.12), (2.13) of Theorem 2.1 hold. Suppose there is a
point Xo e (a, b) and there is a subsequence y(xo, ,,) --, 4: O. Then there is a sub-
subsequence which is convergent to a function Y(x)e Ck[-a, b]. Moreover, Y(x)
is given by equation (2.7) of Lemma 2.2. However, because of the restrictions on 1,
we see that Y(x) =_ O. But Y(xo).

We close this section with a discussion of the effect of the "size" of [-a, b]
on this behavior. Clearly, the estimates of Theorem 2.1 show that if {e,} satisfies
Condition ZB relative to the interval I-a, b], then {e,} satisfies Condition ZB
relative to every larger interval [-a 6, b + 6’] with 6 => 0, 6’ => 0.

TI-IFOIFM 2.5. Suppose {y(x, ,)} is a sequence of solutions of (1.1), (1.2) which is
unbounded on [-a, hi. Let 0 < 6, 0 < 6’. Then"



240 HEINZ OTTO KREISS AND SEYMOUR V. PARTER

(i) on every strictly smaller interval [-a + , b ’] there is a subsequence,, O+ and a sequence of solutions col(x, ,) of (1.1) which satisfy Condition B, and
(ii) on every strictly larger interval [-a -c , b + ’] there is a subsequence, 0 + which satisfies Condition Z relative to the interval [-a , b + ’].
Proof. Let Z(x,e,)= Y(X,e,)/llY(’,e,)[l-a,b. Using Theorem 2.1 we may

extract a subsequence e,, and a solution u(x) of the reduced equation (2.6) such
that

lim Z(., ,,) u + ,b- ’ O.

The argument of Theorem 2.3 shows that

The functions

u(- a + 6) :/: O.

Z(x
(’OI(X, ’n’)

Z(-a +

satisfy Condition B on [-a + 6, b 6’.
On the other hand, consider any larger interval [-a 6, b + 6’]. Suppose

there exists a sequence of solutions {co(x, e,,)} of (1.1) which also satisfy y(- a
e,) Ao,y(b + 6, e,)= Bo. If this family is unbounded on [-a-
part (i) shows that there exists a family {col(x, e,)} satisfying (2.14). That is, on the
interval [-a, b], the sequence e, - 0 + satisfies Condition B. Applying Theorem
2.2 we see that the solutions of(lol), (1.2)on the interval [- a, b] are bounded. Thus,
we may assume these functions are bounded. If any subsequence {co(x, e,,)} were to
converge to a nonzero limit solution that sequence (using Theorem 2.1) would also
lead to functions which satisfy Condition B relative to [- a, b] and, using Theorem
2.2, the original sequence {y(x, e,)} is bounded on I-a, b].

3. Some special cases and examples. In 1] Ackerberg and O’Malley and in 11]
O’Malley observed that there is a whole class ofequations ofthe type (1.1) for which
one always obtains nontrivial limit functions. Interestingly enough these are the
"simplest" equations of the type (1.1). These are our first examples.

Example 1. Consider the boundary value problem:

(3.1) ey" xy’ + ny O, -a <= x <= b,

(3.2) y(-a) A, y(b)= B,

where n is a natural number.
In this case the exact solution is given in terms of parabolic cylinder functions

(see [1], [11], [15]). A complete discussion is given in [11], [7]. Given n, there is an
eo > 0 such that, for all e satisfying 0 < e __< Co, there exists a unique solution of the
boundary value problem (3.1), (3.2). Moreover, there is a constant C, determined
by Theorem 2.2, such that

y(x,e) Cx" _,+,b_ O as e0.
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Example 2. Consider the equations

In both of these cases

X
e,y"- xy’ + y 0, -1/2 __< x =< 1/2,

l+x

ey"- x(1 + x)y’ + xy--O,

y(x,e)- a(1 + x)

is a solution of both the second order equation and the reduced equation. Thus,
employing Theorem 2.2, we have’for all e > 0, 0 < e =< eo, the boundary value
problem (1.1), (1.2) has a unique solution y(x, ). For an appropriate constant a
determined by Theorem 2.2,

y(x, ) (1 + x)II + 6,b- 6 0 and e --. 0 +.

Example 3. Let g(x)=_ 0. Then the constant function Wl(x, e)= 1 satisfies
both the second order equation and the reduced equation. Applying Theorem 2.2
we have:for all e > 0 the boundary value problem (1.1), (1.2) has a unique solution
y(x, ). Moreover, if

and

I f(x, O) dx

f a)A f(b)B
f(-a) f(b)

A,

B,

1--0,

I<0,

I>0,

then

IlY(’, ) CII-a+b,b-6 0 as e --, 0.

Example 4. Suppose g(x, e) C[- a, b] uniformly in e and g(x, e) =< 0. Suppose
there exist two points x-, x / with

-a<_x- <O<x + Gb

such that

g(x-, 0)g(x +, 0) 4: 0.

Then applying the maximum principle, we see that"
(i) for each e > 0 there is a unique solution y(x, ) of(1.1), (1.2). Moreover,

ly(x, e)l - max (IAI, IBI).

Finally, using the argument of [3, Theorem 3.6] we have

(ii) lim y(.,e) _a+a.b_a=0 for allA>0.
e-,O+



242 HEINZ OTTO KREISS AND SEYMOUR V. PARTER

Remark. This example once more illustrates that an analysis which is based
only on the behavior of f(x, ) and g(x, ) "near" the turning point may not be
adequate.

TI-IE,OREM 3.1. Suppose

(3.3a) g(x, e) x2b(x),
where

(3.3b) b(x) bo > O.

Let

(3.4a) f(x, e) xa(x),

where

(3.4b) a(x) >= ao > O.

Then there exists an o > 0 such that, for all satisfying 0 < e <= o, the boundary
value problem (1.1), (1.2) has a unique solution. Moreover,

(3.5) IlY(’,e)ll-,+,b- 0 as e O.

Proof. Using the remark following Theorem 2.3 it is only necessary to show
that all bounded sequences converge to zero. Indeed, it is sufficient to show that
all convergent sequences converge to zero.

The solution of the reduced equation (2.6) is given by

tb(t)
(3.6) Y(x) Y(0) exp -- dt.

|f Y(0) > 0, then Y(x) has a relative minimum at x 0. And, if Y(0) < 0, then
Y(x) has a relative maximum at x 0. Suppose {y(x,)}_-_o is a sequence of
solutions of (1.1), (1.2) such that

lim Y(’,e,)- Y -a,a--0.
en- O

Suppose Y(0) > 0. Then for e, small enough we have that y(x, r,,) > 0 and, in the
interval [- A, A], y(x, ,) has an interior relative minimum. But

gnY"(X, e,n) + f(x, e,,)y’(x, ,) --xZb(x)y(x, en) 50.

Applying the maximum principle, we see that y(x, e,) cannot have an interior rela-
tive minimum. This contradiction shows that

A similar argument shows that

and hence, using (3.6),

(o) 8 o.

(o) >-_ o

Y(x) O.
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THEOREM 3.2. Let us assume that
(a) f’(0, e) 1,
(b) g(x, ) g(x) is independent of ,
(c) g(0)= t= 0,
(d) g(x) g(- x),
(e) there is a A > 0 such that g(x) C[ A, A] and f(x, e) C[ A, A] as a

function of x.
Suppose also that for some k, a positive integer,

g(0) 4: 0.

Then there is an eo > 0 such that, for all satisfying 0 < e =< eo, there is a unique
solution of the boundary value problem (1.1), (1.2) and

lim y(.,e) _a+a,b_a=0.

Proof. Once more, it is only necessary to show that the sequence y(x,
converges to zero.

Let {y(x,e,)},=l be a sequence of solutions of (1.1) which are uniformly
bounded and converge to a function Y(x) O. As before, let.

v(x, ,) y(x, %).

Applying Theorem 2.1 we see that there are constants Cj, independent of ,, such
that

Let

v v() (o, ).

Then Y(x) 0 implies

(3.7) Vo(e,) - 0.

Consider (2.3a), (2.3b) with j 0. Then for every e,

v() 0.

Thus, Vz(e) 0. Consider (2.3a), (2.3b) with j 2. Then

eV4- 2V2 -g’(0)Vo.

Thus (3.7) implies

(3.8) g"(o) o,
We proceed by induction. Suppose that

(3.9) g(2S)(0) 0,

Then

v+() o.

V,+ 2(e) 0,

eVzj+4- (2j + 2)Vzj+2
2j + 2/g2+ 2)(0) Vo

0

s 1,2,...,j.
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or

evj+ _g2j+(0)Vo.

Once more, (3.7) implies

gJ+ 2)(0) 0, Vzj+(e) 0 for all j.

The recursion relationships provided by (2.3a) and (2.3b) evaluated at x 0
lead to additional necessary conditions for "resonance". However, the analysis
of these recursion relationships is technically complicated. Hence we collect the
necessary results in the Appendix and proceed with statements of results and
remarks.

Consider the examples

(3.10) y" xy’ + (x + z)y O,

where z is a fixed constant. In all cases the solution of the reduced equation is

y(x) c e.
However, evaluating (3.10) at x 0 we find

ay"(0, a) + e.y(0, a) 0,

that is,

y"(0, e) -y(0,

Thus, employing our usual argument based on the remarks following Theorem 2.3,
and Theorem 2.2, we obtain the following theorem.

THEOREM 3.3. There is an eo > 0 such that, for all e satisfying 0 < e eo,
the boundary value problem (3.10), (1.2) has a unique solution. Moreover, there exists
a unique constant C such that

ly(x,e)-- CeXll-a+,b- O as e O.

In addition, if

then the constant C is determined by Theorem 2.2. If :/: 1, then

C=0.

This result is closely related to the discussion by W.tts [15]. Our next result
is also related to the examples of Watts.

LEMMA 3.1. Consider the equation

(3.11)

Suppose that

(3.12)

and that

(3.13)

ey"- xy’ + g(x)y 0,

g(0) n

(n + 1/2)g"(0) 4: -[g’(0)] 2.

-a<_x<_b.
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Then there exists an eo > 0 such that, for all satisfying 0 < <= eo, the boundary
value problem (1.1), (1.2) has a unique solution y(x, ). Moreover,

(3.14) Ily(’, )11 + ,b- 0 as : O.

Proof. See Appendix.
COROLLARY. Assume that

(3.15a) g(x) n + ex, c - 0,

or

(3.15b) g(x) n + ex2, e :/= 0,

where is a constant. Then the conclusions of the lemma apply.
Remark. The special case (3.15a) is discussed by Watts [13].
THZOREM 3.4. Consider the equation (3.11) where:
(a) there is a A > 0 such that g(x) C[ A, A],
(b) g(O)= n,
(c) g(x) g(- x).

Suppose that for some k, a positive integer,

g((O) O.

Then there is an o > 0 such that, for all satisfying 0 < e, <__ o, there is a unique
solution of the boundary value problem (3.11), (1.2) and

Proof. Let {y(x, e,)} be a uniformly bounded sequence of solutions of (1.1)
which converge on [-a + 5, b fi] to a nontrivial solution Y(x) of reduced equa-
tion (2.6). As we know

(3.16)

From Lemma 3.1 we know that

Assume that

v.(,3 o.

g(:)(O) O.

g2J)(O) O, j= 1,2,.-.,k- 1.

Combining Lemma A.3 with Lemma A.4 we obtain

g(2t’)(0)
Vn(es) (_ 1)

n + 2r k
+ (_1)

n +
2k t_=o n + 2r- 2k k- r n

Applying (3.16) and Lemma A.5 we see that

(3.17) g(2)(O) 0.

Thus we have established (3.17) for all k.
THEORZM 3.5. Consider the equation

(3.18) ey" + f(x)y’ + ny O,

2k

-a <_ x <_ b,
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where
(a) f’(O) 1,f(O) O,
(b) f(x) -f(- x),
(c) there is a A > 0 such that f(x)

Suppose there is an integer k > such that

f((O) O.

Then there is an o > 0 such that, for all e, satisfying 0 < e __< e,o, there is a unique
solution for the boundary value problem (3.18), (1.2) and

IlY(’, e,) + &b 5 -’ 0 as , O

Proof. The proof follows the same lines as the proof of Theorem 3.4. A special
case of this equation is the equation

(3.19) y"- x(1 + x2)y + 2y 0,

discussed by Ackerberg and O’Malley [1]. They assert a contrary result in this case.
In the particular case of (3.19) one can use (2.3a), (2.3b) directly to establish

v(0, ) 0.

Hence, if there is a limit function Y(x), then

But

Ytivl(o) O.

X2

I+X2"

Thus,

C =0, Y=O.

Appendix.
LEMMA A. 1. Let f’(O, e) 1, Vj V(e) v.i(O ), and let

(A.1) l= n g(0, e).

Let {y(x, e,)}= be a sequence of solutions of (1.1) which are uniformly bounded and
converge to a function Y(x). If
(A.2) 0=<.j=<n + 1 -2k, k>= 1,

then

(A.3) Vj(e) O(e).

Proof. We proceed by induction on k andj. Take k 1. Suppose that 0 =< n 1.
Then

Vo --,s v 0%).
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Next, suppose that

Vr= O(/3s), 0__< r__<j__<n-2.

Consider (2.3a), (2.3b) with j replaced by j + 1. We obtain

/3Vj+3(/3s) + IF/ (j -1- l)]gj+l(ss)

Hence

V+ O(e,).

Thus the lemma is established for k 1.
Suppose the lemma has been established for k and 2 <_ n 2k + 1. Hence, by

the inductive hypothesis,

v() O(s)
and

Wo(/3s F’s W2(/3s O(gs + 1).

Now assume that the lemma has been established for k + and all j Jo which
satisfy0=<jo<=n-2(k+ 1) or(jo+ 1)+2<=n-2k+ 1. Then

In (Jo + 1)] Vo +1 sVjo +3 -1- O(Es + 1)

--/3sO(/3ks) -Jr- O(/3ks + 1),
and the lemma is proved.

Proof of Lemma 3.1. As usual, it suffices to consider the sequence/3, --, 0 +
for which {y(x,/3,)} is convergent.

Using Lemma A.1 and (2.3a), (2.3b) with j n 2 we obtain

(A.4) sK- .() -5 v,() + O(s).

Letting j n 1 and using Lemma A.1 we obtain

(A.5)

Letting j n + 1 we obtain

(A.6) /3sgn+3 K+I --g’(0)i
n+l

n
v + 0()

or

Vn+ 1(/3)--- g’(0)(n + 1)V,(/3s)+

Combining (A.5) and (A.6) we obtain

(A.7) V._,(/3s) =/3g’(O) [1/2(n 1) (n + 1)] V.(/3) +
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Letting j n we have

e V, + 2(e,s) ng’(0)V, -l(es)

Using (A.4) and (A.7) we obtain

n(n 1)
--g"(0)v._ + o().

(A.8) V,+z(es)= {[(n + 1)n- 1/2n(n- 1)][g’(0)] 2 + 1/4n(n- 1)g"(0)}V,(e)+ O(e).

On the other hand, letting j n + 2 we obtain

eV,+4(e)- 2V,+ 2(e)= -(n + 2)g’(0)V,+ l(es)- 1/2(n + 2)(n + 1)g"(0)V,(e) + O(e).

On using (A.6) this gives

(A.9) V,+ 2(es)= 1/2{(n + 2)(n + 1)[g’(0)] 2 + 1/2(n + 2)(n + 1)g"(0)} V,(es) + O(e).

However, Y 0 together with the basic representation of Y(x) (see Lemma 2.2)
implies

v.() + o.
Comparing (A.8) and (A.9) we obtain that if Y(x) O, then

[g’(O)] 2 (n + 1/2)g"(0).

LEMMA A.2. Consider the equation (3.11) under the additional hypotheses:
(a) there is a A > 0 such that g(x) C[- A, A],
(b) g(O)= n,
(c) g(x) g(- x).

Let {y(x, e,)}= be a sequence of uniformly bounded solutions of (3.11) which con-
verges to a function Y(x). Then

(A. O) V. 2j((e’s)
es) 1), n 2j >= O.

2(j !- V.(e) + 0(
+

Proof. Using (2.3a), (2.3b) and Lemma A.1 we proceed by induction. Suppose
n 2 _> 0. Then

Vn(e) + 2 V,_ 2U:s)
n 2 2-g(" )(o)v() o().

r=O

Hence,

v,_ :() -- v,(,) + 0(4).

Suppose the lemma has been established for j Jo and n 2jo 2 > 0. Then

That is,

cV,,_ 2So(es) + [2]0 + 2]Vn_ :So- 2(es) O(e + 2).

Vn-2(jo+ 1)
(-/3s)Vn-2jo + O(jo+l)+l).
2[jo + 1]
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Using the inductive hypothesis we obtain

(- ,3 + v.()
V,-2(jo+ 1)(es) 2Jo+ l[(jo + 1)!]

+ O(eJ+ 1)+ 1)

and the lemma is proved
LEMMA A.3. Under the same hypothesis as in Lemma A.2, suppose

(A. 11) g(2J)(0) 0,

Then, for < j <= k, we have

g(2k)(0)( 1)k+ lg-j[(j 1)!]Vn(,s
V,,+ 2j(es) 2k + l_j(k !)

(A.12)

j=0,1,...,k- 1.

j-1

(-1)
s=O n-2k+2s k-s

Proof. Once more, we proceed by induction. Let j n in (2.3a), (2.3b).
Using Lemma A.1 we obtain

g,sVn+ 2(gs) g(2k)(O)Vn_2k(,s
__

O(gsk+ 1).
n 2k

Using Lemma A.2 we next obtain

:sVn+2(s) g(Zk)(0)( 1)k+l k-1

2kk, V,(e) + O(e]).
n-- 2k

That is, the lemma is true for j 1. Suppose the lemma is true for j 1, 2, ...,
Jo and Jo =< k. Then using (2.3a) and (2.3b) with j n + 2(jo 1) we obtain

n + 2(jo 1)
’sVn+ 2jo 2(jo 1)V,+ 2(jo- 1)

n 2k + 2(jo 1)
(A.13)

g(2k)(O)Vn-2k+2(jo-1)(8s) "1- O(e:-J+2)
Using the inductive assumption in (A.13) we obtain

2(jo 1)( 1)k+ ,k-(jo-1)es [(Jo 2) !] gtZk)(0)VnesVn+ 2jo 2 + 1-(jo- 1)(k !)

,.:o n- 2k + 2r k- r n- 2k + 2(jo 1)

g(2k)(0) Vn 2k + 2(jo 1) @ 0(. jo + 2).

Applying Lemma A.2 we have

g(2k)(o)( l)k+l k-j+1 ’] J-2e [(Jo 1)
)

n + 2r
v.+:o 2+1_o() E (-1

=o n- 2k+ 2r k-r

(A.14) + I(_l)Jo-, (n+2(j-l)n-2k+2(jo- 1)

g2)(0) 1)k +1 gsk jo +1 [(Jo 1) !] V.
2k + Jo(k !)

+ O(-J+ ).
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Combining the terms on the right-hand side of (A.14) and dividing by e., (since
k => Jo) we obtain (A. 12).

COROLLARY.

Vn+2k(Ss)-- g2k(o)(--1)k+l[(k--1)!]Vn(Ss)kL1-2i
,.=0

(--1)
n+2r)n-2k + 2r

(A.15)

Then

+ o(0.

LEMMA A.4. Under the hypothesis of Lemma A.2, assume that

g(2J)(0) 0, j 1,2,..., k 1.

2k
g("(o)v.() + o(0.V.+ 2k(;) - n

Proof. Apply (3.2a), (3.2b) with j n + 2k.
LEMMA A.5. Let

(A.16) J_= (-1y
r=O

n+2r
n- 2k + 2r

k

Then J > O.
Proof. Let V denote the backward difference operator with step size and let

V(2) denote the backward difference operator with step size 2. Let k be fixed and
r 2k > 0. Let

r rl
qg(r)

r 2k (2k) !(r 2k)!

Then

J V(2)(p(r) =.+ 2k"

As is well known (see [9, p. 6]),

Vo(r)l>_, + > O.

Thus, the lemma follows from the identity

r--tO m=O ro

which is easily established by induction.
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ANALYTIC CONTINUATION OF THE EULER TRANSFORM*

B. C. CARLSON]-

Abstract, The Euler transform is defined by an integral over the unit interval [0, 1] if the transform
variables have positive real parts. If the function to be transformed is holomorphic on a neighborhood
of [0, 1], its transform can be represented for all complex values of the transform variables by an
integral around a contour which encircles [0, 1]. The integrand contains a 2Fl-function. This type of
contour integral represents the principal branch of Appell’s double hypergeometric function F1 for
all values of the parameters and variables.

1. Introduction. If the function g is piecewise continuous on [0, 1], its Euler
transform is the integral

(1.1) h(x, y) [r(x)r(y)] u 1(1 U)y- g(U) du,

where Re x > 0 and Re y > O. If the right-half-complex-plane is denoted by
C> {x C’Re x > O}, it can be shown that h is holomorphic on C: Provided
that g is holomorphic on an open set in the complex plane which contains the
interval [0, 1], a holomorphic continuation of h is obtained by replacing the
integral in (1.1) by a Pochhammer double loop integral. The function h can then
be shown to be an entire function on C: which is represented for almost all values
of x and y by

(1.2) h(x, y) (2hi) -e e-i’(x+r)F(1 x)F(1 y) f s 1(1 S)y- lg(s) ds,

where 6 is a double loop slung around the points 0 and 1. One sometimes writes
5 (1 +, 0+, 1 -, 0-) to indicate the nature of the contour [6, p. 257], [3, p. 14].
The representation (1.2) fails when x or y is a positive integer, for the integrand
then has no singularity at 0 or 1, respectively, and the contour 6 can be shrunk
to a point.

In 2 we show that h can be represented on C2 by a second contour integral,

(1.3) h(x, y) [2rciF(x + y)]- f7 S- 2F1(1, x;x nt- y; s- 1)g(s) ds,

where 2F is Gauss’ hypergeometric function. The contour 7 (1 +, 0+) is a
single loop encircling the line segment with endpoints 0 and 1, and the representa-
tion is valid for all x and y without exception.

In 3 we apply (1.3) to obtain an integral representation of Appell’s double
hypergeometric function F1. This new representation is the only one which does
not fail for any values of the parameters or variables in the domain on which F1
is holomorphic.

* Received by the editors December 29, 1972.
]- Ames Laboratory--USAEC and Departments of Mathematics and Physics, Iowa State Univer-

sity, Ames, Iowa 50010.
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2. Representation by a contour integral. We give first an informal argument
leading to (1.3) and subsequently a formal proof that (1.3) is the holomorphic
continuation of (1.1). If g is holomorphic on a neighborhood of the line segment
joining 0 and 1, we may use Cauchy’s integral formula,

(2.1) g(u) (2rti)- j (s u)- lg(s) ds,

where u is any point of the line segment and the contour y encircles the line segment
in the positive direction. Substituting in (1.1) and changing the order of integration
(which is easily justified), we meet the integral [4, p. 2401

Er(x)r(y)]-I U 1(1 u)y- I(S U) -1 du
(2.2)

[F(x + Y)I- is- 2F (1, x x + y s- ),
where s [0, 1]. Provided (x, y)e C2>, (1.3) follows immediately. We must show
next that the right side of (1.3) is an entire function of x and y and so provides
the holomorphic continuation of h to C2. This is done in the proof of Theorem 1
below.

For the formal proof we use a different procedure which is less straightforward
but gives a better understanding of the relation between (1.1) and (1.3). It requires
several properties of 2F1 which we state at the outset. Let C’ be the complex plane
cut along the real axis from 0 to 1. If (x, y) e C2 and s e C’, let

(2.3) f(x,y,s) [F(x + y)]-s- 2Fl(1,x;x + y;s-).

From [4, (9.5.1)] it follows that

(2.4) f(x, y, s) f(y, x, 1 s).

We shall want the following properti,es"
(a) f is holomorphic on (2 X (.

(b) If Re x > 0, then sf(x, y, s) 0 as s 0 in C’.
(c) If Re y > 0, then (s 1)f(x, y, s) 0 as s --, 1 in C’.
(d) IfueNand0<u< 1, then

(2.5) lim [f(x, y, u ie) f(x, y, u + ie)] 2rci[F(x)F(y)]- lux- 1(1 u)y- 1.
e--*O +

For property (a) see [4, pp. 239, 245] and note that s e C’ implies that s- lies in
the complex plane cut along [1, + oe]. Property (b) is a consequence of [4, (9.5.9)
and (9.7.7)], and property (c) follows from (b) by (2.4). For (d) see [4, p. 276].

THEOREM 1. Let J {u ’0 <= u <= 1}, let f c C be a simply connected
open set such that J , and let g’f C be holomorphic. Let 7 be a positively
oriented rectifiable Jordan curve in f with inner region 1(7 J. If (x, y)6 C2

define h(x, y) by (1.3). Then h is an entire function of (x, y), and h is represented on

C2> by (1,1).
Proof. By (1.3) and (2.3),

(2.6) h(x y) (2rci) -1 f f(x y, s)g(s) ds
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Let 7" denote the set of points lying on the curve 7. Property (a) implies that the
integrand is entire in x and y for each s e 7", integrable on 7* for each (x, y)e C2,
and continuous on C2 )< 7"" It follows that h is entire (see for example [5, p. 283]).

If the s-plane is cut along the unit interval J, we may deform 7 by Cauchy’s
theorem into a contour which consists of two small circles of radius p and centers
0 and 1, joined by the upper and lower edges of the cut. By properties (b) and (c)
the integrals around the two circles tend to zero with p if (x, y) C2>. The integrals
along the two edges of the cut combine by property (d) to give (1.1).

3. Integral representation of Appell’s F The double hypergeometric function
Fl(a, , ’, c; , q)/F(c) can be represented [3, p. 231] as an Euler transform (1.1)
with (x,y)= (a,c- a) and g(u)= (1- u)-(1- ur/) -’. It is required that
Re c > Re a > 0 and that and q be points in the complex plane cut along the
segment [1, + ] of the real axis. The parameters/3 and/’ may be any complex
numbers. By Theorem 1, with no restriction on a and ,
(3.1)

[F(c)]- 1F (a, fl, fl’, c; , r/)

[2niF(c)] -1 s -1 2Fl(1,a;c;s-1)(1 s)-(1 srl) -’ ds,

where 7 is a closed contour which contains the interval [0, 1] of the real axis in its
inner region and the points - and r/- in its outer region. If c 4: 0, 1, -2, ...,
the factors F(c) may be cancelled.

Except for representations which contain another F1 in the integrand, (3.1)
is the only representation of F1 which is valid for all complex values of the param-
eters and all values of and r/in the cut plane.

The generalization of (3.1) to Lauricella’s function FD in several variables
presents no difficulty. We give instead the corresponding representation of the
R-function, a variant of Fz) which has properties of homogeneity and permuta-
tion symmetry [1], [2]. By [2, (4.15)], (2.3) becomes

f(x, y, s) [F(x + y)]- R_ l(X, y; s 1, s).

Let Co be the complex plane cut along the nonpositive real axis, and let z be a
k-tuple with components in Co. Let b Ck and define c /= bi. If Re c > Re a
> O, R_,,(b, z)/F(c) can be represented [1, (4.22)] as an Euler transform (1.1) with
(x,y) (a,c- a) and g(u)= 1=1 (1- u + uzi) -bi. By Theorem 1, with no
restrictions on a and c,

(3.3)
IF(c)]- n_.(b, z)

[2niF(c)]- R_ l(a, c a; s 1, s 0) 1-I (1 s + SZi)-bi ds,
i=1

where 7 is a closed contour which contains the interval 0, 1] of the real axis in its
inner region and the points (1 zi)-1, 1, ..., k, in its outer region.
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ON GENERALIZED BERNSTEIN POLYNOMIALS*

J. BUSTOZ AND C. W. GROETSCHf

Abstract. The generalized Bernstein polynomials of Jakimovski and Leviatan and the generalized
Euler summability method of Wood are considered in the general context of Gronwall-like transforma-
tions. It is shown under general circumstances that, for bounded sequences, generalized Euler sum-
mability is equivalent to Euler summability. A class of generalized Bernstein polynomials which are
generated by certain Gronwall methods is defined and the members of this class which possess the
uniform approximation property are characterized.

1. Introduction. The Euler summation matrix E (Em,) is defined by

n<=m,

where x is a parameter, 0 < x _< 1. Given a sequence {s,}, its Euler transform is the
sequence {Era} defined by

E E,,,,,s,,, rn 0, 1,

and {s,} is said to be E-summable to s if lim Em s.
It seems to be not very well known that Euler summability belongs to a general

class of summation methods which we shall call the If, y methods. The notion of
f, 7]-summability was introduced by T. H. Gronwall [2] (see also [1]). Given
functions f(w) and 7(w) of certain types, Gronwall defined the transform of a
sequence {s,} to be the sequence {U,} defined by the formal power series
identity

(1.1)

where

(1-f(w))7(w s,,[f(w)]"= b,U,,w",
n=0 n=0

7(w) b,w".
n=0

It is not difficult to see that

where the matrix elements 2nk are generated by the identity

(1.2) (1 f(w))7(w)If(w)]" mnbmWin.

Received by the editors December 14, 1972, and in revised form March 26, 1973.

f Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221.

256



ON GENERALIZED BERNSTEIN POLYNOMIALS 257

Euler summability is obtained by taking

f(w)= and 7(w) (1 w) -1
1 (1 x)w

Specifically, for Euler summability (1.1) and (1.2) become after routine computa-
tions,

(1.1’) Z s, E
o [1 (1 x)w]"+1n-- n--O

and

[xw?" 2 e,..w",(1.2’)
[1 (1 x)w]"+1

respectively.
The Euler matrix plays a central role in the classical theory of approximation.

In fact, Bernstein’s proof of the Weierstrass theorem asserts that the polynomials

B,(h,x)= E,,,h
0

converge uniformly to h(x) as m-, oe for each h e C[0, 1]. The Bernstein poly-
nomials were generalized in [4] and the generalization was extended in [3]. We
shall now give a brief account of this last generalization.

Suppose that the functions

gin(z) 2 (--1)"am,Z"
n--0

are analytic in Iz[ < R (R > 1) and that as m oe they converge uniformly on
compact subsets of Izl < r =< R (r > 1) to the function

g(z)= Z (-1)"a,z".
n=0

We assume that g(z)- 0 for -1 =< z __< 0. Define a sequence of polynomials
{,’)(x)} by the equation

g(u)( + u)X= Z C."(x)u".
n=0

The generalized Bernstein operator of Jakimovski and Leviatan is then defined
by

1_(1.3) L(h, x)
g(x o(-)-(-n 1)x(1 x)-h

In [3] various approximation theoretic properties of the linear operators (1.3) are
investigated under the assumption that

(1.4) (-1)m-""_,( -n- 1)_>0 for m>__mo and no-<n=<m.
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The generalized Euler summability transform of Wood [6], whose matrix
representation we shall denote by E* (bm,,), is then defined by

(1.5) Lm(h,x) bmh
n

n-’0

Note that if gm(U) --= g(U) --= 1, then Lm(h, x) Bin(h, x) and E* E.
In this paper we shall clarify the relationship between E and E* by considering

both methods in the general context of Gronwall-like transforms. In particular we
shall show that E* is equivalent to E for bounded sequences if g has no zeros
in the unit disc. As a consequence of these summability results we shall show that
the approximation property of the operators (1.3) can be simplified and that the
condition (1.4) can be replaced by a more natural condition on the function g.

2. The generalized Euler matrix. It is natural to ask if Wood’s generalization
of Euler summability falls within the class of If, 7]-methods. That is, is there a
generating relation like (1.1) for E* ? We shall show that although E* is not quite an
If, 7j-method it does satisfy a certain power series identity. This identity will make
clear the relationship between E and E*.

First we observe that the matrix elements (b,,,) are generated by a power
series identity similar to (1.2). Suppose we define the functions h,[(1 x)w] by

1 oon+p-k}(a,,+p,t,a,)[(a_x)w]p.(2.1) h.[(1-x)w]
g(x- 1) p= k= n

A computation with the series involved shows that

x"w" g[(x- 1)w]
(2.2) b,,,,w’-

[1 -(1 x)wn+l g(x- 1)
+ x"w"h,,[(1 x)w].

When g,,(z) g(z) 1 equation (2.2) reduces to (1.2’). Let the first and second
terms on the right of (2.2) have the respective power series expansions

CmnWm and Z ’mnWm"

Then (2.2) implies that

(2.3) b,,, c,,,, +
Given a sequence {s,}, let

b,, bin,s,,, c,,, Cm,S, and em Y’. em,S,,.
n=0 n=O n=0

Then bm= Cm + em and by (2.2) we have

(2.4)
g[(x- 1)w]

Sn Z CmWmg(x 1) o [1 (1 x)wn+l

and

s,x"w"h,[(1 x)w]= emw".
n=0 m=0
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First we shall prove that for bounded sequences the summability properties of
(bin,) depend entirely on the matrix (Cm,)because if {s,} is bounded then
converges to zero.

THEOREM 2.1. The matrix (gin,) sums every bounded sequence to zero.

Proof. We need only show that Y’,,"= o le,,,I --+ 0 as m --+ oo. We have that gm
converges uniformly on compacta to g in some disc of radius R > 1. Consequently,
given e > 0 there is an M with la,, akl < eR -k for m > M (see [3). Then for
m > M we have

E [em,I-<_ E "(1 x) Z
n=O n=0 k=0

<e ., x"(1-x)m-"
n=O

R-k<

which completes the proof.
Theorem 2.1 shows that when restricted to bounded sequences E* is equivalent

to (c,,,).
THEOREM 2.2. E* is equivalent to E for bounded sequences if g(z) g: 0 for

Iz[-<_ 1.
Proof By Theorem 2.1, {s,} is E*-summable if and only if {s,} is (Cm,)-

summable. The generating identities give

E E CmnS"Wm
gE(x 1)wJ

m=O,=O g(x- 1)

(2.5)

Sn[f(w)]
(1 x)w ,Lo

gE(X 1)W’]
g(x- 1)2 Emns, Win"

--0

Let g[(x- 1)w]/g(x- 1)= ,o q,w". Since g(w) is analytic in a disc Iwl < R
(R > 1) we have for some constant M > 0,

(2.6) [q,] < M(1 x)’R-".

From (2.5) we get that

We suppose that
m > mo we have

C E qm kEk
k=O

and choose mo so that IEkl < for k > mo. Then for

Letting Q max {IEkl" k mo} we have

ICml <= Q ]qm-k] q- e E ]qm-kl"
k=0 k=mo+

The second sum above is bounded and by (2.6) the first sum converges to zero as
m --, c. Hence c ---, 0 if E -+ O. This proves that bounded E-summable sequences

Icl Iq,-kl lEkl + Iqm-kl"
k=0 k=mo+
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are E* summable. For the converse we note that from (2.5),

g(x 1) m CmWm-"- 2Urn win.
g[(x 1)w] 0 0

Now, if g(w) has no zero in Iwl 1, we can use the argument above to conclude
that Cm 0 implies Em O.

3. Uniform approximation. In our discussion of results on uniform approxi-
mation we shall use the basic simplification due to Korovkin [5, p. 14] which
states that for monotone linear operators L, on C[0, 1] the condition L,h h
(uniformly) for all h e C[0, 1] is equivalent to L,h h (uniformly) for each of the
functions h(t) 1, t, 2 respectively.

In this section we consider the linear operators defined by

(3.1) B)(h, x) am,h
n=O

where the matrix (amn) is generated by the If, 7J-transform with

f(w)
xw

and 7(w) b,.
1 (1 x)w

That is, the transform of a sequence {s,} by the matrix (amn) is the sequence {Urn}
defined by (1.1). Note that if 7(w)= (1- w) -1, then B)(h,x)= B,,(h,x) and
(%.) (E,,). It is not difficult to see that am, is a polynomial in x and am, >- 0
for each m and n if the power series coefficients of 7(w) are nonnegative. Thus if
b, >__ 0, then the operators B)(h, x) are monotone and Korovkin’s theorem can be
applied to characterize those operators of type (3.1) which have the uniform
approximation property.

THEOREM 3.1. Suppose that b, > 0 for each n. Then B)(h, x) - h(x) as m o
uniformly in x for each h e C[O, 1] if and only ifb la)_ k - 1 as m - o for k 1,2,
where {r)} is the (C, k)transform of the sequence {bin}.

Proof. Setting s, 1 in (1.1) gives B)(1, x)= Um-- 1 for all m. If s, n,
then (1.1) gives

XW
2 bmUmwm"(w)

w m=O

Therefore,

B)(t X) Um X Z___I bj xbn a(m
m mb j=

Finally, to complete the proof we note that if s, n2, then by (1.1),

2x2W2 xw })(W)
1 W)2 -- --- m=0Z bmOmWin"
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Hence,
m-2Um 2x2b lm-2 bj(m 1 j) + xm- lb 1,.1)B)(t2, x)= m2 j=0

X
10.(mlx2

rn 1
b, 1,,.(2) _1_ bt)m-2

m m

Our next result shows that a uniform approximation theorem of Jakimovski
and Leviatan [3 can be obtained as a simple corollary of the above theorem.
By (1.5) and (2.3) we have that for any h C0, 1],

o
Lm(h x) 2 c,,,,,h + e.mnh

Since h(n/m) is uniformly bounded it follows from Theorem 2.1 that

(3.2) lim Lm(h, x) lim cm,h

Now (2.4) can be written

g[(x- 1)w] 1- f(w)
s,[j’(w)]"=- CmWm.g(X- 1) W n=0 m=O

Thus by (3.2) and (1.1) we have that

(3.3) lim L,,,(h, x) lim B)(h, x),

where

(3.4) 7(w)
g[(x 1)w]

(1 w)- 1.
g(x 1)

COROLLARY 3.2 (see [3]). Suppose that the power series coefficients of
g[(x 1)w]/g(x 1) are nonnegative and g(z) O for -1 <= z <=0. Then
limm L,,(h, x) h(x) uniformly in x for each h C[0, 1].

Proof. The power series coefficients of 7(w) in (3.4) are clearly positive.

Also if

then

Hence

g[(x- 1)w] wkqk
g(x- 1) k=O

7(W) E b,w’= Z
m--0 m--0

qk) Win.
k=0

g(x 1)
limb.,= qk=

k=---O g(x 1)

Therefore the corollary follows by (3.3) and Theorem 3.1.



262 J. BUSTOZ AND C. W. GROETSCH

An interesting class of Gronwall methods is generated by the functions

x x(1 w)a
(3.5) f(w)

x + (1 x)(1 w)a’
0 < fl _<_ 1,

and

(3.6) 7(w) (1 w) b,)w", 0 < o.
n=O

For appropriate choices of x, e and/ this class includes the Ces’ro methods, the
Euler method and the method of de la Vall6e Poussin. One may define linear
operators on C[0, 1] generated by these If, 7] methods in analogy with (3.1) and
the question arises whether these operators have the uniform approximation
property. It turns out that the Euler method is unique in this class with respect to
having this property.

THEOREM 3.3. The linear operators B generated by the functions (3.5) and
(3.6) have the unijbrm approximation property if and only ijo 1.

Proof If [4 1, then B (h, x)are the classical Bernstein polynomials and
the approximation property is well known.

Conversely if s, n, then by (1.1),

f(w) b,) w".
f(w)

Equations (3.5) and (3.6) give

and therefore,

B’(,, x)
U, [b+_ 1]m l_ mb, m

The asymptotic estimate b F(6)- m- now gives

lim U F(e)

Therefore, Bm(t,x)xonlyif== 1.
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THE NONCHARACTERISTIC CAUCHY PROBLEM FOR
PARABOLIC EQUATIONS IN ONE SPACE VARIABLE*

DAVID COLTON

Abstract. An integral operator is constructed which maps ordered pairs of analytic functions
onto analytic solutions of linear second order parabolic equations in one space variable with analytic
coefficients. This operator is then used to construct a solution to the noncharacteristic Cauchy problem
for parabolic equations in one space variable. Applications are made to the inverse Stefan problem and
the analytic continuation of solutions to parabolic equations.

1. Introduction. Consider a thin block of ice at OC occupying the interval
0 =< x < ov and suppose at x 0 the temperature is given by a prescribed function
0(t) > 0 where >= 0 denotes time. Then the ice will begin to melt and for > 0
the water will occupy an interval 0 =< x < s(t). If u(x, t) is the temperature of the
water we have

k
--uxx ut 0 for0 < x < s(t),
pc

(1.1) u(0, t)= q(t) fort > 0,

u(s(t), t)= 0 fort > 0,

where c denotes heat capacity, p the density, and k the conductivity of the water.
In (1.1) it is assumed that c, p and k are constants. The curve x s(t) is a free
boundary and is not given a priori. However, from the law of conservation of
energy we have

2p ds(t)
(1.2) ux(s(t), t)

k dt’

where 2 is the latent heat of fusion. Equations (1.1) and (1.2) constitute a free
boundary problem (the Stefan problem) for the heat equation. In the more general
case when c, p and k are not constants, but are functions of x and t, we arrive at a
free boundary problem for a parabolic equation in one space variable with variable
coefficients.

Free boundary problems for parabolic equations are in general quite difficult
to solve, and in recent years attention has been given to a study of the inverse
problem, i.e., given s(t) to find q(t) (c.f., [2], F3], 4], [6, pp. 71-80]). In physical
terms this means we are asking how to heat the water in order to melt the ice along
a prescribed curve, and in certain situations (e.g., the growing of crystals) it is in
this inverse problem that we are primarily interested. Such an inverse approach
leads mathematically to the problem of solving a noncharacteristic Cauchy
problem for a parabolic equation and difficulties arise due to the fact that this
problem is improperly posed in the sense of Hadamard (c.f., [.4], I5]). However, as a
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consequence of the Cauchy-Kowalewski theorem, the noncharacteristic Cauchy
problem is well-posed in the complex domain, and hence we are led to impose the
requirement that s(t) be an analytic function of t.

However, even after making the assumption that s(t) is analytic, we are still
left with serious problems in providing a constructive approach for solving the
inverse Stefan problem for parabolic equations with (possibly) variable coefficients.
For example, even though a local solution can always be constructed via the
Cauchy-Kowalewski theorem, such an approach is far too tedious for practical
application, and (more seriously) may not converge in the full region in which the
solution is needed, i.e., in a region containing (a portion of) the positive t-axis.
On the other hand, in the special case when the coefficients ofthe parabolic equation
are independent of time (e.g., the heat equation), a constructive method for solving
the inverse Stefan problem has been given by C. D. Hill I4]. In theory Hill’s
approach also applies when the coefficients are time-dependent. However, in
practice, this is not the case, since Hill’s work is based on the construction of a
fundamental solution S(x, t; , 7) given by the series expansion

j
(1.3)

j=0

where in the case of time-dependent coefficients each S(x, t;), j 0, 1, 2, ...,
is in turn a solution of a nonhomogeneous, noncharacteristic Cauchy problem for
a parabolic equation with time-dependent coefficients. To construct S(x, t;,
via this method (and to determine its domain of regularity) is as tedious and
impractical as using the Cauchy-Kowalewski theorem, and hence in this general
case it is desirable to derive new methods for solving the noncharacteristic Cauchy
problem.

Our approach to this problem is based on the construction of an integral
operator which maps noncharacteristic Cauchy data onto solutions of (a canonical
form of) the parabolic equation being investigated. The kernel of this operator can
be expanded in an infinite series, each term of which is determined by a simple
three term recursion relation. To guarantee the global existence of our operator
we will make the assumption that the coefficients of the differential equation are
entire functions ofx and analytic in for [t[ < to where to is some positive constant.
We will show that as a consequence of this assumption every solution of a linear
parabolic equation in one space variable (with analytic coefficients) which is
analytic in some (complex) neighborhood of the origin has an automatic analytic
continuation into an infinite strip parallel to the x axis containing this neighbor-
hood. This theorem generalizes analogous results obtained by Widder for the heat
equation [7] and Hill for parabolic equations with time-independent coefficients

2. Integral operators for parabolic equations. Consider the general linear
homogeneous parabolic equation of the second order in one space variable
written in normal form

(2.1) Uxx + a(x, t)Ux + b(x, t)u c(x, Out O.

We shall make the assumption that the coefficients a(x,t), b(x, t) and c(x, t) are
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analytic functions of the (complex) variables x and for ]xl < and It] < to.
By making the change of dependent variable

(2.2) u(x, t) v(x, t) exp - a(, t) d

we arrive at an equation for v(x, t) of the same form as (2.1) but with a(x, t) O.
Hence without loss of generality we can restrict our attention to equations of the
form

(2.3) L[u] =- Uxx + b(x, t)u c(x, t)u, O,

where b(x, t) and c(x, t) are analytic functions of x and for [xl < , It[ < to.
We now look for a solution of (2.3) in the form

(2.4) u(x t)= (
2rci 31t_l =6

E(1)(x, t, r)f(r)dr -i -1=6
E(2)(x, t, 7;)g(’r)

where to It[ > 6 > 0 and f(r) and g(r) are arbitrary analytic functions of r for
Irl < to. We shall furthermore ask that E(l)(x, t, r) and E(2)(x, t, r) satisfy the initial
conditions

(2.5a) E(1)(0, t, r)

(2.5b) Ex1)(0, t, z) 0,

(2.6a) E(2)(0, t, z) 0,

(2.6b) Ex2)(0, t, z)=

and be analytic functions of their independent variables for Ixl < , Itl < to,
I1 < to, : r. We shall first construct the function E()(x,t, r). Setting g(r) 0
and substituting (2.4) into the differential equation shows that, as a function of x
and t, E()(x, t, r) must be a solution of L[u] 0 for r. We now assume that
E()(x, t, r) has the expansion

(2.7) El)(x t, r)
1

+ x"P")(x, t, z),
n=2

where the P")(x, t, ) are (analytic) functions to be determined. Note that if termwise
differentiation is permitted the series (2.7) satisfies the initial conditions (2.5a) and
(2.5b). Observe that, in contrast to the kernel (1.3) of Hill’ s integral operator, we are
expanding the kernel E)(x, t, ) (and later the kernel E2)(x, t, z)) in powers of x
(instead of powers of 1/(t r)). This will allow us to determine the coefficients
P")(x, t, ) via a simple three term recursion relation instead of being forced to
determine each coefficient as a solution of a noncharacteristic Cauchy problem for
a parabolic equation as in Hill’s work 4]. Indeed, if we substitute (2.7) into
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L[u] 0, we are immediately led to the following recursion formula for the
P(")(x, t, z)"

p(k + 2)
(2.8)

We now let

(2.9)

p(1) 0,

c b
p(2)

2(t :)2 2(t- z)’

k+2
1p+ )_ Fp) + bP’)- cpl)]

P)(x, t, ) P)(x, t, ).

Then (2.8) becomes

(2.10)
p(1) 0,

c b
22

2
_tv-+1

k+2 (k+2)(k+ 1)
[P(2 + bp() cP k>l.

If we now define Q(k)(x, t, ) by the equation

(2.11) 0(x, t, ) -Q(x, t, z),

then (2.10) yields the following recursion formula for the Q(k)(x, t, )"

(2.12)

Q(1) 0,

Q{2)= --1/2-[C + zb],

2 2r
Q(k + 2) Q+1)

k+2 (k+2)(k+ 1)

Now let Mo be a positive constant such that

[zQ) + rbQ()- rcQ})

+ ckQ()- rcQ)],

(2.13)
c(x, t)<< Mo(1 x/r)-1(1 t/to) -1

b(x, t) << Mo(1 x/r)- 1(1 t/to)-

for [x[ < r and It[ < to. In (2.13) the symbol "<<" means "is dominated by"
(c.f., [1]). The main properties of dominants we will use are the following" If
f(x) << g(x) for Ix[ < r, then

(2.14a)
df(x) dg(x)
dx <<--x forlx[ <r,

(2.14b) f(x) << g(x)(1 x/r) -1 for Ixl < r.
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Similar properties apply to functions of several complex variables. Using the
property

r<< 2to 1-o)-1-(2.15)

for Ivl < 2to we shall now show by induction that there exist positive constants M,,
n 1, 2, ..., and e (where e can be chosen arbitrarily small and is independent of n,
and M, is a bounded function of n) such that for Ix[ < r, It[ < o, [z] < 2to, we
have

(2.16)
4,+ lt+ 1(3/2 + e),+Q,+ 1) << M,+

1- 1- 1 -0) -(2n + 2)

t-(n+ 1)

n =0,1,2,-..

Equation (2.16) is clearly true for n 0 and n 1. Assume now that it is true for
n k and n k. Then from (2.12)-(2.15) we have

(k + )
+2t+ +1Qk+2)<<

(k + 2) mk+14 2(3/2 +

M4+lt+l(3/2 + e)k(2tok(k + 1)+ 2motor2 + 4mokr2)t+
(k+2)(k+ 1)

1 1 1 r

(2.17) kM<< 4+2t+(3/2 + e)*+ M,+ +
2(k + 2)(3/2 +

MorZM kMorZM+ ( + ( + (/ + +

1- 1- 1- r-t +2).

If we now set

M+2 =(3/2+0-1 M+ +(3/2
k Mor2

+
2(k + 2) 2(k + 2)(k + 1)

kMr2 )J(2.181
+

(k + - -- 1)to

we have shown that (2.16) is true for n k + 1, thus completing the induction step.
It remains to be shown from (2.18) that M is a bounded function of k. For
k >= ko ko(0 we have from (2.18) that

I Mk D(1/2 + el2) k > ko.(2.19) M+ 2 =<(3/2+e) M+ +(3/2+
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If Mk+ Mk for k ko we are done, for then we have M __< max {M, M2,
Mo Suppose then that there exists kl >_- ko such that MI + > MI. Then from
(2.19) we have

(2.20)

and by induction

Mk+2 < (3/2
(1/2 + e/2)]

(2 + 3/2e)
(3/2 + e)(3/2 + e)M M,+1 +17

(2.21) Mk +,, =< M +

for m 1, 2, 3, HenceM _<_ max {M1, m2, M + and we can conclude
that M is a bounded function of k.

We now return to the convergence of the series (2.7). Let 6o, 61 and e > 1 be
positive numbers and let

Ixl =< r/, Irl <-to,
(2.22)

Itl =< to/(1 + 1), It rl => o.
Then

(2.23)

(1 _o) >= 1 +fil’l It r[ <to=

From (2.9) and (2.11) we have

(2.24)

< 2to.
2 "-[-.611+

Pk)(x, t, z) (t z)-Q)(x, t, z).

Hence for x, and z restricted as in (2.22) we have from (2.16) and (2.24) that the
series (2.7) is majorized by

(2.25) 2n,,nI0 n=2 Z 0,_,

+ M,l&t"o(3/2 + e)"(- 1)"(1 + (1)

Owing to the fact that M, is a bounded function of n it is seen that if e is chosen
sufficiently large then the series (2.25) converges. Since 6o, 61 and e are arbitrarily
small (and independent of r) and r can be chosen arbitrarily large, we can now
conclude that the series (2.7) converges uniformly and absolutely for Ix[ =< r,
It[ =< to/(1 / 61), [:l =< to and It- r[ => 6o for 6o and 61 arbitrarily small and r
arbitrarily large. Since each term of the series (2.7) is an analytic function of the
variables x, and r for Ixl < o, Itl < to, Irl < to, r t, we can conclude that
El)(x, t, r) exists and is an analytic function of its independent variables for Ixl < o,
Itl < to,lrl < toandt 4: z- At the point r,E(l )(x,t, z) has an essential singularity.
It is clear from our majorization argument that termwise differentiation of the
series (2.7) is permissible and hence E(l)(x,t, ) satisfies the differential equation
(2.3) and the initial conditions (2.5a), (2.5b).
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We now turn our attention to the construction of the function E(2)(x, t, z).
Setting f(77) 0 in (2.4) and substituting this equation into (2.3) shows that, as a
function of x and t, E(z)(x, t, 77) must be a solution of L[u] 0 for 4= 77. We now
assume that E(2)0 t, 77) has tho expansion

(2.26) Ez)(x t, 77)
x , x"p"(x, t, ),

n=3

where the p")(x, t, 77) are (analytic) functions to be determined. We again note that
if termwise differentiation is permitted the series (2.26) satisfies the initial conditions
(2.6a), (2.6b). Substituting (2.26) into (2.3) leads to the following recursion formulas
for the p(")(x, t, 77):

p(2) 0,

c b
(2.27) p(3)

6(t 77)2 6(t

2 1
p(k + 2) +

k + 2p
1)_ [p + bp()- cp}) k > 2.

(k+2)(k+ 1)

The recursion scheme (2.27) is essentially identical to the scheme given in (2.8)
and following our previous analysis showing the convergence of the series (2.7) we
can again verify that the series (2.26) defines an analytic function of x, and 77 for
[xl < , It] < to, 1771 < to, 4: 77, which satisfies L[u] 0 and the initial data (2.6a),
(2.6b). At the point 77, E(2)(x, t, 77) has an essential singularity.

We have now shown that the integral operator defined by (2.4) exists and maps
ordered pairs of analytic functions onto analytic solutions of L[u] 0. It is a
simple matter to show that in fact every solution of L[u] 0 which is analytic for
Itl < to, Ixl < Xo, can be represented in the form of (2.4). For let u(x, t) be an
analytic solution of L[u] 0 and set u(0, 77) f(77), ux(O, 77) g(77). Then f(77) and
g(77) are analytic for 1771 < to. Define

(2.28)

w(x t)
1 ( E{I)(x, t, 77)f(77) d77

2zi ][t_z] =3

1 ( E(2)(x, t, 77)g(77) d77.
2hi dlt-el =3

Then w(x, t) is an analytic solution of L[u] 0 and from (2.5a), (2.5b), (2.6a),
(2.6b) we have

w(O t)=
1 f(t)

dr f(t)
2ci -1=3t-77

(2.29)
wx(O t)= 1 g(77)

d77 g(t)"
2ti t-vl =3 77

i.e., the Cauchy data for w(x, t) and u(x, t) agree on the noncharacteristic curve
x 0. From the Cauchy-Kowalewski theorem we can now conclude that
u(x, t) w(x, t), i.e., u(x, t) can be represented in the form of (2.4).
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3. The noncharacteristic Cauchy problem. Consider the parabolic equation
(2.1) where the coefficients a(x,t), b(x, 0, c(x,t) are analytic functions of the
(complex) variables x and for Il < and It- to[ < to. Suppose we wish to
construct a solution of this equation which satisfies the Cauchy data

u(s(t), t) f(t),
(3.1) Ux(S(t), t) g(t),

where x s(t) is a noncharacteristic curve and f(t), g(t) and s(t) are analytic for
It- to[ < to. We note that the inverse Stefan problem is of this form where
f(t) 0 and g(t)=-(2p/k) ds(t)/dt. By making the nonsingular change of
variables

(3.2) 1 X S(t), 2 t0,

we arrive at an equation of the same form as (2.1) with the coefficients analytic for
111 < oe and 121 < to. Under the transformation (3.2) the curve x s(t) is trans-
formed into the straight line 1 0. If we now apply the change of variables (2.2)
we arrive at an equation of the form (2.3) in the variables and 2 with Cauchy data
prescribed along 1 0. As shown at the end of the last section, this problem can
be solved by using the operator defined by (2.4). Hence, if the coefficients and
interphase boundary are analytic in appropriate regions, we have a constructive
method for solving the noncharacteristic Cauchy problem (2.1), (3.1). Note that
due to the factor of (k + 2)- which appears in each term of the recursion formulas
(2.8) and (2.27), the convergence of the series expansions of E()(x,t, ) and
E(z)(x, t, "r) is in general quite rapid. Hence close approximations can usually be
made by truncating these series after a few terms and using the resulting approxi-
mate E-functions in (2.4).

As a simple example of the above method we shall now construct a solution
to the (normalized) inverse Stefan problem for the heat equation

(3.3) uxx ut,

(3.4a) u(s(t), t) O,

(3.4b) Ux(S(t), t) ds(t)/dt

in the special case when s(t) t. The transformation (3.2) (with to 0) reduces
this problem to

(3.5) wl, + wl w2,

(3.6a) w(0, 2) 0,

(3.6b) w(0, 2) -1,

where W(l, 2) u(x + 2, 2) u(x, t). If we now set

),(3.7) w( 2)= v(1 2)exp( -1

equations (3.5), (3.6a), (3.6b) become

(3.8) v, 1/4v, v,
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(3.9a) v(0, 2) 0,

(3.9b) v,(0, 2)= -1.

From the form of the differential equation (3.8) and the initial conditions (3.9a),
(3.9b) it is seen that we only need to compute the coefficient of (2 z)- in the
series expansion for E(2)(1, 2,7). From (2.26) we have

E(2)(1, 2, )

(3.10)

2 (21--
+ +2 T k=l

+ terms involving higher powers of (2 7)-

2 sinh (21- 1)

+ terms involving higher powers of (2 7)- 1,

and hence, from (2.4) we have

2 sinh (1/21)
/)(1, 2) / 2-[:6 2 7

-2 sinh (1/21).

Then w(,, 2) e-

d7

and the solution of (3.3), (3.4a), (3.4b)is given by

(3.12) u(x, t) et-x 1.

In particular we see from (3.12) that the temperature distribution 0(t) needed at
x 0 in order to make the ice melt along the curve x is given by

(3.13) q)(t) u(O, t)= e’ 1.

We now conclude by stating a result on the analytic continuation of solutions
to parabolic equations with analytic coefficients which generalizes those obtained
by Widder for the heat equation [7 and Hill for parabolic equations with time-
independent coefficients [4]. The theorem follows immediately from the trans-
formation (2.2), the representation (2.4), and the fact that El)(x, t, 7) and Ez)(x, t, 7)
are analytic for Ix[ < , It[ < to, 171 < to, - 7.

THEOREM. Let u(x, t) be a solution of (2.1) which is an analytic function of the
complex variables x and for It] < to, ]x] < xo. Suppose the coefficients a(x, t),
b(x, t) and c(x, t) are analytic functions of the complex variables x and .for ]x] < ,
It] < to. Then u(x, t) can be analytically continued into the strip ]x] < o, It] < o.

An important application of this theorem is the conclusion that the solution
of the inverse Stefan problem can always be analytically continued nto a domain
containing the line x 0, provided the coefficients of the parabolic equation are
analytic for Ixl < oe, It tol < to, and the interphase boundary is an analytic
function of for It- to[ < to. In particular the above theorem implies that
u(0, t) q(t) is an analytic function of for It to] < to. Thus we can conclude
that if u(0, t) q)(t) is not analytic then neither is the interphase boundary s(t).
This partially answers the problem posed by Rubinstein in [6, p. 353].
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ON THE ASYMPTOTIC BEHAVIOR OF PERTURBED VOLTERRA
INTEGRAL EQUATIONS*

G. S. JORDAN,- AND ROBERT L. WHEELER:

Abstract. The asymptotic behavior of the solution of the perturbed system of Volterra integral
equations x(t) f(t) o a(t, s){x(s) + g(s, x(s))} ds is compared to that of the solution of the un-
perturbed system y(t) f(t) o a(t, s)y(s) ds. We show that under suitable restrictions on the resolvent
kernel r( t, s) Ix(t) y(t)l 0ast whenever]g(t,x)] <= 2(0(1 + x with 2 bounded and diminishing.
This establishes and generalizes a recent conjecture of J. L. Kaplan.

1. Introduction and statement of results. We wish to compare solutions of the
following systems of Volterra integral equations"

(1.1) y(t) f(t) a(t, s)y(s)ds,

x(t) f(t) a(t, s){x(s) + g(s, x(s))} ds,

where x, y, f and g are vectors in n-dimensional Euclidean space E,, and a(t, s) is
an n x n matrix. Let ]z] denote any vector norm in E,, and for a vector function
z(t) bounded on 0 =< < o, define Ilzl sup,_>o Iz(Olo

We assume throughout that the solution of the resolvent system

r(t, s)= a(t, s)- a(t, u)r(u, s)du, 0 <__ s <= <

corresponding to system (1.1) exists and that systems (1.1) and (1.2) may be re-
written in the equivalent forms

(1.3) y(t) f(t) r(t, s)f(s)ds,

(1.4) x(t) y(t) r(t, s)g(s, x(s)) ds.

It is well known [2, Chap. 4 that this is the case when a(t, s) and r(t, s) are locally
L in (t, s). In addition, we assume sufficient hypotheses on f(t), a(t, s) and g(t, x)
to guarantee the local existence and uniqueness of solutions of (1.1) and (1.2), and
to insure that the solution of(1. 2) exists on 0 =< < o wheneverlg(t,x)l O(1 + [x[).
(See [2], [4].)

In a recent paper [1, Thm. 3.5], Kaplan proves the following theorem com-
paring the solution of (1.1) with that of (1.2).

THEOREM A. Let y(t) and x(t) denote the solutions of(1.1) and (1.2) respectively.
Suppose r(t, s) r(t s) and r LI(O, ). Let

(1.5) Ig(t, x)l 5 A(t), 0

_
< , Ixl < ,
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where 2 is bounded and diminishing, that is,

(1.6) 2(s) ds 0 as T o.

If Ilyl < , then

(1.7) y Ix(t)- y(t)l dt 0 as T-. oc.

Kaplan also conjectures that Theorem A remains valid when (1.5) is replaced by

(1.8) Ig(t,x)l (t)(1 + Ixl), 0 5 < , Ixl < ,
and that, in fact, Ix(t) y(t)l is diminishing. Our Theorem shows that actually
the even stronger conclusion

(1.9) Ix(t) y(t)l-* 0 as oc

holds for more general resolvent kernels.
THFORZM 1. Let x(t) and y(t) be as in Theorem A. Assume that r(t, s) satisfies

(1.10) [r(t,s)l ds <= B < o fort >= O,

(1.11) sup Ir(t,s)l ds 0 as T ,
t>_T

and has the additional property"

(1.12) given > 0 there exists 6 > 0 such that if > 0 and A is any set contained
in 0, t with m(A) < 6, then

s)l ds

/f(1.6) and (1.8) hold with 11211 < and if Ilyll < , then (1.9) holds.
Observe that all the hypotheses (1.10)-(1.12) are satisfied when r(t, s) r(t s)

with r L 1(0, ). For an example of a kernel a(t, s) of nonconvolution type whose
resolvent r(t, s) satisfies the hypotheses of Theorem see I3, Thm. 6].

Kaplan’s proof of Theorem A uses Laplace transform techniques as well as
a tauberian theorem for Laplace transform due to Hardy and Littlewood
[1, Lemma 3.7]. Our proof of Theorem is of a more elementary nature and is
similar to the proof of the following theorem of Kaplan [1].

THEOREM B. Let x(t) and y(t) be as in Theorem A and suppose that r(t, s) satis-

fies (1.10) and (1.12) as well as

lim Ir(t, s)l ds 0 for each fixed T > O.
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Assume that (1.8) holds where 11211 < and 2 satisfies"
given , fl > O, there exists T T(, fl) such that

(1.14)
m{t’t T, 12(t)l >= } < .

Then (1.9) holds provided IIYll <
Thus, by strengthening the hypothesis on r(t,s) from (1.13) to (1.11), we can

allow a larger class of perturbations and still deduce (1.9). Moreover, Theorem 1
is best possible in the sense that Theorem B is not valid for bounded diminishing
perturbations as the following example shows.

Example 1. Define b(t) on [0, c) by

for 0 < =< or n <= <= n + 1/2n,

b(t)-- 0 for n + (1/2n) + 1/2+ g/ -Jr 1 1/2"+ 1,

linear elsewhere,

for n 1, 2, .... Let

O((t) -1

qbZ(s) ds for >= 1.

Choose f(t)= c, g(t, x)= 2(0 b(t), and

a(t, s) e(t)d(s) exp (u)c/)(u) du.

Then r(t, s) (t)4(s). It is easy to see that r(t, s) satisfies the hypotheses ofTheorem
B, but that (1.11) does not hold. Furthermore, y(t) 0as o and x(t) y(t)
for >= 1. Thus, the conclusion of Theorem B fails, and an additional hypothesis
such as (1.11) is necessary in the statement of Theorem 1.

2. Proof of Theorem 1. The proof consists of two parts.
PROPOSITION 1. If }y[ < c, then xll < .
Proof. Choose a positive integer T by (1.11) such that

r

sup,>_r ]r(t,s)l ds < 41121-"
Then using (1.12), choose 6 > 0 such that

whenever A
_

[0, tl and m(A) < . Define

A(t)= {s’- rNst,2(s) 1/(4B)} fort T.

It follows from (1.6) that there exists T > r so that m{A(t)} < whenever T.
Since x(t) exists on [0, T], there exists M > such that Ix(01 M on [0, Z.

Choose P > 4lyll + 3M. It follows that Ix(01 < P on [0, ). If not, there exists
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> T such that [x(s)l < P for 0 _< s < t, but Ix(t)l P. Then

Ix(t)l-<ly + f[-r It(t, s) g(s, x(s))[ ds

+ It(t, s)lg(s, x(s))[ as
T,t] A(t)

+ fa ]r(t, s) g(s, x(s))[ ds
(t)

=< IlYI+ 3(1 + P)/4 < P.

This contradiction shows that I.x(t)l < P on [0, ).
PROPOSITION 2. If Ilxll < , then Ix(t) y(t)l 0 as .
Proof. Let Ilxll- M and fix e > 0. Again using (1.11), choose a positive

integer T such that

sup,>__r Ir(t,s)l ds <
311 (1 + M)"

Then by (1.12) select 6 > 0 so that if A
_

[0, t] and re(A) < 6, then

Ir(t,s)l ds <
311 I(1 -+- M)"

Define for T,

A(t) {s t- T<s=< t,2(s)>=
3B(1 + M)

As in the proof of Proposition 1, there exists T1 > T such that m{A(t)} < 6 when-
ever >=

Therefore, using (1.4) and (1.8), we have

Ix(t)-y(t)l<=(l+ M){fl-r Ir(t, s)lA(s) ds + ft,_ T,t] A(t)
Ir(t, s)12(s) ds

fA(t) It(t, s)12(s) ds )
< e whenever >=

Since e is arbitrary, this completes the proof of Proposition 2 and establishes
Theorem 1.
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A HARMONIC MEAN INEQUALITY FOR THE GAMMA FUNCTION*

WALTER GAUTSCHIt

Abstract. We prove that the harmonic mean of F(x) and F(1/x) is greater than or equal to F(1)
for arbitrary x > 0.

1. Introduction. V. R. Rao Uppuluri [23 brought the following conjectured
inequality to the author’s attention"

2
> 1 on0<x<.(1.1)

1/(F(x)) + 1/(F(1Ix))

It states that the harmonic mean of F(x) and F(1/x) is always larger than or equal
to F(1)-- 1, equality being assumed for x 1. Because of the well-known in-
equalities between the harmonic, geometric and arithmetic means, the conjecture
implies these other inequalities, F(x)F(1/x) >= 1 and F(x) + F(1/x) => 2.

The proof of (1.1), given below in 2-5, is "computational" in the sense that
it relies on certain isolated numerical values of the psi function

O(x)
r(x)

and its derivative. This deficiency, however, is removed in 6, where numerical
values of only standard constants, such as , In 2, and Euler’s constant 7, are re-
quired.

It suffices to prove (1.1) for < x < Xo, where Xo 1.4616 is the positive
minimum point of F(x). In fact, the left-hand expression in (1.1) is clearly in-
creasing on the interval (Xo, ). If we prove the inequality for < x =< Xo, it will
hold for all x > 1, hence also for all positive x < 1, on account of its invariance
under the substitution x 1Ix.

2. Reformulation of the inequality. Letting

1
(2.1) b(t) < < ,

F(e’)’
we may rewrite (1.1) in the form

(2.2) 1/2[b(t) + b(-t)] __< qS(0),

which expresses a "symmetric concavity" property for 4). We must prove (2.2) for
0 < _< In Xo.

Using Taylor’s theorem, we have for > 0,
2

{-E4,(t) / 4(-t)] 4,(0)- -E;(’Cl)4- (’c2)],

Received by the editors May 24, 1972.
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where dots denote derivatives with respect to t, and

(2.3)

We Will show that

(2.4)

where

(271) -" ((272) < 0 on 0 < __< In x0"

3. The second derivative of 4. Differentiating (2.1) we obtain

(t)=-e’ F’(e’)
[V(e,)] xy(x),

x e’, y(X)=
r(x).

Another differentiation gives

() x Yi x(- y)’ x(y + xy’),

where primes indicate differentiation with respect to x. Noting that

yr= ,,
y’r 0’- yr’= 0’- yrO 0’- 0,

we may express the second derivative of th in terms of O and

1
(3.1) J(t) ---(xO + x2O’- x202), x e’.

4. Some monotonicity properties. We now observe that both functions
x(x) and x2ff’(x) are monotonically increasing on the interval 1/Xo < x < Xo.
To see this for the first, we use the known expansion [1]

x(x 1)
(4.1) xO(x)= -1 +(1-y)x+

(m+ 1)(m+x)’m=l

where 7 .5772 is Euler’s constant. One checks that for m > 0,

x(x 1)
mnt-x

is monotonically increasing for x > (1 + x//1 + 1/m)-, hence in particular for
x > 1/Xo. Monotonicity of xqt thus follows from (4.1). Since O(Xo) O, we also
see that

xO(x) < O onl/xo<X<Xo.

For x2O’, our assertion follows directly from

x,’(x)
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x/(m + x), for each m > 1, being monotonically increasing for x > 0. We also note
that

x2O’(x)>0 onl/xo<X<Xo.

5. Conclusion of the proof. We are now in a position to estimate the second
derivative of b in (3.1), first on the interval 1/Xo < x < Xo, then on 1 < x < Xo.

On the first interval we have by the monotonicity properties of 4,

(5.1) x@ - X2/’- X2/2 X-1@(1/X0)+ X-2’(1/Xo)- X2t2(1/Xo).
Using linear interpolation in [1, Table 6.1] we find O(1/Xo)= (1 + 1/Xo)- Xo
=-1.2657 ..., O’(1/Xo)= ’(1 + 1/Xo)+ x)= 2.9392 ..-, so that the lower
bound in (5.1) is -.2400 From (3.1), since F(xo) .8856 ..., we thus obtain

.2400(t) =< < .272
F(xo)

(5.2)

where we have used [1]

Thus,

on-lnxo < <lnxo.

On the second interval, similarly,

xff + x2’- x22 => (1)+ if’(1)- ff2(1)= .7345 ...,

(1) 7, ’(1) (2) rc2/6.

-.7345;(t)=< < -.734 on0<t<lnxo.r(1)

The proof is now completed by recalling from (2.3) that

and hence

0 < "1 < In Xo, -In x0 < 27 2 < 0,

((T1) - ((q72) < --.734 + .272 --.462 < 0,

as we set out to show in (2.4).

6. A less computational variant of the proof. Reference to numerical values of

O(1/Xo) and O’(1/Xo) in (5.1) can be avoided by observing that xff > 1/2 and that
xO and x2O are monotonically increasing on 1/2 < x < Xo. Using [1]

(1/2) - 2 In 2, ’(1/2) 3’(2) t2/2,

we can thus write in place of (5.1),

l/tt" l’xO + xZO’- xZO2 >= 1/2O(1/2) + v, ty,- 1/402(1/2)= -.7118....

Together with the companion inequality (5.2), and (3.1), this gives

(t)F(e’) =< .712 on -ln Xo < < In Xo,

(t)F(e’)=< -.734 on0<t<lnxo.
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It follows, in particular, that

(6.1) $(z) < 0 and $(z)F(e*) + $(z2)F(e*) =< -.734 + .712 -.022 < 0.

Were (z2) negative or zero, our assertion (2.4) would follow immediately
from the first inequality in (6.1). If(z2) were positive, then $(z2)F(e*) > $(z2)F(e*),
and the second inequality in (6.1) would give

0 > + (2)F(e*) > F(e*’)[(z,) + (2)],
that is again (2.4). Thus (2.4) is true in either case, and the proof, once more, is
completed.
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SOME MEAN VALUE INEQUALITIES FOR THE GAMMA
FUNCTION*

In Memory of George E. Forsythe

WALTER GAUTSCHH"
Abstract. We determine the infimum of the harmonic mean of F(x), F(x2), ..., F(x,) under the

constraints 1-l= Xk 1, all Xk > 0. We present numerical evidence for this infimum to be equal to
F(1) if n < 8, and show it to be less than when n > 8. We also prove that the geometric mean
of F(Xl), 1-’(x2), F(xn) is always >= under the same constraints, and that the geometric mean is the
power mean with the smallest exponent for which this is true.

1. Introduction. In a recent note [1] we proved that the harmonic mean of
F(x) and F(1/x) for x > 0 is never smaller than F(1) 1, that is,

2
(1.1)

1/F(x)+ 1/r(1/x)
> for0<x< .

Equality, ofcourse, is assumed when x 1. We report here on attempts at generaliz-
ing (1.1) to more variables. A natural generalization would be n/"=l 1/F(Xk)

F((x1x2 Xn)/n), which, however, is readily dismissed as false by considering
the case n 2, x 1, x2 large. More promising is the conjecture

n > for all x > 0 with XlX2 ....x 1.(1.2) 7,=1 1/F(Xk)

We present evidence that this inequality is in fact valid for n 1, 2, ..., 8, but
prove it to be false for n >= 9. We also determine the infimum of the expression on
the left of (1.2) under the constraints listed in (1.2). We next show that for all n >= 1
we have

(1.3) F(x) => for allx>0withxx...x= 1.
k=l

In terms, of the power means

(1.4) M.(ai) 1 1Iva +a2+ +a
n

the last inequality may be restated as M,l(F(xi)) >= 1, for all n >__ 1, and all X > 0
with x lx2 x, 1. Since M,’1 increases monotonically with r, the same state-
ment holds for any power mean with r >__ 0. We show, on the other hand, that the
statement is false for any power mean with r < 0.

2. Main results. We denote by R" the space of real vectors
x2, ..., x,] and by R_ the positive orthantR {x e R"’Xk > 0, k 1, 2, ..., n}.
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The constraints in (1.2) can then be written as

where  

Our main results are as follows.
THEOREM 1. For n 1, 2, 3,... we have

n
(2.1)

,,s.,inf 1/F(xk) 7,

where

(2.2) 7, max max g,,v(x)},
l<v<n-1 0_<x_<l

Moreover,

(2.3) 7, -*
F(xo)

1.1291 as n

where Xo 1.4616 is the unique point at which F(x) attains its minimum on the
positive x-axis.

Equation (2.1), for n 1 with 71 1, is trivial, since the only point xl satis-
fying the constraints is xl 1. For n > 1, the maxima in (2.2) can easily be com-
puted with the aid of a digital computer. It turns out (cf. 5) that 7, for
< n =< 8, and it will be shown that 7, > for n >= 9. The conjecture (1.2) thus

seems true for n =< 8, but is certainly false for all n => 9.
We also note from (2.3) that in the (obvious) inequality

(2.4) E=I 1/F(xk) => C(x) .88560 ..., n 1, 2, 3, ...,

the constant on the right is best possible under the constraints x 6 S,.
TI-IFOREM 2.1 For n 1, 2, 3,..., we have

(2.5) F(x) 1 for all x e S,.
k=l

THEOREM 3. For the power means M,r defined in (1.4) we have

(2.6) Mfl(F(xi)) _>_ on S, for all n > 1

ifand only if r >_ O.

3. Auxiliary propositions. We need a few elementary properties of the
psi function (x) F’(x)/F(x) and some related functions.

PROPOSITION 1. The function x(x) is convex for x > O.
Proof. We have

(X0)" (1/X2)(X30" nt- 2X20’).

An examination of inequality (2.5) was suggested to the author by Professor R. A. Askey.
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From the known expansion

1 x-1
+ 1-7+ (m+ 1)(m+x)’(3.1) O(x)

X m=l

where 7 .57721 is Euler’s constant, we obtain by two differentiations,

X31//’’ -Jl" 2X20’= --2- 2 + 2 + 2
m=l m=l

m
2x2

(m+x)3 >0’
m=l

i.e., (xg,)" > 0 for x > 0.
The next result concerns the function

(3.2) f(x) x[F(x)]/(x)
x d
{[r(x)]} r < 0

where r is a fixed (negative) parameter. By Xo we denote, as before, the abscissa of
the minimum of F(x).

PROPOSITION 2. The function f in (3.2) vanishes at x 0 and x Xo, and is
negative and unimodal on 0 < x < Xo, i.e., there exists a with 0 < < xo such
that f decreases on 0 < x < and increases on < x < Xo.

Proof. From the known power series expansion of 1/F(x), letting p Irl, we
find

f(x) xp- (p + 1)Txp+l +...,

showing that f(0) 0. (It is also seen, incidentally, that f need not be convex on
0 < x < Xo; for example, if p 1, then f"(0) -47 < 0.) By definition of Xo,
we also have f(xo) O.

To prove unimodality, we look at the derivative f’. A simple computation
gives

(3.3) xEr(x)]-f’(x) xO(x) + rx2O2(x) + x20t(x).
Let

(3.4) u(x) xO(x) + rx2d/2(x) + x2d/’(x).
From the power series expansion of O(x + 1), we obtain

xd/(x) xO(x + 1)- 1 -1 7x + (2)x2 q-

This shows that the function xO(x) decreases for small positive x; since it is con-
vex by Proposition 1, and vanishes at x Xo, it must have a unique minimum at
some point * with 0 < * < Xo. (In fact, * .2161.) As the derivative of xO
vanishes at this point, we have

(3.5) *0’(*) + 0(*) 0.

We consider first the interval 0 < x < *. On this interval, we have from (3.4),
since r < 0 and x2O2(x) > 1,

(3.6) u(x) < g(x), U(x) xO(x) + r + x20’(x), 0 < x < *.
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Note that

(3.7) U(0)= -1 + r+ =r<0, U(*)=r<0,

the second relation being a consequence of (3.5). We now show that U(x) is con-
vex on 0 < x < *. By Proposition 1, it suffices to show that the last term in U(x)
is convex, i.e.,

(3.8) (x2O’)" 2’ + 4x0" + x20’" > 0, 0 < x < *.
Repeated differentiation of (3.1), however, gives

2m(m- 2x)(X2t)" Z (m --[- X)4m=l

which is certainly positive if 0 < x < 1/2, hence, in particularx if 0 < x < {*. From
(3.6), (3.7), and the convexity of U(x) just established, it now follows that u(x)
< r < 0 on 0 < x < *, i.e., by virtue of (3.3), (3.4),

(3.9) f’(x)<O on0<x< {*.

On the remaining interval {*< x < Xo, the function xO(x), while still
negative, increases monotonically. Since also x2O’(x) increases monotonically for
x > 0 (cf. [1]), it follows from (3.4) that u(x) is monotonically increasing on {* < x
< Xo. Moreover, U(Xo)= xO’(Xo)> 0. Hence there is a unique point {, with
{* < { < Xo, such that u({) 0, and thus u(x) < 0 for 0 < x < { and u(x) > 0
for { < x < xo. In view of (3.3), (3.4), this implies unimodality of f.

4. Proof of Theorem 1. We assume n _>_ 2, since the case n 1, as we pointed
out, is trivial. For short, let

(X1 X2

Since obviously

,x,)= 1
n k= F(Xk)

])(X1, X2, Xn)
F(X0

for all x e R_,

the function 7 is bounded from above in all of R+, and hence, in particular, on S,.
We denote

(4.1) a, sup 7(xl, x2, x,) < m.
xSn

We want to prove that

We distinguish two major cases (not a priori mutually exclusive)"
Case I. The supremum o, is "assumed at infinity", i.e., there exists a sequence

of vectors x(r) e S, such that

(4.2) llxtr) C, 7(X’)) --+ O, as r c.
By virtue of the first relation, and the fact that xt)e S., there must exist a sub-
sequence of x) for which at least one component tends to oo and another tends
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to 0. Let us write again x(r) for this subsequence, and for definiteness, assume that

x)--*, x(2)--,0 asr--.(4.3)

Since

nT(xtr))
1

r(x)k=3

1 n-2

we obtain from (4.2), (4.3), by letting r -, oc in this inequality,

(4.4) a, =< 2/n
r(xo)

We show that equality holds in (4.4). Define x(t) by

x(t) tc, x.(t) c/t,

Clearly, x(t)e S. for all > O, and

X3 X XO, C X0 (n-2)/2.

n-2
n(x(t)) r(tc-- + V(Y/-d + r(,o--5

Letting o gives 7(x(t)) - (1 2/n)/F(xo), and therefore strict inequality can-
not hold in (4.4).

Thus, in Case I, we conclude that

(4.5) r,

Case II. The supremum a,

2In
r(Xo)

is assumed at a finite point x s of S,,

(4.6) 7(x) _-< 7(s) for all x e S,.

The function 7 thus has on S, a global maximum at s.
Using Lagrange multipliers, it follows that st= Is1, s2,

solution of the system of equations

cx 7(x,x,’", x,) + 2 x 1 0,
k=l

xk-l=0,
k=l

that is,

(4.7)
[F(si)]2 +

2n
k=l

s 0,

(4.8) s 1.
k=l

i= 1,2,...,n,

(4.9) /n f(s1) f(s2) f(s.),

.., s,] must be a

i-- 1,2,...,n,

Multiplying the ith equation in (4.7) by si, and taking note of (4.8), we find
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where the function f is as in (3.2), with r -1. Since f(x) < 0 for 0 < x < xo
and f(x) >= 0 for x >__ Xo, it follows from (4.9) that either all Sk are between 0 and
Xo, or all Sk are -->_Xo. The latter, however, is excluded by (4.8), since Xo > 1.
Consequently,

(4.10) 0 < Sk < Xo, k 1,2,..., n.

Now, using Proposition 2 of 3, according to which f is unimodal on 0 < x
x0, we conclude from (4.9) and (4.10) that only one of two situations can arise:

IIa. All Sk are the same. By (4.8), this implies s s2 s, 1, and so
7(s) 1 in this case.
IIb. There are exactly two distinct sk, say,

S S2 S < Sv+ Sv+ 2 Sn, 1 " H,

S1S

We then have

-’}- 0 < S < S < XO.a. 7(s)
n

Since s, s-? v/"-) and sl < s,, it follows that 0 < s < 1. (In fact, x
< 1, by virtue of s, < Xo .) According to the definition of g,, in (2.2), we thus have

(4.11) tr, g,,(s), 0 < s < 1.

Furthermore, by (4.9), s is a solution of the equation

(4.12) f(x) f(x-/("-)).
One checks readily that the roots of (4.12) are precisely the stationary points of
g,,(x). Since

( y) ()x,x,...,x,y,y,..., =g,,x, y=x v/l. v),

v-times (n- v)-times

where the argument of 7 is a point on S, for each x > 0, and since a, is the global
maximum of 7. on S,, the stationary point (4.11) cannot be other than a local
maximum. There are now two possibilities"

IIba. For no integer v with v =< n does g,,(x) have a local maximum
on (0, 1).

IIbb. There is at least one integer v, 1 =< v =< n 1, for which g,,(x) has a
local maximum on (0, 1).

Case IIba is incompatible with Case IIb, so that IIa necessarily applies, and
a, 1. In Case IIbb we must look for the largest local maximum (if there are
several, corresponding to different values of v), which is then equal to r, if larger
than 1. Otherwise, r, 1 from Case IIa.

Summarizing Case II, we can write

a,= max {max
<v<n-1 0_<x<l

where the inner maximum picks up a local maximum of g,,, if it is larger than 1,
or the value g,,v(1) 1, if it is less than or nonexistent. With Case I, equation (4.5),
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taken into account, we thus have

1 2/n
max

F(xo)
7,

Observing, however, that

O_x_lmax g,, I(X) g., I(X- (n- 1)) nl F(x i,- 1))

1 1/n 1 2/n
F(xo) F(xo)

n-i]+
F(xo)

we see that in fact a, 7,, proving (2.1).
Noting further that

g, v(x) <
1 v

r(xo)
+ r(Xo r(xo)

on0=<x=<l,

we have 7, =< 1/F(xo), and thus

1/n
F(xo)

<7, < n= 1,2,3,.-.
=r( )’Xo

showing that lim,_ 7, 1/F(xo), as claimed in (2.3). Theorem 1 is now proved.

5. Numerical results and graphs. In this section we present some information
concerning the functions g,,v(x) in (2.2) which was obtained by extensive numerical
computation, using the CDC 6500 computer.

First of all, we observe that for large n many of the functions g,,(x) do in
fact have local maxima in 0 < x < 1. This can be seen by noting that

n- v 1 v/n1

F(x- (" + >g"’(x-("-v)/v)
n -v)/v) F(x F(xo)

so that g,,(x ("- )/v) > whenever (1 v/n)/F(xo) > 1, i.e., whenever

(5.1) < F(xo) --.1143....

Since g,,v(0) 0, g,,v(1) 1, the presence of a local maximum in the case of (5.1)
is thus evident.

More detailed computations, covering the range 2 < n < 30, 1 < v < n 1,
revealed that"

(i) g,,,v(x)is monotonically increasing on 0 __< x __< for n _< 6, 1 < v < n- 1.
(ii) g,,l(x) for n _>_ 7 has a unique local maximum on (0, 1) which is less than 1

for n 7 and n 8, but larger than for n > 9.
(iii) g,,(x) for v 2, 3, 4 has a local maximum only for n => 14, n 21, n => 28,

respectively, each being smaller than the respective maximum of g,,:. As v increases
from 2 to 4, the maxima in question decrease.

(iv) g,.,,(x) for 7 =< n __< 30, 5 __< v =< n- is monotonically increasing on
0<x<l.
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The numerical results suggest the conjecture that the relative maxima of
g,,v decrease as v increases (with n held fixed), but we do not have a proof for this.
Some critical portions of the "dominant" curves y g,,l(x), 7 __< n __< 10, are
shown in Fig. 1.

1.0201
n=lO

GRAPHS OF THE FUNCTION

gn,l(X) on O<=X<_I

n=7,8,9, 10

I.OLO

n=8

.990

n=7

.980 .
0.0 .2 .3 .4 .5 .6 .7’ .8 .9 1.0

X

FIG. l. Graphs of y g,,(x)for 7 <= n <= 10

Based on the numerical evidence described above in (i) and (ii), we may infer
with confidence that2

(5.2) 7,= 1 forl =<n=<8.
From (5.1) with v 1, on the other hand, we see that 7, > 1 whenever n
> 1/(1 F(xo)) 8.741 ..., i.e.,

(5.3) 7,> for alln>=9.

Equation (5.2) is trivial for n 1, and established in [1] for n 2.
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The local maxima 7,* of g,,1,7 __< n =< 30, were computed more accurately by
applying Newton’s method to the equation (4.12) with v 1. A binary search
method was used to obtain fairly accurate initial approximations. The results,
believed to be accurate to all digits shown, are displayed in Table 1. (Observe that
3:,* ’, for n => 9.)

TABLE 13

Local maxima .* gn,l({n*) of gn, l(X) for 7 <= n <= 30

7 1.900855126(- 1) .9874040859 19 1.087835945(-3) 1.069800731
8 9.819583769(-2) .9986294355 20 7.425128883(-4) 1.072752220
9 6.005471800(-2) 1.009798259 21 5.071386946(-4) 1.075427804
10 3.840859500(-2) 1.019864207 22 3.465411640(-4) 1.077863530
11 2.512555627(-2) 1.028706548 23 2.368819775(-4) 1.080089658
12 1.666215274(-2) 1.036420644 24 1.619635354(-4) 1.082131717
13 1.114939565(-2) 1.043152112 25 1.107593956(-4) 1.084011358
14 7.506998631(-3) 1.049045683 26 7.575306970(-5) 1.085747033
15 5.076813299(-3) 1.054229841 27 5.181558830(--5) 1.087354549
16 3.444215694(-3) 1.058813803 28 3.544457248(-5) 1.088847512
17 2.341999266(-3) 1.062888730 29 2.424710624(- 5) 1.090237691
18 1.595180690(-3) 1.066530189 30 1.658765573(-5) 1.091535309

The integers in parentheses denote powers of 10 by which the preceding numbers are to be
multiplied.

6. Proof of Theorem 2. The proof follows similar lines of reasoning as the
proof of Theorem 1. We can therefore be brief. Letting

we denote

7(x,x2,"’, x.)=
1

lnF(x)
/’/ k=

(6.1) a, inf 7(xl, X2, Xn) > [3,
xSn

and propose to prove that

The infimum in (6.1) cannot be assumed at infinity, since otherwise there
would be a sequence of vectors x(r) e S, satisfying (4.2), (4.3), hence

nT(x’)) In F(x’)) + In F(xt2’)) + In F(Xtk’))
k=3

=> In F(x]’)) + In F(xt2r)) + (n 2)F(x0) as r .
The function 7(x) thus assumes a minimum on S, at some finite point x s 6 S,,

7(x) => 7(s) for all x s S,.
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On using Lagrange multipliers, it follows that st= Is1 ,s2
satisfy

(6.2) (Sl) (s:) (s.),

s,] must

(6.3) 1- Sk 1,
k=l

where

4(x) ag

Since b(x) < 0 for 0 < x < Xo, and b(x) __> 0 for x => Xo, we conclude from (6.2),
(6.3) that

O < Sk < Xo, k= 1,2,...,n.

From Proposition 1 we know that qS(x) is convex for x > 0, and from the
proof of Proposition 2, that

b(0) -1, b’(0) < 0, b(Xo) 0.

There are thus points *, o, with 0 < * < o, such that b(0) b(o) and
qS(x) is monotonically decreasing on 0 =< x < * and monotonically increasing on

* < x =< Xo. Since qS(1) -7 > -1, we have in fact 0 < o < 1.
From (6.2) we now conclude that only one of two situations can hold"
(a) All sk are the same. Then sl s2 s, 1, giving a, 0.
(b) There are exactly two distinct sk, say,

0 S S2 Sv Sv+ Sv+2 Sn, 1 v n,

such that

O<SI <*<S <o<1.
Since the last inequalities imply SlS, < 1, in contradiction to (6.3), case (b) is
impossible, leaving us with case (a), i.e., or, 0. Theorem 2 is proved.

(7.1)

7. Proof of Theorem 3. We have already observed in that (2.6) is true for
all r >= 0. It suffices therefore to show that (2.6) is false for r < 0.

By an obvious adaptation of the proof of Theorem 1, one finds that

inf Mt,rl(F(xi))= 1/r r<0,
xeSn

where

,= max {max g,,(x)},
<_v<_n-1 O<x<l

g,,v(x) de2 1
{v[F(x)] + (n v) [F(x-/("-))]}

Now arguing as in (5.3), we have

7, --> max g,, (x) => g,, t(x "- 1))
O_<x_<l
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from which it follows that 7. > 1 as soon as

1 [r(Xo)]-""
For all these values of n, the infimum in (7.1) is < 1, and thus the inequality (2.6)
false. This proves Theorem 3.
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UNIQUENESS AND EXISTENCE FOR THE INTEGRAL EQUATION
OF INTERREFLECTIONS*

RICHARD KRAFT’

Abstract. The integral equation of interreflections, determining radiant energy exchange in cavities,
is shown to have a unique solution in the space on nonnegative functions defined over the cavity surface.
The result is established by employing the contraction mapping principle.

1. Background, definitions and objectives. In order to familiarize the reader
with the integral equation ofinterreflections, this paper begins with a short informal
description of its physical origin and basis.

We begin this description by supposing one has a source of radiation inside
some cavity, e. g., a light bulb inside a closed room. The source emits particles of
energy (call them photons) which collide with the cavity wall. At each point, x, ofthe
cavity wall, S, a certain fraction, R(x), of all the photons incident upon an infini-
tesimal element of area surrounding x, dA,,, are reflected back into the cavity;
the remaining fraction, 1- R(x), permanently escapes the cavity by passing
through the wall. A certain fraction of those photons which are reflected from dA,,
travel to every other element of area day of the cavity wall. The empirical law of
diffuse reflection states that the fraction of photons which are reflected from dA,,
to day is proportional to the product of the solid angle subtended by day at point
x and the ratio of the area of dA,, projected on the plane perpendicular to the line
joining x and y to dAx. This ratio is just the cosine of the angle between the normal
to S at point x and the line in the direction r y x. Thus the fraction of reflected
photons which travel from dA,, to day is given by

(1.1) Ko(y, x)
dAy(n(y), r)(-n(x), r)

7 rll
where n(y), n(x) abbreviated n] are the unit outward normals to S at points y and
x respectively and Ilr is the Euclidean length of r. Throughout this paper r, y, x
are vectors with the standard rectangular Cartesian coordinates (r 1, r2, r3) etc. the
Euclidean inner product x.y ixiYi is represented by a dot between vectors,
as in (1.1). Whenever it is appropriate n(y), dAy, are abbreviated by n, dA etc.

It is easily seen that Ko(y, x) is also given by

(1.2) Ko(y, x)
dAy(COS 0y)(COS 0x)

r 2

where 0y, 0,, are the acute angles between the unit outward normals n(y), n(x)
and the lines in the directions r, -r respectively; see Fig. 1.

The quantity of physical interest is the steady state "total" density of in-
coming radiation power at each surface element dA,,. This quantity is denoted by
H(x) and has the dimensions of energy per unit time and area. We proceed to
derive the integral equation which determines H(x), x e S. The total incoming
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power at any point y is composed of the "direct" power coming to dAy directly
from the source, say H0(y) day, plus the "indirect" power coming from every other
surface element dA,, that "can be seen" from dAy, i.e., the solid angle subtended at

x by dAy is not blocked by some obstruction (in this paper it is assumed that all

n(x)

dAx

dAy

r2

nty)

FIG. 1. Kernelgeometry

surface elements see each other). From the definitions of R(. and K0(.,. it is
seen that the indirect power at dAy is given by

(1.3) R(x)Ko(y x)H(x)dA,,.
dAx6S

Thus

(1.4) H(y) dAy Ho(y dAy + R(x)Ko(y, x)H(x)dA,,.
dAx6S

After dividing (1.4) by dA and passing to the limit dA, O, one obtains the integral
equation of interreflections

(1.5) H(y) Ho(y + ff R(x)K(y, x)H(x) dA,,,
s

where K(y,x)= Ko(y,x)/(dAy). The. derivation of (1.5) sketched above is a
synthesis of ideas in [3] and [5].

From consideration of the physical meaning of (1.5) it seems plausible to seek
its solution in the complete metric space, /#, consisting of the nonnegative con-
tinuous functions defined on S together with the metric

(1.6) d(H, G)= sup IH(s)- G(s)l.
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The first objective of this paper is to show, under suitable restrictions which
will be specified later, that the mapping determined by

(1.7) K" (( R(x)K(y, x)U(x) dA,, G(y)
s

is a contraction mapping of the space /into itself. Our second objective is to
prove that the integral equation of interreflections possesses a unique solution in
#. To attain both of these objectives it is necessary to make the physically reason-
able restrictions:

(1.8) Rma max R(s) < 1,

(1.9) Ho(x

The integral equation of interreflections is of current technological interest
in connection with light bulb standardization at the National Bureau of Standards
for other current applications, see [7], l-8, Chap. 3] and further references cited
therein. Equation (1.5) has been discussed from a computational and physical
point of view (but not with a formal view of establishing existence and uniqueness)
in the papers [3], [5], [10]. In [3] the Fredholm approach was investigated while in
[5 the Hilbert-Schmidt approach was followed. Some analytic solutions to equa-
tions involving ideal surfaces have been given in [9]. For a description of the paper
[103, see 4.

The results in this paper have importance beyond the fact that they establish
existence and uniqueness of (1.5) rigorously and with a method much simpler than
the Fredholm or Hilbert--Schmidt methods. Our results suggest and provide the
basis for a powerful iterative numerical method for solving (1.5) and computing a
posteriori error bounds [1, p. 38. Finally the methods we use seem sufficiently
precise and powerful enough to generalize our results to cover all physically realistic
situations; see the remarks concerning the generality of our techniques in 4 and
Remark 3.1.

The proof of the second part of Lemma (which is shorter and more analytical
than the author’s original proof) is due to A. J. Goldman.

2. Basle ideas and auxiliary constructions. The existence of a unique solution
to the integral equation (1.5) is established by applying the contraction mapping
principle [4, p. 43]. There are two prerequisites for employing this principle. First of
all, the mapping K, see (1.7), must be shown to map the space ///into itself; secondly
it must be shown that there exists a positive constant, c, such that c < 1 and

(2.1) d(K(H), K(G)) <= c d(H, G)

for all H(. ), G(. )in
Before proceeding to establish these prerequisites it is convenient to introduce

certain definitions and geometrical constructions that serve as a framework for
defining precisely the improper integrals that we deal with. We note that all
integrals with K(y, x) occurring in their integrand are formally improper because
the quantity Ilr in the denominator of K(y, x) vanishes when y x. With the goal
of defining these improper integrals in mind we denote the tangent plane to S at
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an arbitrary point y by T(y). For each point y of S construct (see Fig. 2) a local
rectangular Cartesian coordinate system with coordinates xi, 1, 2, 3, and with
origin at y in such a way that the x l, xz-plane coincides with T(y) and the posi-
tive xa-axis points into the interior of S. Furthermore, suppose {@, j 1, -.., ,
to be some strictly decreasing monotonic sequence of positive numbers that con-
verges to zero, and define for each value ofj" (i) T(y) to be the plane parallel to T(y)
that intersects the local xa-axis at xa ej, (ii) C to be the intersection curve ofS and
TJ(y), (iii) F and N to be the two closed surfaces that S is separated into by C,

5

FIG. 2. Local constructions at point y

N being the part that contains y. With the aid of these constructions our improper
integral can be defined, formally, by

(2.2)

and

ffR(x)K(y, x) dA,, lim f; RK dA,,
S FJ

(2.3) II R(x)K(y,x)H(x)dA,, lim II RKH dA,,.
j-

S F

It will be shown later that the limits on the right-hand sides (abbreviated RHS) of
(2.1), (2.2) exist independently of the particular sequence {ej) whenever H(x) //;
thus the integrals are meaningfully described. It is also convenient now to define
for later use the sequence of functions on S"

FJ

Of course, certain hypotheses must be made regarding the surface S in order
to guarantee that the constructions just introduced and the quantities appearing
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in K(y, x) exist and are uniquely definable at each point of S. To assure that S
possesses these general properties we hypothesize as follows.

Hypothesis 1. The quantities TJ(y), T(y), n(y), C etc. defined above exist and
are uniquely defined at each point of S and S is compact.

3. Outline and proof of lemmas anti theorems. This section starts with a brief
description of the relation between the contents of the lemmas and the objectives of
our papers. The formal proofs of the iemmas and theorems follow the description.

The two prerequisites that are needed for establishing the contraction mapping
principle are essentially consequences of the fundamental result

(3.1) lim (I K(y,x) dA,,
j

FJ
which is proved in Lemma 1. By using this result and Lemma 2 the limits in (2.2),
(2.3) are shown to exist in Lemma 3. Lemma 4 is used in the proof of Lemma 5 to
show that the mapping K transforms into itself. Theorem 1 establishes the
contractivity of the mapping K. Theorem 2 combines the result of Lemma 5 with
the contraction mapping principle to obtain the result that the integral equation
(1.5) possesses a unique solution in

Before beginning the formal parts ofour proofs we introduce some preliminary
definitions and hypotheses that will be repeatedly referred to in our lemmas and
theorems. Thus (see Fig. 2), let (Pz, 0z) be the polar coordinates of an arbitrary
point z on CJ. Define 7J(z) to be the angle between the line connecting z to y and the
x3-axis of the local Cartesian frame at y. In our proofs we will refer to the following
hypotheses.

Hypothesis 2. With reference to the previously defined quantities,

(3.2) lim yJ(z) z/2, uniformly in z.

Hypothesis 3. The surface S is convex.
Hypothesis 4. Each surface SJ(y) can be represented [2, p. 159] by a vector-

valued function x(u, v, y); and x(u, v, y) is assumed to be continuously differentiable
in u and v and continuous in y.

The statement and proofs of our lemma and theorems follow.
LEMMA 1. /f Hypotheses 1, 2, 3, 4 hold, then

(3.3) lim ff K(y, x) dAx f.f K(y, x) dAx l
j-

for each y in S.
Proof. The proof is divided into two logically distinct phases. In the first phase

the surface integrals on the LHS of (3.3) are transformed, by Stokes’ theorem, into
line integrals around CJ; this transformation of a surface integral of K(y, x) into a
line integral is well known [5, p. 3133. In the second phase of the proof it is shown
that in the limit j o the value of these line integrals approaches one.

For ease of calculation [e.g., to verify (3.4)] it is convenient to choose the
origin of the original Cartesian coordinate system at the point y [i.e., at the y
appearing in (3.3)]; the quantities ]lrl and r then became (x + x + x)1/2 and
(- x, x2, x3) respectively.
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To begin the first phase of the proofwe note that a trivial rearrangement of the
factors in K(y, x) followed by application of the (directly verifiable) vector identity

(3.4)
rl(n(y)’rl) Irl ]r 2 curl l-r- n(y)

where r r/llrll and " is the standard vector cross product, yields

ff(3.5) K(y, x) dAx 2
n(y) dAx.

FJ FJ

Now, because Hypothesis 3 holds, it is legitimate to apply Stokes’ theorem 1, p.
3951 to the RHS of (3.5); there results

n(y) ds,(3.6) K(y, x) dA
F

and the first phase of the proof is complete.
The RHS of (3.6) can be evaluated in the framework of the local Cartesian

frame. For r l/llrll, n(y) and ds are given in the local coordinate system by (-x l,
,2-Xz,:j)/(x21 + x + ej)l/2, (0, 0,- 1)and (dx/ds, dxz/ds)ds (it being understood

that the curve C is parametrized by the Euclidean arc length "s"). With this no-
tation and with the proper calculation of the cross and dot products one finds

(3.7) - n(y) .ds=-- (x21+x + :)-l[-x2dxl+x ldx2].

It is worthwhile to introduce polar coordinates (see Fig. 2)

x =pcos0; dxl=dpcosO-psinO,

x2 psin0; dx2-dpsinO+pcosO

into the RHS of (3.7) there results

lfc[r 1 lfc(P2+ :})-lp2dO"(3.8)
27r

Next observe from Fig. 2 and the definition of 7J(z),

Pz/(Pz +(3.9) 2 2 ,2

where z (Pz, 0z) is an arbitrary point on CJ. Now by combining equations (3.5)-
(3.9) there results

ff fcsin2[’J]dO"(3.10) K(y, x) dA
FJ

Finally, by taking the limit j in (3.10) and utilizing Hypothesis 2 we get (3.3),
and the proof of Lemma is complete. {Remark 3.1. Observe that since p2/(p2 + )
< 1 it follows by combining (3.4)-(3.9) that

(3.11) ff K(y, x)dAx<=l
s
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,2provided only lim3_o p2/(p2 -k- 6;.i exists. Also note that if there is a conical shaped
cusp with vertex angle at some point y on S then the RHS of (3.3)equals sin2

at y.}
The positivity of K(y, x) and j K dA can hold without requiring the smooth-

ness properties in Hypothesis 4. Thus we prove the following lemma.
LEMMA 2. Let Hypotheses and 3 hold. Then K(y, x) is defined and nonnegative.
Proof. From the definition K =_ Ko/dAy and (1.2) it is seen that it is only

necessary to prove that the angles 0y, 0,, are not greater than re/2. This is proved
true of 0y and an analogous proof works for 0,,. It is shown that if Or is assumed
greater than re/2 a contradiction to Hypothesis 3 results.

Suppose 0y, the angle between r and n(y), is greater than r/2. This implies the
angle between -r and n(y) is less than t/2. Consequently, n(y) and -r lie on the
same side of the tangent plane at point y. This implies that some points near y
along the line in the direction of -r lie outside S, because n(y) by definition is the
outward pointing normal at y. But, by Hypothesis 3, all the points on the segment
from y to x should lie in S, hence a contradiction.

LEMMA 3. If Hypotheses 1-4 hold, then the sequences

where H(x) 6 #, are positive, monotonic and convergent.
Proof. Lemma 2 and the restrictions on the functions R and H imply that the

integrands of all the integrals in (3.12) are positive. Furthermore F" > F" if m > n.
Therefore all the sequences in (3.12) are monotonic increasing. These sequences
are also bounded from above and hence converge. We have already shown in
Lemma that the first sequence in (3.12) converges. To establish that the second and
third sequences converge note first of all that there exist finite numbers Rmx, Hmax
that bound the functions R(x), H(x), respectively. This is because R and H are
continuous functions defined on a compact surface. Therefore we have

(3.13) ff eg dAx <= emax ff g dAx <- emax,
FJ FJ

(3.14) f RKH dAx RmaxHmax K dAx RmaxHmax,
FJ FJ

where to obtain the second inequality in (3.13), (3.14) we have used the monoton-
icity ofvK dAx) and the conclusion of Lemma 1. Thus the integrals on the
left-hand side of (2.2) and (2.3) are well-defined.

The next lemma plays an important role in establishing the fact that K maps
//into /.

LEMMA 4. IfHypotheses 1--4 "hold, then thefunctions H(y), y S (see (2.4)), are

well-defined and continuous.

Proof. It is convenient in the proof of Lemma 4 to lump the product of R(x)
and H(x) that appears in the integrand on the RHS of (2.4) together, thus below
H(x) is considered to be absorbed into R(x); also "j" is considered to be arbitrary
but fixed.
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It must be shown that forjan arbitrary but fixed y 1, Y e S, and any positive e
it is possible to choose a 6(0 so that

(3.15) B(yl,Y2)
FJ(yl) FJ(y2)

whenever IlYl Y2 < 6(0.
By defining the subdomains of S, I(yl,Y2)--FJ(yl)["1 FJ(y2), Z =_ FJ(yi)

I(Yl, Y2), i-- 1, 2, and using the triangle inequality it is possible to rewrite
B(yl, Y2) in the more convenient form

B(yl,Y2) =< ffRK(y,,x)aAx
i=1

(3.16)
z,

+ fl
I(Yx ,Y2)

From the postulated continuous dependence ofF(y) on y it is possible to make
the areas of Zi, 1, 2, arbitrarily small by choosing Y2 sufficiently close to Y l.

Also, it is possible to choose Y2 sufficiently close to Y so that both FJ(y), 1, 2,
are contained in a closed compact set which contains neither y nor Y2. Hence
K(y, x), 1, 2, are continuous functions of x for x FJ(y) , 1, 2, re-
spectively; and hence since Zi = F(y) , i= 1,2, the functions K(yi, x),

1, 2, possess upper bounds in Z, 1, 2, respectively.
From the previous discussion it follows that there exists a l(e) such that

(3.17) RK(y,,x) dA <
i=1 2

Zi

whenever [[Y2 Y Cl(;)"
The last term on the RHS of (3.16) can also be bounded, for we know that

Yi, 1, 2, lie outside U and hence for each fixed x it is possible to find a

62(x, e) such that

(3.18) IK(y 1, x) K(y2 x)[ < g/2Rma (area of S)

whenever 11Y2 Y111 < (2(x, E). {Remark. If H(x) is identically zero, then Rmax,
which in this proofcontains H as a factor, is zero and the RHS of(3.18) is meaning-
less. However, if H(x) is identically zero, then Lemma 4 is clearly true. On account
of the compactness of and I c there is a nonzero 62(e,) (independent of x)
such that (3.18) holds whenever [[Y2 Y < 2(e) and x e I. Finally, by combining
(3.16)-(3.18), inequality (3.15) is established.

LEMMA 5. If Hypotheses 1-4 hold, then the mapping H - KH + Ho, where
Ho /g, maps the space //into itse!f.

Proof. By combining Lemma 3 and the definition (2.3) we deduce that KH is
well-defined and nonnegative. KH is also continuous, for by Lemma 3 the sequence
{HJ(x)} is monotonically convergent and therefore Dini’s theorem [2, p. 101]
implies the sequence is uniformly convergent. This and Lemma 4 imply that KH
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is a limit of a uniformly convergent sequence of continuous functions and conse-
quently is itself continuous. The proof of Lemma 5 is complete.

THEOREM 1. If Hypotheses 1-4 hold, then the mappings H KH and H KH
+ Ho Ho , are contractions on //.

Proof. The elementary inequality Ij" fdAxl <= Ifl dAx implies

(3.19) d(KH, KG) <= {fs RK dA,,} d(H, G).

The assumption (see (1.8)) Rmax < and Lemma imply

(3.20) -f,I RK dA < l.

s

Therefore K is a contraction and the same immediately follows for H KH + Ho
THEOREM 2. If Hypotheses 1-4 hold, then the integral equation specified by

equation (1.5) has a unique solution in //.

Proof. It follows from the conclusions of Lemma 5 and Theorem that the
prerequisites for the contraction mapping principle [4] are satisfied and this
principle implies the conclusion of Theorem 2.

4. Comments. For the purpose of presenting our principal ideas directly and
clearly we have deliberately chosen to work with uncomplicated and perhaps overly
restrictive hypotheses. It is clear that some of these restrictions can be removed.
For example it is clear that our results hold for "piecewise" smooth surfaces. Even
the convexity requirement seems to be removable but not without the stipulation
that the domain of integration S in (1.5) be only over the points x from which it
is possible "to see" (see 1) dAr For if S is not convex then for each y there are some
points x on S at which K(y, x) is negative. By choosing H(x) properly the image KH
then becomes negative and therefore K is not an into mapping of //.

Sydnor [10] establishes an error estimate for the remainder in the Neumann
series solution of (1.5). His derivation of this result is based on an assumption
similar to (3.3) and an assumption that the Neumann series converges. Both these
assumptions arejustified by plausibility arguments ofa physical nature. Specifically
Sydnor refers to [8, eq. 3.21 to justify our relation (3.3), and equation (3.2) of IS, Chap.
3] is justified by "energy" considerations. In this paper both of these assumptions
are established mathematically; also the error bound cited in and which follows
from the contraction mapping principle is better and more useful than Sydnor’s
remainder estimate. In addition, the other ingredients (Lemmas 4 and 5) necessary
to establish the contraction mapping principle are established. These results and
the fact that the integral on the RHS of (2.4) is formally improper are not men-
tioned by Sydnor.
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ASYMPTOTIC STABILITY FOR ORDINARY DIFFERENTIAL
EQUATIONS WITH DELAYED PERTURBATIONS*

ELLIOT WINSTONf

Abstract. Asymptotic stability of the zero solution of

2( t) a( t)x( t) + P(t, xt)

is studied with a direct method ofRazumikhin. IfIP(t, q)l < a(t)O ql for some 0 < 1, and a(t) > z > 0,
then zero is exponentially stable" if the condition on a(t) is weakened to a(t) > 0 and j-oo a(t)dt oe,
then zero is asymptotically stable.

1. Introduction. The problem of determining various stability properties of
solutions of functional differential equations has been widely studied. Krasovskii
[63 developed a theory of Lyapunov functionals to answer such questions for a
large class of equations. As an application, he proved that the zero solution of

(1.1) 2(0 -ax(t) + b(t)x(t h(t)),

where a > 0 and 0 =< h(t) <= r, is asymptotically stable if Ib(t)[ =< aO for some 0 < 1.
With the same hypotheses, Hale [5], in fact, showed that zero is uniformly asymp-
totically stable, and hence exponentially stable by linearity 3]. By studying the
norm of solutions directly, Razumikhin [8] was able to prove that zero is uniformly
stable if Ib(t)l <= a. More specifically, he showed that x, is a nonincreasing function
of t. It is the purpose of this paper to use Razumikhin’s method to investigate the
asymptotic stability of zero for a similar class of equations.

We observe that under the above restrictions on the coefficient functions, the
delayed term of (1.1) is, in some sense, dominated by the ordinary term. Thus, (1.1)
may be viewed as a perturbation problem in which the stability properties of the
unperturbed ordinary differential equation are preserved. The theorems in 3
give sufficient conditions for exponential and asymptotic stability of the zero solu-
tion, and can be applied to nonlinear equations. For example, if the form of (1.1) is
generalized to

(1.2) 2(0 -a(t)x(t) + b(t, x)x(t h(t, x,)),

we show that zero is exponentially stable if Ib(t, qg)l _-< a(t)O for some 0 < 1, and
a(t) __> > 0; if the condition on a(t) is weakened to j’ a(t)dt oc, then zero is
asymptotically stable.

Grossman and Yorke [2] have applied Razumikhin’s method to a class of
equations closely related to the one dealt with in this paper. Other discussions of
this method can be found in Halanay and Yorke [4], and Mikolajska [7]. The
author is indebted to J. Yorke for several discussions which led to improvements of
the results.

2. Preliminaries. Let R be the real line and R + [0, oe). For r > 0, let
C be the Banach space of continuous functions q9 mapping [-r, 0] into R with the

* Received by the editors March 22, 1972, and in revised form October 17, 1972.
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usual supremum norm, ;let C(r/) {(p e CI ql[ < r/}. If x(u) is a continuous
function on [- r, T], where T > 0, then x, denotes an element of C defined by x,(s)

x(t + s),-r <= s <= O, for each such that 0 __< =< T. A delay differential equa-
tion has the form

(2.1) 2(t) G(t,

where G" R + x C ---, R and 2(0 denotes the right-hand derivative. We write x(t, z, q))
for a solution of (2.1) with initial value (z, q), and x,(z, q) when considered as a
curve in C. When the choice of initial value is obvious, we simply write x(t) and
respectively. We shall be concerned with equations where the right-hand side has the
form G(t, q)) F(t, q(0)) + P(t, q)), so that (2.1) becomes

(2.2) 2(0 F(t, x(t)) + P(t, x,).

Henceforth, we shall assume there exists r/> 0 such that a solution through any
(q:, {) in R + x C(r/) exists on [q:,

Suppose x(t) 0 is a solution of (2.2).
DEFINITION 2.1. We say that zero is stable if for given e > 0 and q: __> 0, there

exists 6 6(e, q:) > 0 such that

for >= r. If 6 can be chosen independently of z, then zero is un!formly stable.
DEFINITION 2.2. We say that zero is asymptotically stable if it is stable and for

each z >__ 0, there exi,sts p #(z) > 0 such that

I1o < lim x,(r, q)) 0.

DEFINITION 2.3. We say that zero is exponentially (asymptotically) stable if it is
stable and there exist positive constants K, 2, and/, such that

qol < # x,(q:,o) __< gllq e -(’-)

fort>q:.

We conclude this section with a theorem which is a special case of more
general theorems of Razumikhin [8] and Yorke [4]. Because the proof employs
arguments typical of those used throughout the paper, it is included.

THEOREM 2.4. Assume F’R + x R R satisfies F(t, O)= 0 for all e R +.
Suppose there exists rl > 0 such that [[qo[[ < r/implies

(A)

where a" R + R + and

(B)

q)(O)F(t, qo(O)) _< a(t)q2(O),

[P(t, qo)l <= a(t)O q)

where P" R + x C -+ R, for some 0 <= 1. If q)11 < r/, then x,(z, q)) is a nonincreasing

function of and, hence, the zero solution of (2.2) is uniformly stable.
Proof. Given to >_- z __> 0 and q < r/, we show that x,(q:, (p)[ is nonincreasing

on [to to + r]. If not, there exists tl SUCh that to <tl < to +rand X,o <
< r/. Since x(t) is continuous, there exists t2 such that [x,,[[ Ix(t2)[ and tl r
< 2 < t. But r =< __< to implies Ix(t)[ x, < x,, so that, in fact,



ASYMPTOTIC STABILITY 305

o < 2 We choose 2 SO that it is the first such point in (to, 1]. Now

t2 r __< __< to Ix(t)l _-< IIX,oll < x,ll Ix(t2)l
and

o < 2 =[x(t)l ]Xt]]--Ix(t2)
together imply that x Ix(t2)[. Since IIx= xl > Xo ], the choice of t2
implies there exists 6 > 0 such that x Ix(t-)], where t (t2 -6, t2). If
x(t2) > 0, then (t) > 0. But

(t) F(t,x(t)) + P(t,x,)
<- -a(t)x(t) +

<= a(t)x(t) + a(t)x(t) O,

a contradiction. The assumption X(t2) < 0 leads to an analogous contradiction.
Thus x is nonincreasing on to, o + r]. Q.E.D.

3. Results. Without loss of generality, we assume that 0 in this section.
The following theorem deals with the problem of exponential stability.

THEOREM 3.1. Assume the hypotheses of Theorem 2.4. If the conditions on 0
and a(t) are strengthened so that 0 < and a(t) > > O, then the zero solution of
(2.2) is exponentially stable.

Proof. Choose 2 > 0 so small that 2 < (1 0 eAt) and 2 < min (, log O/r).
Let y(t) etx(t). Then

(t) 2 e’x(t) + eZ’(t)
2 ex(t)+ et(F(t, x(t))+ P(t, xt))

2y(t) + e(F(t, e-y(t)) + P(t, e- y))
G(t, y(t)) + Q(t, yt),

where G(t, y) 2y + etF(t, e- zy), Q(t, q) eP(t, e- Zo), and e-q is a member of
C defined by (e-Zo)(s) e-+)q(s), -r <= s <= O. If q < r/, we obtain the
estimates

and

But

IQ(t, q))[ e’lP(t, e-
<= ea(t)O e- Xq

et- Xq sup le- x(’ +)q(s)l
-r<s<O

=< e- x(,-r) sup Iq(s)l
-r<_s<_O
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Hence IQ(t, c_p)[ a(t)O e’"[[c.p[[. Recalling the choice of 2, we have 0 < 2
<= a(t) 2 and 0 er < 1, which imply

2 < (1 0 er) =< a(t)(1 0 e)),
so that

a(t)O e _<= a(t) 2.

On applying Theorem 2.4, it follows that for >= 0,

Y,I] _--< cp

= ly(t)l < q

Ix(t)l _-< 011 e- ’
= x, =< K ql[e-

where K e). Q.E.D.
The question of asymptotic stability is studied in the remainder of the paper.
LEMMa 3.2. Assume F(t, O) 0 for all R +. Suppose there exists q > 0 such

that q < rl implies either

(p(O)F(t, (p(O)) < a(t)(p2(O),(A)

where a(t) > O, or

(A’) F(t, q(0)) a(t)q(O),

where a(t) >= O, and P(t, q) satisfies condition (B) for some 0 < 1. Moreover, suppose
that .for all 0 < T < and 0 < v < q, F(t, x) is bounded on [0, T] [0, v], and a(t)
is bounded on 0, T]. If I]q][ < r/and x(t) oscillates, that is,c(t) changes sign as ,
then lim,_ x(t) 0.

Proof. Theorem 2.4 and the hypotheses imply that the slope of solutions x(t)
with initial functions q such that [[q][ < r/, is bounded on [0, T] for any T < .
Hence x(t) cannot oscillate wildly on compact sets, and therefore the following
points are well-defined:

to first point in [0, ) such that Ix(to)l sup Ix(s)l,
s>=to

t first point in t_ / r, c)such that

[x(t,)[ sup[x(s)[, (t,)=0, and
s>_tn

x(t.) > o(<o) (t;) > o(<o),

where t- (t, ,, t,) for some 6, > 0.

Geometrically speaking, these points are peaks and crests of x(t). We note that
o _< r, and xt.+]l Ix(t,)] for n 0, 1, 2, If x(t,) > 0, then :(t-) > 0, which,
in turn, implies

0 < a(t)x(t) + a(t)O x,

Butt-_l +r t-,sothat x, < x,_,+r Ix(t,_ 1)] by Theorem 2.4 and the
definition of t,. Moreover, if condition (A’) is satisfied, then (t) 4:0 implies that
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a(t) 0 and, hence, a(t2) > 0 for n 1, 2, .... Thus

Ix(q)l < OIx(t_

The same inequality is obtained if x(t,) < 0 and, hence, continuity yields

Ix(t01 OIx(t,_ )1

IX(tn)l O"lX(to)l O" q011,

Therefore lim,_. x(t,) 0. From the definition of {t,}, it follows that lim,_ x(t)
0. Q.E.D.
THEOREM 3.3. Assume the hypotheses of Lemma 3.2. Ify a(s) ds , then the

zero solution of (2.2) is asymptotically stable.
Proof. By Theorem 2.4 and Lemma 3.2, it only remains to show that non-

oscillatory solutions tend to zero. If x(t) is such a solution, then 2(0 has constant
sign (including zero) for large and, thus, x(t) must be monotonic as --. . Hence,
x(t) must be either identically zero or have constant sign for large t. Suppose
x(t) > 0 for large t. By monotonicity, lim,o x(t) exists so that lim,_oo IIx, also
exists, and

lim x(t) lim IIx, 7.

If 7 > 0, then

Choose : > 0 so small that 0 < e < 1. Then there exists T > 0 such that
> T implies

x(t) 0

x(t) OIIx, >

2(t) <= r-,a(t)x(t)

x(t) <= x(T) exp r, a(s) ds

Thus, lim,_. x(t) 0, a contradiction. Similarly, x(t) 0 for large t, and the result
is proved. Q.E.D.

Remark. It is necessary that 0 < in Theorem 3.3 because the equation

y(t) -x(t) + x(t- r)

has constant solutions corresponding to constant initial functions.
Remark. The restriction on the sign of a(t) in Theorem 3.3 cannot be removed

although j’ a(s)ds v is necessary and sufficient for the zero solution of the
unperturbed equation to be asymptotically stable. In fact, without this assumption,
the theorem is not true even in the ordinary case, that is, when r 0. For example,
define

2 sin
a(t)=

O< <

sint, r__<t__<2rt,
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and extend a(t) periodically. We consider

(t) a(t)

so that 0 1/2. Then

but

-a(t) dt= -2 sintdt- sintdt= -2,

+ la )1
dt -2 + sin dt + - Isin tl dt 1.

Hence nontrivial solutions tend to infinity.
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LIE THEORY AND MEIJER’S G-FUNCTION*

WILLARD MILLER, Jr.’

Abstract. It is shown how Lie algebra techniques can be used to derive and interpret expansions of
G-functions in series of G-functions.

Introduction. This work represents a continuation of the author’s program
to uncover the Lie algebraic structure of the theory of special functions of hyper-
geometric type, [13, [2], I33, I4]. Here we use the known differential recurrence
relations obeyed by the G-functions G’,’q" to construct an associated Lie algebra
fCp,q. We show how to characterize various generating functions for series of G-
functions as simultaneous eigenfunctions of a set of commuting (or almost com-
muting) operators of fCp,q. The basic concepts used here were already discussed in
some detail in I2].

To illustrate our theory, we derive several identities most of which can be
found in the works of Luke [5], 6. Most of the expansions of G-functions in
series of G-functions computed by Luke, Fields, Wimp and Meijer among others,
can be obtained by these Lie algebraic methods. When compared with the usual
inductive proofs of such identities, Lie algebraic methods are striking in their
simplicity and elegance. Furthermore, once understood these techniques permit
one to compute new identities of specified types at will.

The computations in this paper are mostly formal so as to save space and to
keep from obscuring the basic ideas. Domains of validity for most of our examples
can be found in [53 and [6]. Rigorous proofs can be devised by careful justification
of each step in our method. Alternatively, once an identity is obtained by the
formal method it may be easier to verify the result directly.

Clearly, the methods of this paper extend to G-functions of many variables.

1. Properties of G-functions. Meijer’s G-function is defined by the integral

ap) Gp,q
,bq

ap

(1.1)
O<=m<=q,

z=/:O, <=h<_ n, <=l<=m,

where L is one of three paths in the complex s-plane [5], [7]. For example, one
path goes from -io to + io so that all poles of F(bt s) lie on the right and all
poles of F(1 ah + S) lie on the left. The integral converges for some aj, bk if
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2(m + n) (p + q) > 0. The remaining paths and convergence criteria are
discussed in [5], [7] as are the other results in this section.

Evaluating (1.1) by residues one can show that G’.’q" can be expressed as a
linear combination of m, (n) generalized hypergeometric functions pFq_ 1, (qFp_ 1).
In particular we have the special cases

(1.2)

ap Hi= r’(1 + bl aj)2bl

b. I].=). F( + b bj) 1-I.-.+ F(aj b )

1)P- re-.Z), p<qorp=qandlz[ < 1,

ap I-[= F(bj a + 1)z""-IG,’q’ z
r(1 + aj a )1-I:+1bq H:2 F(aj b 1)

(1.3)
1 + bq a (--1)q-m-1

qFp_l q <porq=pandlz[ > 1.
+ap-a z

Here, we are using the notation of Luke [6] for the pFq
bq

z and the term b.i b
is omitted whenever j k.

The function Gp" z is symmetric in the parameters a 1,’", a,, the

parameters a,+,..., ap, the parameters b 1,"., b and the parameters bm+,
bq separately. It also obeys the recurrence formulas

(1.4)

n>=l,

n<p,

m>=l,

b 1, bq_ 1, bq +

We can use relations (1.4) and the methods of [2] to associate a Lie algebra with
the G-functions. Namely, we introduce p + q new variables l, "’, t, u l, "", Uq
and define basis functions

(1.5), F
tp

z
Uq

ap
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and partial differential operators

Tj / L f zt3 c3 + 1), =< j =< p,

(1.6) U Uktuk R Uk(Z( Uk(uk), <= k <= q,

V-- ztl tpUl uq.

These 2(p + q) + operators generate a Lie algebra p,q with nonzero commuta-
tion relations

(1.7)
ITj, Lj] Lj, Uk, Rk]

[Tj, V] Uk, V] V, <= j < p, l<=k<=q.

All other commutators of two generators of a@,q are zero. Expressions (1.4) and
(1.5) imply

TiEm,n ajFm,nP,q P,q

re,n( ZtpVF",’g F,,
uo

(1.8) LjF’,’" +__ Fp,q

U Fm’n b Fm’n
p,q k p,q

apq-- 1)bq+l

z: al’’"’:i-1,...,ap),
(plus sign ifl =<j< n, minusifn+ 1 =<j=<p),

ztp
Rq

ap
b 1,..., b + 1,..., bq

(minus sign ifl _< k_< m, plusifm+ =< k_<q).

It follows that the generators (1.6) and basis functions (1.5) can be used to construct

(reducible) representations of p,q. Furthermore, the operator

(1.9) C’: R1... R + (-1)lVL1...Lp,

satisfies the identities

l=p-m-n+ 1,

(1 10) cm’nFm’n 0vp,q __p,q

for all a t, ap, b b. Indeed, factoring out the quantity i ptaP"bl" ub,
from the partial differential equation (1.10) we are left with the ordinary differential

z ap) see [5, p. 181]"equation in z satisfied by the function Gp’,’q"
bq

{(zc b) (ZCz bq) + (-1)z(zc? a + 1)... (zc? ap + 1)}
(1.11)

z =o.
bo

We note for future reference that if no two of the bj differ by an integer then a
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fundamental system of solutions of (1.11) in a neighborhood of z 0 is given by

F(1 + bh- ap)zbpFq + b ap
(-1)+iz(1.12) yh(z)

F(1 + b bq) -1 + b b
h 1,..., q, p =< q or p q and Izl < 1,

see 5, p. 181]. Also, one can easily show that (1.3) is the only solution (1.11) of the
form -o za’- 1-hCh near z , provided no two of the ak differ by an integer.

At this point we could apply the method of [2] to derive generating functions
for pFq and Gpm,’". However, deeper results can be obtained through use of the
Mellin transform. We formally define the Mellin transform //G(s) of the function
G(z) by

(1.13) B(s) #G(s) G(z)z -s-1 dz

and the inverse Mellin transform by

B(s)z ds,(1.14) //// iF(z)= G(z)

[81. It follows from (1.1) and (1.14) that G’,’q z can be viewed as the inverse
bq

Mellin transform of the function

apl H,]m=l F(bj- s)H=I F(1 aj + s)
{1.15) Bpm,’q S

bql Hjq"=m+ F{I bj + s) H.=n+ F(aj s)"

An operator K acting on a space of functions G(z) induces an operator
#,f =////K//- on the space of Mellin transformed functions/#G(s). It is easy to
show that the transformed operators corresponding to the generators (1.6) are

j-- Tj-- tjtj j --tf l(s tjtj-+- 1), =< j =< p,

(1.16) k Uk Ukuk, k-- Uk(S Ukuk), <= k <= q,

tl tpUl uqL_
where _LB(s) B(s 1). To derive these results we have integrated by parts and
assumed that the functions G(z) are sufficiently bounded near z 0 and z +
so that all boundary terms are zero.

It is evident that relations (1.7) and (1.8) still hold where now T, Lj, Uk, Rk
m,, is replaced by the basis functionand V are replaced by script letters and Fp,q

(1.17) H_,’q s
tp

Uq

In particular the relations

cm,u-, 0p,q p,q
(1.18)

(pm,,cln l q

ap

l=p-m-n+ 1,
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now hold. We note also that the null space of the operator Cgp,,, is invariant under, s, ’k, k, and U.

2. The Lie algebraic method. We now apply what is basically Weisner’s
method [9] to characterize generating functions for G-functions as simultaneous
eigenvectors of p + q independent operators constructed from the generators of
ffp,q which also lie in the null space of cg,,,,. The basis functions Hp,q themselves
have such a description:

(2.1)
j... p,q aj p,q

cm’nHm’n 0p,q --p,q

p,q k p,q

For our first simple example, we search for a solution H(S, tl,
u l, "", uq) of the equations

(2.2)
( + c)H a,H, -H ajH, j 2,..., p,

:#H bH, k 1,..., q, qfp,qH O.

The first p + q equations have the solution

(2.3) )al--S--1 al tap. bl UH U(s)(1 tilt, up u
where B(s) is an arbitrary function of s. Requiring that cp,qH 0 we find a solution

sap)(2.4) B(s) Bm,’
bq

equation (1.15). Next we expand our solution (2.3)as a Laurent series in tl, ..., tp,
u 1,’", uq. (Necessarily, each term in this series will be a simultaneous eigen-
function of the Tj and U and will lie in the null space of p",’".) We easily obtain the
expansion

al, a2,
Bp,q s

bq ap) (//l)h m,n

h= h!
Bp,q

a h, a2, apl
bq

(2.5)

Taking the inverse Mellin transform of both sides of this equation (or integrating
along the path L) we obtain the identity

(2.6)

z
(1 /)a,-1G,, /

al a2, ap
bq

_oo flh a --h, a2,’’’ ap) 13] <
bq

which is the multiplication theorem for the G-function [5, p. 157]. (The transition
from (2.5) to (2.6) can be justified by Stirling’s approximation for the gamma
function. Alternatively, the computations could be carried out using the operators
(1.6). However, the easiest proof follows from a consideration of the expression
(exp flL1)Fp,q.
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For our second example we take the equations

--iH ajH, <= j <= p, 1H H, #,H b,H,
(2.7)
p,qH O.

In this case we obtain a solution of the form

2<__k<=q,

(2.8) H-- Bp,q_
ap

Due to the presence of the term uS the method of the preceding example no longer
applies. However, setting n and taking the inverse Mellin transform we see
that the function

(2.9)

f e’/,,(u, z)"’ -’ Fp

11" pfapllb2"2 Ubq

+ b2 al,"’, + bq al

+ a2 al,’", + av al

(__l)q -m-1

UlZ

is a solution of the equations

Tf ajf,
(2.10)

m,tlCp,qf O.

j <= p, Rif J; Ukf b,f, 2 <__ k <= q,

Now we can apply the methods of [2] directly. Expanding (2.9) in a Laurent series
in u we necessarily obtain an identity of the form

(2.11)

+ b2 a,... mr- bq a
q-IFp-1

+ a2 al, "", + ap- a

I-h, + b2 al,... + bq a2 Ch’r2h qFp-1
h=0 + a2 a,..., + ap a

Z

Setting z 0 we find Ch (h !)- 1. Thus,

(2.12)
a ap

c pfq
bq

Z

(Setting rn 2 in (2.8) and using (1.2) we could obtain another such identity.)
The equations

--H ajH, <= j <= p,
(2.13)

g,H bH, 2 <= k <__ q,

{UI(U "Jr- )- 1)+ [)1(1 Jr- fl)}H O,

(p,qH 0

lead to a less trivial identity. The first p + q equations are easily shown to have a
solution of the form

(2.14) H C(S) 2F1 u t,l1oo t;Pub22 Ubq
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where c(s) is arbitrary. The requirement that H lie in the null space of cgp,,q, leads to
a solution

(2.15) c(s)-- Bp,q s
0, b2, bq

Expanding this solution in a power series in Ul we find

Bp,q s 2F1
0, b2, bq

(2.16)

hOh (7)hBp,q S Z U 1.
h, b2, bq

The inverse Mellin transform of the left-hand side of (2.16) does not have a simple
expression in terms of G-functions, unless 7- ft. However, in the special case
z we can use the well-known result [7],

2F1

70, l, 2,..., Re(7 +s-fi)>0,
to obtain the identity

(2.18)

F(7) ,,,,,,+

i_(]) )
Gp + 1,q + z

(J)h m,n-\

fl--7+ l’ap
O, b2, bq, 7

(Of course, except for the case where fl is a negative integer the formal passage from
(2.16) and (2.17) to (2.18) needs rigorous justification.) We can extend this result by
applying the operator exp (p 1) to the solution (2.14), (2.15):

(2.19)

Bq,Iexp (p 1)H (1 / rp) Bp,q
ap

O,b2,...

Expanding in powers of z and using a well-known generating function for the
2F1, [1, p. 211, we find

rrI,l(1 + "cp) Bp,q s 2F1O, b2, bq 7 /

(2.20)
,rh_h O, ap -h, fl

". __P_P__ rim,n+ 2F
h’-’o= h! ’P+ 1,q+ s

O, b 2, bq, h
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In the special case r + pz co we can take the inverse Mellin transform to
obtain

F(7) m,n+l
F(7 fl)’-’p+ 1,q+ coz

O, b2, bq, 7
(2.21)

v (--1)h -h,7- fl +1
0, ap

h0 hl 2F co G’:2,q+ z
7 0, b2, bq, h

(We could also have obtained this result by replacing ’1 with ’1 P wherever
it occurs in (2.13).) Note that the basic idea here was the use of ’1 and ,A to
construct the differential equation for the 2F1. Similarly we could further generalize
these results by using 1 and ?A to construct the differential equation for a general
k+ Fk. Equivalently, we could repeatedly use the Euler transform to "augment"
the indices [6, p. 2].

In the special case m n 1, p q 2, we can explicitly compute the
inverse Mellin transform of (2.20) with the result

[(i + "cp)z]"’

(2.22)

F(a
F(1 a)
bz)F(a2 a + 1)

r ]a + 1,7;
+ p’c’z(1 + p’c)F2/1 al;fl, + b2

-\= h!

z 2F

al,a2

F(1 a) (1 al)h(1
F(1- b:)F(a:) b2)h

a + h,1 a + h -h

z] 2El1-b2+h 7

valid in a neighborhood of z 0, see [10, p. 216]. Here F2 is an Appell function.
For our final and much more general example, we consider complex variables

S, 1, tp, U 1, Uq and s’ ’, where p, q, p’, q’ are positive..., u;,..
integers, and operators , cj, h,k, Yk, Y/ as well as -,, c,),, q/;,,, ,,, /-, defined
in terms of these variables by expressions (1.16). The resulting 2(p + p’+ q
+ q’ + 1) operators form a basis for the Lie algebra cdp, @ Np,,,.

We try to characterize a generating function H for products of G-functions
by requiring that H be a simultaneous eigenfunction of p + p’ + q + q’ inde-
pendent operators constructed from the elements of c5,q @ N,,q, and also that
Cp,qHm,n p’,q’’m""’H 0. An interesting case is

(2.23)

For convenience, we set p’ q’ 2, m’ n’ 1.
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(2.24)

It is straightforward to derive the solution

ap a’l a’zI-I Brff,"q s 82,
fl -b 32 b 3, ’’’, bq, o fl 1 fl, O

+ s,- s’,6
3F2 u{+’u’u
s-++7+ 1,s’+

z F(6 + h) m,n

h= hi F()
Bp,q s

fl+7+h, b3,

B",2 s’
a’,

u{+’u’u
+h,-

a,,
...,bq,-fi--?-h

where z (UlUl)/(U2bl2). The problem is now to take the double inverse Mellin
transform of this expression. In the special case z 1, 6 fl, e + /the 3F2
is well-poised and we can apply Dixon’s theorem [5, p. 104] to express the 3F2 in
terms of gamma functions if Re(2s + 2s’- 27- 3fl)> -2. Furthermore, if

a , a’ =/t/2 we can easily compute the required inverse Mellin transforms
and obtain after simplication and setting 7 0,

a //2)0, b3, ..., bq,

(2.25)

F(fi+ h) (fl+ 2h)
h=Z"o h F(1 + fi/2)

(;,," z
h, b3 bq, h

2F1( -h’fl+h co).+ /2

After the usual augmentation of indices (or equivalently, after solving equations
(2.23) for more general p’, q’) we arrive at a result identical to the identity of Luke
[6, p. 15]. For 7 -Y: 0 we get an extension of this identity.

Finally we note that the symbolic method of Burchnall and Chaundy [11, 12]
has much in common with our approach although these authors did not use Lie
algebraic techniques.
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ON A QUADRATIC EIGENVALUE PROBLEM*

EDWARD HUGHES,-

Abstract. It is shown that the eigenvalue problem u" + Bu (2 + )p)u; u(0) u(1) 0 (where p
is a positive function and B an arbitrary bounded operator on L2[0, ]) possesses in general two different
sets of eigenfunctions, each of which is an unconditional basis for L and other spaces. The method of
proof, which is applicable to more general problems, uses the ordinary quadratic formula to find a

factored operator-polynomial which is "close" to the original problem; perturbation techniques are

then applied to derive the desired spectral information.

Introduction. The eigenvalue problem
(1) u" (2 + 2p)u u(O) u(1) 0

(where p is a positive function on 0, 1]) has been studied by Deavours 1] in
conjunction with a damped-wave problem. Using complex variable techniques he
found asymptotic expressions for the eigenvalues and eigenfunctions and proved
an expansion theorem. In this paper we shall consider a somewhat more general
problem than (1), using operator-theoretic methods to obtain sharpened expansion
theorems, and to bring out a property of these problems which is not readily
apparent from Deavours’ analysis, namely that there are in general two different
complete sets of eigenfunctions, each corresponding to a particular subset of the
eigenvalues. The method used here involves finding an "approximate factoriza-
tion" of the quadratic operator-polynomial, and using perturbation techniques
due originally to Schwartz [6]. We remark that if the operator A below is replaced
by an arbitrary second order differential operator L (possibly with different
boundary conditions) satisfying

(i) L is spectral,
(ii) the eigenvalues of L lie in the left half-plane, have bounded imaginary

parts, and only finitely many have multidimensional eigenspaces,
then the analysis given here is changed only in superficial details (in particular it
may be necessary to assume boundary conditions on p sufficient to guarantee that
multiplication by p preserves _(L)). We treat here only the restricted problem (3)
in order to make the exposition more transparent.

1. Preliminaries. Let L2 be L2([0, 1]). Let H" be the space of functions on

[0, 1] having n absolutely continuous derivatives and n L2-derivatives, with the
usual inner product 2, p. 1296]. Let H be the subspace of H" consisting of those
functions which vanish, together with their first n derivatives, at the endpoints
of the interval. Let 12+ and 12 be the spaces of square-summable sequences on index
sets, respectively the natural numbers and the integers. We shall identify 12 with

12+ (R) C 12+, where C denotes a one-dimensional space. Let (A) H2 f’) H,
and if f (A), let Af f". The operator A is negative definite and self-adjoint.
Let p C2([0, 1]), p >__ 0. The problem (1) can be rephrased as

(2) Au (22 + 2p)u.

* Received by the editors September 6, 1972, and in revised form January 12, 1973.
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If B is an arbitrary, but fixed, bounded operator on L2, let A1
have the more general problem

(3) A lu (22 + 2p)u.

A + B. We then

We use the symbol "p" to denote either the function p or the corresponding
multiplication operator on L2. Note that this operator takes H2, H 1, and H into
themselves. If A1 is not invertible, choose 20 < 0 so that 2o2 > B + [20[ [p
Then A1 2> + 2op is invertible, and A lu (22 -k- 2p)u if and only if

(4)

So letting

(A ) + ,top)u (22 2p)u (o ,op)u

[(2 + 20)2 + (2 + 2o)(p 22o)]U.

AI =A1-2o2 +2op,

i=2+2o,

/7 p- 220,
the problem (3) is equivalent to

g,u [ + ip’]u.

It follows that we may assume A1 is invertible. With the convention that the
square-root function takes the negative real axis to the positive imaginary axis, we
define the following operators"

T A1/2

S (p2 -k- 4A) 1/2,

Q Sp- pS,

K -+ (1/2)(-p S),

P(2)=22I+2p-A,

P1(2) 221

The domains of T, S, Q, and K + are H, and those of P(2) and P1(2) are (A).
We first show that the operator Q in fact extends to a bounded operator on L2.

LEMMA 1. Let V be an unbounded spectral operator with compact inverse, all but
finitely many of whose eigenvalues have one-dimensional eigenspaces, and whose
numerical range is contained in a sector of angle less than re. Let C be a bounded
operator such that (VC- CV)V -1/2 and V-1/Z(vc- CV) are both bounded
operators. Then V/2C CV/z is a bounded operator.

Proof We may assume without loss of generality that all eigenvalues {2,} of
V have one-dimensional eigenspaces and that the sector has vertex at the origin
and is centered on the positive axis. With respect to the basis {q,} of eigenvectors
of V, the operator VC CV has the matrix whose entries are"

L,.. (2,, 2,)(Cb,, b,,),
and V1/2C- CV 1/2 has

I<. (()’/ ’./)(c4)., c).
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By a standard interpolation theorem [7, Lemma 3], the operator V-1/4(VC
CV)V- 1/4 is bounded, so the matrix whose entries are

mmn (fiLm n)i2 1/4(/m)-1/4(C(n,
).1/2 Thencorresponds to a bounded operator. Now let/,

Kmn (m ]An) (C(])n, (rn) ln/2(fim)l/2(#n + ]m)-I Minn.
Let g,(x) ln/2XUn and h,(x) ml/2xurn- 1. Then

(gn hm) 1/2 1/2 + 1/2#n (m) Xpn Vim dx-- n (rn)l/2(n -- m)-1.We have
1/2

IIg, I#.1 2 Re/, +
1 1/2

h,. I.1 /z 2 Re/,,
both of which are bounded independently ofm and n, and so by a theorem of Schur
[3, p. 222, # 300] the matrix K,, corresponds to a bounded operator.

COROLLARY. The operator Q is bounded on L2.
Proof If f (A), then (Ap pA)f 2p’f’ + p"f. Since S2 4A + p2, We

have S2p pS2 4Ap pal. If S is invertible, it follows from the closed graph
theorem and [2, p. 1296] that S- 1lAp pal and [Ap- pAlS- are bounded, and
from Lemma that Sp pS is bounded. If S is not invertible, then 0 is an eigen-
value; denoting by E the orthogonal projection onto the null space of S, we apply
the above argument to S + eE, then take limits as e --) 0.

Let p be the set of all complex 2 such that P1(2) has a bounded inverse. Then
p is open and nonempty, P1(2) is analytic on p, and the complement of p consists of
the eigenvalues of (3). It is easy to see that the eigenvalues of (2) all have one-
dimensional eigenspaces. If f, is a normalized eigenfunction of (2) belonging to
then

or

(5)

, + &(pf,. L) (Af,. L) o.

2, (1/2)[-(pf,,f,) + ((pf,,L)2 + 4(Af,,f,))/2].
It follows that if 2, is real, then -max p < 2, =< 0, and if 2, is not real, then

1/2 max p =< Re 2, =< 0. By similar reasoning the numerical range of K + lies in
the half-strip

S= {Imz_>_0;-maxp__<Rez=<0}.
LEMMA 2. The operators K + are spectral.
Proof We remark first that if max p is sufficiently small, the lemma follows

from a result of Turner [8]. For general p, we proceed as follows" let {c,} and {h,}
denote the eigenvalues and eigenfunctions of S. It follows from known results
[4, Chap. II] and [6], that % has the asymptotic expression

, 2ni + + O(n- 1), where e is constant,
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and the functions {h.} can be chosen so that Ilh.- 05.1 O(n-1), where
sin nrcx. Let h. b. + n-lg. in the basis h., S p has the matrix whose

entries are (letting/?. O(n- 1))

(6) (2rtni + o + 8,,)6,,,,, (pc,,, m) n- l(pg,,, Om) m- l(pO,,, gin)

n- m- l(pg., gm)"

Now if O.(x) cos nrcx, then

(7) (P,i, b,,) (1/2)(p, k,_,,,) + (2(n + m)Zzc2) lan+ + (p", IPn+m)]

where a, (- 1)kp’(1) p’(0). The second term clearly represents the matrix of a
Hilbert-Schmidt operator, so we find from (6) and (7) that S- p differs by a
Hilbert-Schmidt operator from the operator W whose matrix entries are (2nni +
)6,m (1/2)(p, ,_,,). Let rk (1/2)(p, ). Since S p + ( + ro)I is spectral
if and only if S p is, we may assume a0 0.

Regarding Was an operator on 12+, let Y be the operator on 12 12+ (R) C @ 12+
defined by

* 0 0

Y= 0 0 0

0 0

Then Y differs by a Hilbert-Schmidt operator from the operator on 12 represented
by the matrix

(8) diag {2toni} a,(U" + (U*)"),
n=l

where U is the bilateral right shift on 12. Let co,(t) ei"t, for e [-1, 1], n any
integer. Then {co,} is an orthonormal basis of L2([ 1, 1]), and in this basis the
matrix (8) represents the operator Z 2D + q (where D denotes differentiation),
with boundary conditions f(-1)=f(1), and where q is the function
q =1 r,(co, + co_,), which converges uniformly on [-1, 1]. This latter
operator can be shown spectral by explicitly solving the corresponding differential

2tin}. Putting all the aboveequation. Its eigenvalues are {(1/2)oq(t)dt +
together, we find that the operator

(s p)* o o
0 0 0

0 0 S-p

differs from Z by a compact operator, and so by the abovementioned theorem of
Turner, it must be spectral with eigenvalues {e,} satisfying an <= I.1 =< bn, for
some constants a, b. It follows that S p 2K + has the same properties. (Note:
in the case ofa more general operator than A, the above proofbecomes considerably
more complicated, but the idea remains essentially the same.)

By well-known properties of spectral operators, we have

(2 K+) 11 Md+(2) -’,



QUADRATIC EIGENVALUE PROBLEM 323

where M is constant and d+(2) is the distance from 2 to the spectrum of K +,
provided that 2 stays a fixed distance away from all multiple poles of (2 K +)- 1.
This means, for example, that if 2 is in the half-strip S, then 11(2 K-1)-111 is
bounded by a multiple of 121-1.

2. Perturbation and expansion theorems. Let Rf (2 K-+) -1. We have
the identities

(9) (2-K-)(2- K+)=22 +2p-A +(1/4)Q,

(10)

il)

PI() (’ K-)(), K +) F, where F (1/4)Q B,

P1(2) -1 (2- R-F- K+)-IR --(I- R-fR-F)-IR-R-.
Let {#,} be the eigenvalues of K+, numbered by increasing magnitude. The

sequence satisfies an __< I#,l _-< fin, for some constants a, ft. Let 7, be a circle around
#,, of radius r, chosen so that none of the circles intersect. For # S, let G(#)

(K + + R- F). Then

(2 G(/I)) -1 (I R- R- V)- 1R-
(12)

R-] + (I- R-R-F)- R- R-FR-]

Since R- 0([#]- 1), it follows that if # is inside 7,, and n is large, we have

(13)
2r

[(/ G(#))- (’ K+)- 1 d O(n- 1).

The constant in (13) may be taken independent of #. Now two projections differing
in norm by less than have the same rank, so if n is sufficiently large, then for every
# inside or on 7, there is a single simple eigenvalue of G(#) lying inside or on 7.
denote this eigenvalue by 2(#). It is not hard to show that 2(#) is an analytic function
in the interior of 7,, and continuous on the closed disk bounded by 7,. We have

R-II <- MIR ,1- , for 2 inside 7,, with M independent of n. If n is so large that

lIRa-Eli =< r/(2M) for all/ inside 7., then RR-F < 1 whenever 12 #1 > r/2.
From (12) it follows that the annulus {r/2 _< IX #,1 =< r} is in the resolvent set of
G(/), and hence that 12(/) #,l N r/2, for all # inside 7,. Thus, if/ e 7,,

1(2(#)-/0- (/t, #)l 12(#)- #,l r/2 < r I#, #l.
By Rouche’s theorem the function 2(/0 has exactly one fixed point inside 7,, which
we denote by 2,. Let f, be the corresponding eigenvector of G(2,). Since (R-F)

(A1/2), we have (G(/02) ((K+)2) @(A), and hence that f, (A).
From this follows 0 (2, K-)(2, G(2,))f, Pl(2,)f,, and so 2, and f, are
respectively an eigenvalue and an eigenvector of (3). Now letting # 2 in (12) we
see that for 121 sufficiently large and 2 lying outside the circles 7,, the operator
(2 G(2))- exists, and hence P1(2)- (2 G(2))- 1R- exists. It follows that all
eigenvalues of (3) in the upper half-plane lie either inside one of the {7,} or inside
a certain circle centered at the origin. The discreteness of the eigenvalues [9, p. 371
implies that only finitely many can lie in this latter circle. Summarizing the above,
we have the following theorem.

THEOREM 1. For all sufficiently large n, the circle 7, encloses exactly one
eigenvalue 2, of (3), which has a one-dimensional eigenspace. Only finitely many
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eigenvalues of (3) in the upper half-plane lie outside the circles {7,}. We can choose
normalized eigenvectors f, of (3), belonging to 2,, and g, of K +, belonging to #,, in
such a way that If, g, O(n- 1).

The last assertion of the theorem follows from (13). The same result holds, of
course, if the roles of K + and K- are reversed, thus locating all but finitely many
of the eigenvalues of (3). We remark also that a slight refinement of the argument
above shows that in fact 12, #,l O(n- 1)

By a chain of generalized eigenvectors of(3)is meant a sequence {ql, "’",

such that, for some 2,

Pl(2)q 0,

Pl(2)q: + P’l(2)ql 0,

Pl(2)qk + P’l(2)qk-1 + (1/2)P’(A)qk- 2 0 for k 3,4, ..., n.

A straightforward calculation shows that such a chain is the image under the map E
of a chain of generalized eigenvectors of W, where E and W are the maps defined
in the proof of Theorem 2 below. Henceforth when we refer to "the set of eigen-
vectors" it should be understood that finitely many generalized eigenvectors may
also be included.

THEOREM 2. The set of all eigenvectors of (3) generates the entire space L2.
Proof (Outline)" Let V A/2 and let W be the operator on L2 t) L2 defined

by

withdomain(T)@(T).IfzeLZ@L,z= Ifgl, letEz=f. Itiseasytosee

that if z is an eigenvector of W, then Ez is an eigenvector of (3); it thus suffices to
show that the eigenvectors of W generate L L. Define

PI(2)-
Z(,)

P1()-1

Then Z(2) is a Hilbert-Schmidt’ operator, since both P1(2)-1 and P1(2)- 1V are
Hilbert-Schmidt.

0
Z(2)(W- I)-- I -4-

-1(PI(,) Vp pV)

Using (11), and Lemma 1, one shows that liP1(2)- O(d(2)-2), that lIP,(2)- VII
O(d(2)- 1), and Y(2) O(d(2)-2), where d(2) is the distance from 2 to the strip

{-max p _<_ Re z =< 0}. Thus (W 2)- (I + Y(2))- Z(2), and hence (W
-)-111- O(llZ(z) as I1 . It also follows that (W-2)-1 is Hilbert-
Schmidt. Thus along the rays from the origin at angles {0, (270/5, (470/5, (6rc)/5,
(87t)/5}, IlZ(2)l[ O(d(2)-1) O(121-1). The conclusion of the theorem now
follows from [2, p. 1042].
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The eigenvalues of (3) in the upper half-plane are called upper eigenvalues.
Those in the lower half-plane are lower eigenvalues; real eigenvalues are both
upper and lower.

The eigenvectors {g,} of K + (together with at most finitely many generalized
eigenvectors) form a basis (i.e., a bicontinuous image of an orthonormal basis) for
L2. From the last assertion of Theorem 1 it follows that there is an N such that

If. grill 2 ON < 1.
N

The spectral projections of K+ onto {g,} have the form E,f (f, h,)g, where h,
is a sequence of elements such that (g,, h,,) 6,m. The following is a modification
of an argument of Sz.-Nagy [5, p. 208].

Define the operator Ku by Kuf (f, h.)(f, g,). It is simple to see that
Ku is bounded by a multiple of 0H, and so I + Ks is invertible; if n >__ N, then
(Ks + I)g, f,. Thus sp{f,ln >= N} Hs has codimension N- 1, and so by
Theorem 2 there are linearly independent eigenvectors {fl, ,J)-l] with
sP{fl fN Hs {0} such that the system {f,} spans L2 If we define

ff,-g, forn<N,
Kog,

0 forn > N,

then Ko has finite rank, and thus I + Ks + K0 is invertible if and only if it is
one-to-one. But if (I + Ks + Ko)f 0, then (f, h,)f, HN, SO f 0. Thus
I + KN + Ko is bicontinuous and takes g, to f,, so {f,} forms a basis. We have
proved the following theorem.

THEOREM 3. The eigenvalues of (3) can be divided into two sets s and
whose intersection is at most finite, with s/ (respectively, ) containing at most
finitely many lower (resp. upper) eigenvalues, and such that the eigenvectors corre-
sponding to elements ofs (resp. ) form an unconditional basis of L2.

We thus have two "complete sets of eigenvectors," which coincide in the
trivial case that p is identically constant.

Corresponding to either of the sets of eigenvectors given by Theorem 3, there
is, for each f L2, an eigenvector series which converges to f in the topology of L2.
With further restrictions on f we can strengthen the convergence" if {f,} is as
above, then

A,f, 2,2(f, + 22 ’pf,)= 22,k..
LEMMA 3. The vectors {k,} form a basis.
Proof IlL . I1; pf. o(n-). Thus FT IlL k.I 2 < . It follows

just as in the proof of Theorem 3 that {k,} will be a basis if we can show that for all
large N,

(a) {k, ..., ks} are lin__early independent;
(b) sp{k,,..., kN} f’l sp{k,ln > N} {0}.
To show (a), we note that {kl,, "", k,} are the images under a one-to-one map

(namely A 1) of {2i-afl, .", 2 2fu}, which are linearly independent. To show (b),
suppose

f esp{k ks} fl sp{ks+ ks+ 2
...t
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ThenA-(lfesP{f, ,fN} fl sp{fN+ 1,fN+2,’ "’}" SoA-lf 0, and hencef 0.
LEMMA 4. (A 1) (A) {f ]o a,f,l{a,R,2} e 1+ }.
Proof. Let f e _@(A 2), Af g. Then g fl,k,, for some {ft,} e 12+, by

Lemma 3. Now A- lg fl,2-2f,; so let a, 22 2ft,. Conversely, if f 2 a,f,,
with {2.2a.} e 12+, then g 2 2,2.k, converges. Since As is closed it follows that

f e (A 1) and A if g.
THEOREM 4. If f e (A), then the eigenvector series for f converges to f in

the topology of (A).
Proof. Suppose f 2 ,f,. Then A if 2 2,2a,k., which converges in L2.

So we have
N

z.f. f as N ---,

and
N

A1Z nfn as N --, o

which implies convergence in the topology of (A).
Since @(A 1) H2 [’] Ho Theorem 4 says that iff e (A), then its eigenvector

series converges to f uniformly, with uniform convergence of derivatives and
LZ-convergence of second derivatives. All the foregoing, of course, applies to both
of the eigenvector bases described by Theorem 3. By interpolation one can show
that Theorem 4 remains true if (A) is replaced by (A), with 0 __< 0 __< 1, which
implies, for example, that if f e Ho the series converges to f uniformly, with
LZ-convergence of derivatives.
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LINEAR EVOLUTION EQUATIONS THAT INVOLVE PRODUCTS OF
COMMUTATIVE OPERATORS*

L. R. BRAGG-

Abstract. Let P(41, "’", 4,,) be a polynomial of degree 2k in 41,’", , with real constant coeffi-
cients. Let X be a function space and let A ..., A, denote operators in X such that Ai.A Aj. A
for all i,j. This paper treats the problem of representing solutions of the Cauchy problem
u’(t) P(AI,..., A,)u(t), > 0; u(0+) go in the following situations: (i) X is a Banach space and
the Ai are infinitesimal generators of Co groups in X and (ii) X is a space of entire functions and the

Ai are derivative operators in X. The results are motivated by elementary operational formulas and
applications are given to both well-posed and ill-posed problems.

1. Introduction. Let X be some function space and let A1,A2,...,
denote operators in X with Ai. Aj--Aj.A for all i,j. Let P(1,2, "",

denote a polynomial in 1, "’", , with real coefficients. We shall be concerned
with abstract Cauchy problems of the form

(1.1a) u’(t) P(A 1, A2,..., A,)u(t), > O,

(1.1b) lim u(t) go (in some sense),
t--O +

where go is restricted to an appropriate subspace of X.
If X is a Banach space, the A are generators of Co groups Tai(t in X, and

P(A1,..., A,) is the infinitesimal generator of a Co semigroup in X, then (1.1)
is well-posed if go e (P), the domain of P. The limit condition in (1.1b) can then
be taken in the strong sense and the Cauchy problem (1.1) has the solution u(t)
Up(t).go where Up(t) is the semigroup generated by P. From this u(t), one can

then construct solutions for other types of abstract Cauchy or Dirichlet problems
involving the operator P by the application of integral transformations arising in
related equations ([11-[43, [8]). In certain other function spaces, there are important
examples of ill-posed problems of the form (1.1) that have solutions for restricted
choices of go. Suppose we denote a solution operator of (1.1) by etP for either the
well-posed or else the solvable but ill-posed problem (1.1) (and then make the
identification etP Up(t) if P is a semigroup generator in a Banach space). Of
interest in this paper is a method for constructing solutions of (1.1) based upon
or motivated by properties of groups generated by the corresponding Ai in the
Banach space case. A similar question has been considered by R. Hersh [10] for
a problem involving a more general equation than that in (1.1). However, his
treatment is restricted to well-posed problems.

The suggestive basis for our method is the operational formula

(1.2) exp [tP(al,..., a,)] exp [tP(D,..., D,)] exp
{n 0
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where D c/ci and in which the ai are constants. An alternative form of this
can also be given. Suppose that

(1.3) bi i ij aj, 1, n,
j=l

where the ij denote real or complex scalars, and suppose that Q(b 1,

==- P(a l, a,). Then
,b.)

(1.4)
exp [tP(al

The idea will be to show that if either P(Dx,..., D,) or Q(D,..., D,) is an
elliptic operator of order 2k with appropriate principal part (see 2), then the
formula (1.2) or (1.4) can be given a meaningful interpretation if the constants ag
are replaced by operators. The formulas (1.3) and (1.4) are of special interest
since they can be used to construct solutions of(i.1) particularly when P(, ...,
is a homogeneous quadratic in the i. The operator Q(D1,..., D,) can then be
taken to be the Laplacian.

In 2, we show that if P(D1,"’, D,) is such an elliptic operator, then (1.2)
has the interpretation that the solution operator exp [tP(A, ..., A,)], in a
Banach space, is representable in terms of the groups TAi(t by means of an integral
involving a Green’s function. This leads to results on solutions which agree with
those obtained by Hersh. If P(D1,..., D,) fails to be an appropriate type of
operator, a problem of the form (1.1) may still have a solution. By replacing
P(D1,..., D,,) by an appropriate operator Q(D1,..., D,), certain of the ij in
(1.3) are complex. We then consider the alternatives (i) X is a complex Banach
space and the A (or certain of them) are bounded operators in X or (ii) X is a
space of entire functions and the Az are derivative operators Dxi. Finally, we use
these ideas in 4 to construct solutions to a number of problems of the form (1.1).
Among the illustrations we include an application connected with the backward
heat equation, an equation with variable coefficients, and the construction of a
Green’s function for representing etv by using a Green’s function associated with
a simpler operator (2.

2. Generalization of (1.2). Let P(D , D,) be an elliptic operator of order
2k with real constant coefficients. Then P is of the appropriate type if its principal
part (highest order term) has the form (- 1)k- 1Po(D ..., D,) in which Po(l, "’",

,) is a positive definite homogeneous polynomial of degree 2k. In the following,
let (, ,), o (Ol, ..-, o,), o (1 ol,--. , o,), and do

do1 do,. By using Fourier methods, P. C. Rosenbloom [12] has shown that
if P is such an operator and f() is continuous with restricted growth, then the
Cauchy problem

v,(, t) P(D 1, ..., D,)v(, t),

v(, 0 + f()

t>0,
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has the solution

(2.2) v(, t) fr K( a, Of(a) da

in which K is a Green’s function. Bounds on K are given by

(2.3) I1(, t)l =< Mlt-"/kexp {M2 M3llll[12k/(2k-1)t -(2k-a)}

with > 0, I11 g= , and Ma, M, M3 positive constants. Symbolically
we can write (2.2) as

(2.4) v(, t) exp [tP(D ,..., D,)].f().

Now, take X to be a Banach space, let the A, 1, ..., n, be infinitesimal
generators of CO groups Ta,(t) in X, and let q e f"l = (A{k), where (A{) denotes
the domain of A/k. We have

TA(t)[[ ni exp (Oilt])

with N >= 0, o9 __> 0 for -oo < < o. Set f() TA,(I) TA,(,)q9 (we are
replacing e"’’ in (1.2) by TA,(i)). From our assumptions, f is continuous and

(2.5) f()[ =<M4exp (Di[i[ (D[[,
i=1

where M4 >= 0. With this, we see by (2.4) and (2.2) that (1.2) has the formal general-
ization

u(t) exp [te(A,, A,)]q)
(2.6)

| K(-a, t)TA,(al).." TA,(a,)q) da.
VE

In this, we take the integral to be defined in the strong Riemann sense (see [7,
Appendix]). This gives the following theorem.

THEOREM 2.1. Let X be a Banach space and let A x, A2, A be infinitesimal
generators ofCO groups in X such that Ai. Ai Aj. A .for all i, j. If P(Da, D,)
is an elliptic operator of order 2k and is of appropriate type and q (-]’= (zk),
then the integral in (2.6) gives a solution to the abstract Cauchy problem (1.1).

Proof. The existence of the integral in (2.6) follows by using the estimates
(2.3) and (2.5). That (2.6) satisfies the equation in (1.1) can be easily checked by
using an argument similar to the one used by Hersh [10]. We follow a slightly
different approach in checking condition (1.1b). Set h(a)= TA,(al)’’" ZA,(a,)q)

q0 II. Then

(2.7) u(t) q) <= f K( a, Oh(a) --0
’E

But as O,

K( a, Oh(a) da - h()
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since h() is continuous. Finally, since h(0) 0, we see that Ilu(t)- qll ,-o+’ 0 in
(2.7).

A comparison of Theorem 2.1 with Theorem 2 of [10] shows that our result
(2.6) agrees with Hersh’s formula (1) when his equation takes the form (1.1a).
We note that if n 1, A1 A, and P(D1) D, then (2.6) with K the heat kernel
gives the basic result

etA2cp (4zt)-1/2 e-a2/4tTA(()q) da.

This has been used to relate solutions of abstract wave problems with solutions
of abstract heat problems [2]-[4]. It was developed probabilistically in [9].

We observe that if the coefficients eij in the transformations (1.3) are real
and P(D1, "’, D,) is elliptic of appropriate type, then the operator Q(DI, ..., D,)
is also elliptic and of the appropriate type. The relation (1.4) can then be generalized
to give

(2.9)
exp [tP(A1,

f K*(-a, t)TA,

in which K* is the Green’s function associated with a problem (1.1) involving
the operator Q. Uniqueness shows that this agrees with the integral in (2.6).
From a practical standpoint, it may be easier to construct K* corresponding to
Q than to construct K corresponding to P. We shall demonstrate that the complex
analogue of the integral (2.9) satisfies (1.1a) in 3.

3. Complex transformations. As was noted earlier, the operator P(D 1, "", D,)
may fail to be elliptic of appropriate type. The construction of a corresponding
operator Q(D1, D) by means of (1.3) and (1.4) then leads to certain of the
ij being complex in (1.3). An examination of (2.9) shows that a number, perhaps
all, of the group operators Ta(,".= ia) must then involve a complex or purely
imaginary argument. This shows that if we wish to extend the applicability of
(2.9), we must require the corresponding A to generate groups with analytic
extensions to the entire complex plane. In general, such extensions are not possible
if A is unbounded [11, p. 278]. The difficulty is tied to the problem of obtaining
dense subspaces. However, we do have the following result.

THEOREM 3.1. Let X be a complex Banach space and let g(X) be the space of
bounded linear transformations on X. If Ai6g(X), i= 1,..., n, and Ai.A Aj.A i,

then the integral in (2.9) defines a solution of (1.1) for (p X.
Proof. The boundedness of the operators A clearly implies the existence of

the integral in (2.9). We omit checking that this satisfies (1.1a) since a similar
argument is needed in the proof of Theorem 3.2.

There is an important situation where we can formulate a meaningful result
for unbounded operators. Let oA denote the set of entire functions q of (x 1, , x,).
For z l, "’, z, complex variables, we assume the series representations

Z
J,"’,jn
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satisfy the condition

(3.1) Ibj,...j,,I" IzalJ’’’’ IZnl" <= M5 exp {)(lzil2)’/2}
J ,’",Jn

with M _>_ 0,/I _>_ 0 and 0 =< v _< 2k/(2k I). Now take Aj /xj and interpret
T.() in (2.9) as a translation operator. Then we have the following result.

THEOREM 3.2. In (1.1) let A l/xi, i- 1, ..-, n, and let q)69,1. Then a
solution of (1.1) is given by

i=1 i=1

at least in the interval 0 < < (M3/})1/2- ). If V > 2k/(2k 1), then the integral
(3.2) defines a solution of (1.1) for all > O.

Proof. From the estimate (2.3) and the growth condition (3.1), it is clear
that the integral in (3.2) converges for 0 < < (M3/).) 1/2- 1) if v 2k/(2k 1).
If v < 2k/(2k 1), then the integral exists for all > 0. The condition (1.1b)can
easily be checked as in the classical case (here, we replace by absolute value).
We need only show that (1.1a) is satisfied. Now

(3.3)

the last step following by an integration of parts. But for each j,

g=l

Then according to (1.3), Q(D,,..., D,)o P(D,,,..., D,)q). Using this in the
last member of (3.3), we get

ut(t) f g*(-a, t)P(Dx,, Dx.)(p da
VE

P(D,,..., Dx. I__ K*(-a, t)q) da P(D, D,)u(t)

Remark 1. Gel’land and Shilov I15] have also obtained representations of
solutions of ill-posed problems of the form ut(x, t) P(iD)u(x, t), u(x, 0 +) q)(x)
in one space variable by Fourier methods (Theorem 3, p. 163). They show that if
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exp (tP(s)) satisfies appropriate growth conditions, then u(x, t) (G(, t), q)(x ))
where G(, t) is a Green’s function and qg(x) %,b, a class of entire functions
analogous to 9.1. The estimates used by Rosenbloom lead to more precise bounds
on G(, t).

Remark 2. The integral in (3.2) can exist if q satisfies

IqO(Zl, ..., z,) M6 exp {2( Izgl2)/2

with v < 2k/(2k 1). However, the integral appearing in the last member of (3.3)
need not exist unless we impose some stronger condition such as (3.1). If n and
q)(x) --0 alxl, one could use the definition that q(x) is entire of growth (p, r)
if and only if

lim sup (j/ep)[@ ’/ <__ r.
jm

Then condition (3.1) could be replaced by the condition" q)(x) is of growth (v, 2)
with 0 <= v <__ 2k/(2k 1).

As we shall see, Theorem 3.2 has many uses in studying the question of
representing the solutions of Cauchy problems in certain types of series of functions.
Finally, we note that a problem of the form (1.1) may occur in which certain of the

TAj appearing in the integral in (2.9) have real arguments while others involve
complex arguments. In this case, it is necessary to patch together an appropriate
data and solution space. We provide an example of this below.

4. Some examples. We now show how the results of 2 and 3 can be applied
to specific problems. Most of these involve the construction of a second operator
Q along with a transformation of the form appearing in (1.3).

Example 1. Consider the problem (1.1) with n 2 and P(A,A2)
A AIA2 + A22. The operator P(D1,D2)-- D2 DD2 + D2 is an appro-

priate elliptic operator. To obtain the solution exp {tP(A, A2) q0, we need the
Green’s function K in (2.6) or K* in (2.9) for some associated Q(D, Di). We
choose Q(D,D2) D2 + D and observe in (1.4) that

exp [t(a ala2 + a22)]
exp [t(D2 + D)]{exp E,(al + a2)/2 + {2(a,- a2)x/2]},=gz=o
exp [t(D + D)]{exp [al({ + 2w/)/2 + a2({1-

Then, since Q(D1, D2) is the Laplacian, we can use (2.9) with K*(-a, t)
(4rot)-1 exp -(a + az)/4t]. We get

[tP(A 1, A2)](p

_
K*(-a, t)TA,((a + a2X/)/2)TA((a a2X/)/2)q) da.exp

With a change of variables of integration, this integral can be written as

f K(-rl, t)TA,(rl,)TA(rl2)q) drl with

K(-rl, t) (47zt) -1 exp [-(q2 + FllF]2 --I- r/zZ)/4t].
Example 2. Consider the Cauchy problem

u,(x, y, t) 2 2 y4/3 2(x D + xD + Dr + --yl/3Dy)u(x, y, t), t>0,

u(x, y, o +) o(x, y).
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Assume that q(x, y) C in x and y and has compact support. Now A1 xDx is
a group generator with A 2 2x D + xD and Ta,(t O(x) O(xet) if O(x)e C 1.
This can be easily seen to satisfy ut*(x, t) XOxU*(X, t), u*(x, 0) O(x). Similarly
A2 yZ/3Dy is a group generator with A22 y4/3Dy2 + yl/3Dy and

TA2(t)" rl(Y) rl(y + y2/3t + 1/2y1/3t2 + 2@t3)
if r/ C 1. If we use (2.6) with K the heat kernel, we get

u(x, y, t)

(4rrt) -1 exp [-(a2 + 2)/4t]q(xe, y + y2/3 + 1/2yl/32 + 73) da d.

By combining the method of Example with that of Example 2, we can treat a
variety of problems with variable coefficients.

Example 3. The Cauchy problem for the backward heat equation is a familiar
example of an ill-posed problem. There are instances where certain solutions to
this problem assume an important role. As an example, Widder and Rosenbloom
133 have considered the problem of representing solutions of the heat equation
in series involving the heat polynomials v,(x, t) (with v,(x, O) x"). Certain of their
theorems pertain to the convergence of these series in a strip -# < < #. They
prove convergence for 0 =< < # and then use a result of Tcklind [143 to obtain
convergence throughout the strip. We indicate how Theorem 3.2 can be used
to obtain an elementary direct proof of convergence in the negative part of the
time strip.

From (1.3) and (1.4) we see that etD eia’ -ta2
,=o e According to Theorem

3.2, we have as a solution to the backward heat problem

u(x, t) 2xU(X, t), u(x, o +)

(4.1) u(x, t) (4rt)- 1/2 e-2/4’q(x + icy) dcy

with 0 e oA and v < 2 in (3.1). We call 2 in (3.1) the type of q(x) and say that q(x)
has grown (2, 2) (Widder and Rosenbloom use the definition given in the remark
following Theorem 3.2). The choice o(x) x in (4.1) leads to u(x, t) Vm(X, --t),
the ruth heat polynomial with the sign of reversed. By taking q(x) eax, (4.1)
gives u(x, t) ex-2t, a generating function for the v,,(x, -t). Expanding this in
powers of a, we get Vm(X,--t) 4mtm/zHm(x/(2x/)), where Hm(Y is the Hermite
polynomial of mth degree in y. With this, we now prove" Let q(x) =o a,x"e
with growth (2, 2). Then the series ,o a,v,(x, -t) converges to a solution of the
backward heat equation for 0 < < 1/(42) and =o a,v,(x, O) q(x).

Proof. Select R > 0 and take ]xl N R. Now

(4rrt)- 1/2 e-r2/4t a,(x + icy)"
n=0
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This interchange of summation and integration is valid if

e-c*214t
n=O

converges. But since (x) with growth (2, 2), the estimate (3.1) shows that this
converges if 0 < < 1/(42) and uniformly for 0 < to < 1/(42). Since

(4t)- / e-/4O(x + i) d

satisfies the backward heat equation, the series ,0 a,v(x,- t) must converge
uniformly to this solution in these compact sets and hence for 0 < < 1/(42).
Since R was arbitrary, the result follows. The convergence at 0 follows readily.

One can use analogous arguments in treating polynomial representations of
solutions of, say, the problem

ut(x, y, t) + (D + D)u(x, y, t) 0, u(x, y, 0 +) O(x, y).

Example 4. Consider the Cauchy problem

(4.2)
u,(x, y, t) DDyu(x, y, t), > O,

u(x, y, o +) e(x, y).

We note that

exp (ta,a2) exp [t(D + D) exp [a1(1 + i2)/2 + a2(1 i2)/2][,==o.
According to Theorem 3.2, we have

u(x, y, t) (4nt)
OE(4.3)

O(x + (al + ia2)/2, Y + (al iaz)/2)da

if O(x, y) with v 2 in (3.1).
To treat the amended Cauchy problem

ut(x, y, z, t) (Dx D, + D})u(x, y, z, t), > 0,
(4.4)

u(x, y, z, 0 +) p(x, y, z),

we require the use of both Theorems 2.1 and 3.2. For

exp [t(a,a2 + a)]
exp [t(D + D + D)]. exp [a1({1 + i2)/2 + a2({1 i2)/2 + a33]le, =e=e,=0.

The term aaa suggests a translation operator in Theorem 2.1 while the other
terms have the interpretation in (4.3). Then (4.4) has a solution of the form

u(x, y, z, t)

(4.5) (4t) -/2

O(x + (al + ia2)/2, y + (a i2)/2, z + aa)da
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if we select q(x, y, z) to be C 2 in z for all x, y and in class in x and y
for all z.

One can use series representations of solutions of (4.4) to discuss representa-
tions of the related ultrahyperbolic problem

vtt(x, y, z, t) (DxDy + D2)v(x, y, z, t),

v(x, y, z, 0) e(x, y, z), v,(x, y, z, O) O.

Representation theorems for similar problems have been treated in [63.
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ON SPACES OF TYPE Hu AND THEIR HANKEL
TRANSFORMATIONS*

WILL Y. K. LEE’

Abstract. The topological and algebraic properties of the spaces of type H., that is, H.,, H.,
and H.,, are investigated in this paper, where # is any real number, e and fl are nonnegative real
numbers. The conventional Hankel transformation ,. for/ >= 1/2 is a continuous linear mapping
from each of the spaces of type H. into certain other spaces of type H.. This assertion is extended to

any real number/ and to the generalized Hankel transformation ,’.. The nontriviality of the spaces of
type Hu, the relation of certain entire functions with a space of type H, and the relations between
the spaces of type S and type H. are proved in the Appendices.

1. Spaces of type Hu" Hu, H and H,. o Hu, >= O, if and only if (p is a
smooth function on 0 < x < c and

?,q(q0) sup Ix’(x 1D)q(x-"-1/2(49(X)) -- CqAkkka, k, q O, 1, ...,
0<x<oe

where the constants A and Cq depend on the testing function q. For k 0, we
set kk A 1.

qo e H, fl >= 0 if and only if q0 is a smooth function on 0 < x < and

7,q(q0) sup Ixk(x 1D)q(x-"-1/2q(x))] __< CBqqqt, k, q O, 1,
0<x<o

where the constants C and B depend on the testing function q. As before we set
q@ forq 0.

q) H.,=, , fi > 0, if and only if q) is a smooth function on 0 < x < o and

7,q((p) sup ]xk(x 1D)q(x-u-1/2q)(x))[ CAkBqkkqqB, k, q O, 1, ...,
0<x<oe

where the constants A, B and C depend on the testing function
The topology for each of these spaces is generated by the seminorms

7,q}" ,q: o. It is clear that each of these spaces is a Fr6chet space. Moreover it is
perfect; every bounded set is relatively compact.

Note that the spaces H.,, H. and H. may be considered to be the limiting
cases of the space H’

H., H,,, H H,o and H. H.,,
where the right-hand sides are understood to be the countable-union spaces such
that

For the definition of the space H. see [16, pp. 129-130] or [17, pp. 562-563].
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2. Different ways of defining the spaces of type Hu.
2.1. The space H,,. It is readily seen from the definition of H,, that if z 0,

then B,,a c H,,o, where according to [15, pp. 679-680, Bu,a is the space of
smooth functions q) such that q)(x) 0 for x > A and

sup I(x-lD)q(x-U-’/2r,p(x)) < oo, q 0, 1,
0<x<oo

But using the definition of H,,,a in 3.1, we can easily show that B,,a H,,o,a
algebraically and topologically. Now suppose 0 > 0. Then the following two
theorems are not hard to prove.

THEOREM 2.1.1. Let q) Hu,, where cz > O. Then

(2.1.1) IDq(x --"- 1/2q)(x)) <= Cq exp (--a’x1/), q O, 1,

where a’ (e/e)A’1/ is a constant less than a (cz/e)A/.
THEOREM 2.1.2. Let (# H, satisfy the inequality (2.1.1). Then

(2.1.2) 7,q(q) sup Ixk(x D)q(x -"- l/2qo(x)) CqA"kk,
0<x<oo

where a" (/e)A"/ is a constant less than a’ (cz/e)A ’/.
Remark. The inequality (2.1.2) shows that q e Hu,,a, and therefore, q e Hu,.

Consequently, Theorems 2.1.1 and 2.1.2 together imply that 0e Hu,,a if and
only if q 6 H, and

IDq(x -"- 1/2q(x)) __< Cq exp -(a 6)x/}, 3>0.

2.2. The space H. From the definition of the space H, it is obvious that
as/3 diminishes, the constraints on differentiation become more strict. We state
the following theorem without proof.

THEOREM 2.2.1. Let q H,. Then

sup IxDq(x -"- /2(p(x)) =< C,qBqqq, k, q O, 1,...
0<x<oo

where the constants C,q depend on q), k and q as well.
From Theorem 2.2.1, we see that the space Hue behaves quite differently from

the space S defined by Gel’land and Shilov [2, p. 167], namely the analytic con-
tinuation under suitable conditions on fl is possible in the latter case, but not in
the former case.

2.3. The space H,. By definition the space H, consists of the smooth
functions q) on 0 < x < oe satisfying the inequality

sup Ixk(x 1D)q(x-u- /2qo(x))] CABqkqql,
O<x<

k,q 0,1,...

Here restraints are imposed on the decrease of q as x --+ c and on the growth of
the derivatives of q0. Thus (2.3.1) shows that H,, is contained in the intersection
of the spaces H,, and H algebraically and topologically. From Theorem 2.1.1,
we obtain

[Dq(x -u- 1/2(49(X)) CqBqqq exp {-(a’ ()x1/a},
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where a’ is a constant less than a (z/e)A 1/, and 3 > 0. Note that in this case the
analytic continuation of O(x) __.a x-U- 1/2qg(x) to the complex plane z x + iy may
not be possible because of the fact that A’k

3. Topological properties of the spaces of type H..
3.1. The space H., as the union of eountably normed spaces. Let Hu,A be

the space of testing functions q9 in H,, such that

(3.1. l) 2k,q(q)" =A sup Ixk(x- 1D)q(x- #- 1/2q)(X)) Cq6(A + )kkka
O<x<c

for any b > 0. According to Theorem 2.1.1, o H.,,A implies

IDq(x-- 1/2(x))[ Cqa exp {-(a’

where a’ is a constant less than a (z/e)A1/ and any 6 > 0. By virtue of [2, pp.
86-94], H,,,a is perfect, that is, every bounded set is relatively compact. If we
define

(3.1.2) p,(qg) & max sup Mp(x)[Dq(x -"- 1/2(D(X))[,
O<q<p= 0<x<m

where Mv(x g exp {a’(1 1/p)xl/a}, p 2, 3, then p is a norm for the space
H,,,A Thus q9 H,,,,a if and only if p(qg) is finite for each p 2, 3, If we set

XkOq(X la -1/2 q)(X))
(3.1.3) p(q) g sup sup

o<x<o (A + )k

then p6 is another norm for the space H/,a,A and (3.1.2) and (3.1.3) are two equivalent
norms [2, pp. 176-178.

Evidently Hu,,A1 Hu,,A2 if A1 < A2 and the topology for Hu,,AI is
stronger than the topology induced by that of Hu,,A2. From the definition,
H,, U2=x Hu,,a algebraically and we treat it as a countable-union space
[16, pp. 14-161. A sequence {qg} in H,, converges to zero if and only if
belongs to some Hu,,A and converges to zero in this space [16, pp. 14-16. But
this is the case if and only if the sequence {q)} converges to zero (that is, for each
q 0, 1, 2, ..., {(pv)} converges uniformly to zero in any bounded interval (0,
and the norms p(q)) are bounded for all p and v (see [2, pp. 91-94]).

3.2. The space H as the union of countably normed spaces. Let H’B be the
space of testing functions p in H satisfying the inequality

(3.2.1) ]2k,q((D)/t =x sup [xk(x 1D)q(x -/t 1/2(]9(x))1 Ckp(B _]_ p)qqqfl,
0<x<oc

k,q=O, 1,...,

for any p > 0. From Theorem 2.2.1 and (3.2.1), any (p in H’n satisfies the inequality

sup [x’(x -"- 1/2(jg(X)) Ckqp(B nu p)qqqfl, k, q O, 1,...,
0<x<c

for any p > 0.
Note that the space H’n does not belong to the class K{M} as does the space

H.,,a because no Mp exists in this case. We introduce the norms I" I1o in H.’
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as follows

(3.2.2) cpll, _a sup sup
O<x<oo

Ixk(x 1D)q(x-.- */299(x))
(B + p)qqqfl

p

DEFINITION 3.2.1 Let/,’ be the space of q’s in H,’ satisfying the condition

=C’ k=0,1,sup Ck+r,p kp,
O<_r<_q

where Ckp are constants restraining the q’s in H,’n. The topology for the space
iq,’B is the one induced by H’.

For instance, q(x) x"+ x/2. exp -1/2(B + p)x2}, where p is chosen such that
B + p => 1, belongs to/,’n for fl __> 1. Now let q e/,’n. An easy computation
shows that

(3.2.3)
ix,DO(x .- X/2qg(x))

bq,q_ l(q 1)(q- 1)fl

Ckp -{-
(B + p)qq#

bq,q+lqi/2(q + Iq)/2(q+1qIfl/2}(B + p)(q-lq)/2qqfl

(B + p)qqql,

where Iq 0 or according to whether q equals an even number or an odd number
respectively. Consider the inequality

(3.2.4) bq q_j(q j)(q-J)fl <_ q2,
(B + p)Jqqfl

q= 1,2,... j 1,2,..., (q lq)/2.

The inequality (3.2.4) holds if and only if

fl _-> log bq,q_j 2 log q j. log (B + p)
q-log q (q j)log (q j)

j= 1,2,...,q- 1.

Define

log bq,q_j 2 log q j. log (B + p).(3.2.5) sup sup
<-_j <- (q lq)/2 q. log q (q j) log (q j)

An inductive argument on q shows that flo is finite. For fl __> flo, we get from (3.2.3)
and (3.2.4),

]xkDq(x-U-1/2q(x))l <= Ckp(B + p)qqaqq <= Cko(B + p)q(1 + e)qqqt

<- Ckp(B + 2p)qqqfl,

since e is arbitrary constant. Hence we have the following theorem.
THEOREM 3.2.1. Let fl >= flo, where rio is defined by (3.2.5). Then q)e II,’

satisfies the inequality

(3.2.6) sup IxkDq(x -u- 1/2(p(x)) <- Ckp(B + p)qqq.
0<x<o
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Conversely let q H, satisfy the inequality (3.2.6). Since

Ixk(x 1D)q(x-"-1/2q)(2))1 <- Ix-qDq(x -"- 1/2q(x))l 4- Idq,q- 11
(3.2.7) Ix’-q- 1oq- 1(x-U-1/2qo(x))l

x-2 + D(x-,- /2q(x))l+ + ]dq,1

where dq,2are constants (j 1, ..., q)and dq,q 1,and dq,q_ -q(q 1)/2, we
have

]x’(x-lD)q(x -u- 1/2 (p(X))
(3.2.8)

{ Idq I(q-1)’q- l,a Id,,I} p)qqqa.< C 4-
’q- (B 4-
(B + p)qqq + +

(B 42-fiiq-lq
Consider the inequality

(3.2.9)
dq,q_2[(q j)q-) <= q2.

(B 4- p)Jqqfl

Clearly this holds if and only if

fl >_- log Idq,q_jI 2. log q j. log (B + p)
q. log q (q j). log(q j)

Define

j--1,...,q- 1.

a sup sup
log ]dq,q_jl 2. log q j. log (B + p)

(3.2.10) fl
<=.i<:q- q. log q (q j) log (q j)

It follows from (3.2.8) that if

]x(x D)q(x--l/2q)(x))] <= C(B 4- p)qq3qq <= Cko(B + p)q(1 + e)qqq

<__ Co(B + 2p)qqq,
since e is arbitrary. Hence we have obtained the following theorem.

TnF.OZ 3.2.2. Let fl >= fla, where fla is defined by (3.2.10). Then q) H,’ if
(p H, satisfies the inequality (3.2.6).

Remark. It is easy to confirm by induction on q that flo and fll defined by
(3.2.5) and (3.2.10) are finite.

From the definition, H, U n H,’n is a countable-union space and hence
every sequence {(p} in H, converges to zero if and only if {p} belongs to some

H,,n and converges to zero in its topology; see [16, pp. 14-16].

3.3. The space H, as the union of countably normed spaces. Let ,,BH,,A be
the space of testing functions o in H, satisfying the inequality

sup ]x(x-XD)q(x-"-l/zqo(x))] Cao(A 4- 6)’kqqt,
0<x<o

fl,Bfor any 6, p > 0. We introduce the norms H,,,A as follows

q Ip g sup sup
[xk(x-D)q(x-"-l/2q?(x))[

,,q o (A + 6)’(B + p)qk’q

k,q =0,1,...

6,p= 1,1/2,
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fiBThe topology for the space Hu’,,A is generated by the norms I[" 11o}. With this
topology, BHu’,,a is a countably normed complete perfect topological linear space.

H’B algebraically and we treat it as a countable-unionClearly H. U A,B= U,a,A
space. Hence a sequence {(Pv} converges to zero in H., if and only if {qv} belongs
to some Hulo,a and converges to zero in the space; this is the case if and only if
the sequence {(Pv} converges correctly to zero and the inequality

Ixk(x 1D)q(x-u-1/2q)v(X)) _< C(A + cS)k(B + p)qkkqq

is satisfied where the constants A, B and C are independent of v.

4. The Hankel transformation with application.
4.1. The conventional Hankel transformation. According to 16, pp. 130-131],

the conventional Hankel transformation/u for t _>- -1/2 defined by

f )JxYJu(y) (,.o)(x) - q(x (xy) dx,

exists for each 0 in Hu a,/},’B or H’a. Also from [5, p. 134] or [10, p. 355],
x/.yju(xy O(xU+ 1/2)’ ts x ---, O, and’-f--yJu(xy O(1) as x -+ oo. Following
[15, p. 679] we define

Nuq)(x) a_. xu + 1/2D(x u- 1/2 q2(x)),

Muq) =a U- 1/2D(xU + 1/2(x) x q(x)),

N- l(]9(X) g Xu+ 1/2 -u- 1/2(49(0 dt.

THEOREM 4.1.1. For 12 >= --1/2-, the conventional Hankel transformation du is a
continuous linear mapping from the space Hu,,a into the space H2’(2e)2"A2

Proof. Let K be a bounded set in Hu,,A. Then every 09 in K satisfies the
inequality

(4.1.1) ]xk(x 1o)q(x-U-1/2qg(x))]
k,q =0,1,..., 6>0,

where the constants Cq, are independent of the choice of q) in K. Let (y) duqg(x
For any pair of nonnegative integers k and q, from [16, p. 139, and with the aid
of the equality

Nu+q+k-1"" Nu+qxqq)(x)-- XqNu+k-1’’" Nuq)(x)
we have

(-- y)kNu+q_ NuOO(y) ,+k+q{(--X)qNu+k_ Nuq)(x)}
(4.1.2)

(_x)q{Nu+_, Nuqo(x)} x/-Xju++q(xy)dx.

Since by induction on k and q

Nu+q_ Nue(y yu+q+ 1/2(y-tD)(y-U-t/20(y))

Nu+k- Nuq)(x) xu+k+ 1/2(X- 1D)k(
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it follows from (4.1.2) that

(- 1)k+qyk(y 1D)q(y-"-1/2(I)(y))
(4.1.3)

.(o d.+k+q(Xy)X2,+l +k+ 2q{(x- 1D)k(x-la-1/20(X))} (Xy)#+q
dx.

From [4, pp. 111-112], [5, p. 134] and upon taking v as a positive integer greater
than 2p + 1, (4.1.3) implies

lY"(Y- D)q(Y -"-

(4.1.4) < C{ + (A + )+ 2 +k+ 2q)(y -F- 2 + k + 2q)(+ 2 +k+ 2q)a}

<= Co(A2 + di’)q(1 + e’)q(Zeq)2q <= C{(2e)ZA2 + 6"}qq2q.

Here the constant C in (4.1.4) is independent of the choice of q) in K.
Consequently (I) duq e H2ua’(2e)2a2 and from (4.1.4) the mapping o d,q0 maps

20t,(2e)2Aa bounded set in Hu,,A into a bounded set in Hu and hence is continuous.
This completes the proof.

A proof similar to that of Theorem 4.1.1 shows the following theorem.
THEOREM 4.1.2. For la >=---, the conventional Hankel transformation

,t4, into the spaceis a continuous linear mapping from the space
]._12ot,(2e)ZAHu,fl,m’-" p,a + fl,eAB]

4.2. The generalized Hankel transformation. Throughout this section,
__< # < c. We now define the generalized Hankel transformation Au on each

of the dual spaces Hu,,A (/,B), and cu"B v
,’" p,z,A! as follows

where g Go, F Gf, q belongs to H,,,a, /}’ or H,:=,a, f belongs to the
corresponding space. Since d, A- for / => -1/2, from Theorems 4.1.1, 4.1.2,
and [16, pp. 141-142, we have the following theorem.

THeORFM 4.2.1. For 12 >- --1/2, the generalized Hankel transformation , is
(H2,(2e)2A2),a continuous linear mapping fi’om the dual space .__, {(H.,,n) and

t42’(2eav respectively} into the dual space (H.,,a)’ {(/.’n)’ and (H.’ )’12, + fl,eAB! ,ot,A re-
spectively}.

Note that if/ >= -1/2-, the conventional Hankel transformation ,. acting on
fe L(0, c) is a special case of the generalized Hankel transformation, that is,
the generalized Hankel transform F & d.f is the regular generalized function
corresponding to the conventional Hankel transform F .f; see [16, pp.
142-143].

4.3. Hankel transformation of arbitrary order. Following 16], we extend the
fl,BHankel transformation of the spaces Hu,,A, /-){’B, and Hu,,A, and their dual

spaces for an arbitrary real number # in such a way that the following properties
hold:

(i) The direct and inverse Hankel transformations exist whatever be the
choice of #.

(ii) The direct Hankel transformation and its inverse are defined on the
dual spaces H,,A (/-){’)’ and t4e, v
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(iii) For # >_ -1/2, the extended direct Hankel transformation and its inverse
coincide with the previous ones discussed in 4.1.

Let # be any real number, and let m be a positive integer such that/ + m
>__ -1/2. According to [16, pp. 163-164], we define the extended Hankel transforma-
tion /,m by

(4.3.1) (Y) 4,,m[tP(x)] (-1)my-mu+Nu+-1’’" Nuo(x),
(4.3.2) O(x) ,[*(y)] 1)N2 N, + lY(Y).

Then we have the following theorem from Theorems 4.1.1 and 4.1.2.
THEOREM 4.3.1. For any real number aM a positive integer m such that

+ m -, the extended Hankel transformation ,, defined by (4.3.1) is a
g2,(2e)2Acontinuous linear mapping from H.,,a (’ and H’.,,A respectively) into

M2’(2e)Za2 respectively). Its inverse is defined by (4.3.2). Moreover,(H,,, and
coincides with whenever -.

It is evident that in Theorem 4.3.1, , and are independent of the choice
of m. If -, , . Now for any real number , the generalized
Hankel transformation , on each of the dual spaces Hu,a,A, (’)’ or ",,,Atn’
is defined as follows ;let belong to Hu,A, ’" or H:A, f to its corresponding
dual space; then

(4.3.3) (F, ) g (L ),

where F a .f, ,, and m is taken as before. Using [16, p. 29], we have
the following theorem.

THEOREM 4.3.2. For any real number #, the generalized Hankel transformation
(H2,(Ze)ZA, defined by (4.3.3) is a continuous linear mapping from the dual space ,__, )’

{(H,,,)’ and t,,U2’(2e)AVu,+,eA respectively} into the dual space (Hu,,A)’ {(0’ and
v respectively},,AI

In view of (4.3.3), the generalized inverse Hankel transformation (#.)-x is
defined by

(4.3.4) ((,) F, ,,) (V, ).

Then from [16, p. 29, we get the following theorem.
THEOREM 4.3.3. For any real number g, the generalized inverse Hankel trans-

formation (’,)- defined by (4.3.4) is a continuous linear mapping from the dual space

H,.,A {H, ad ,",,,A,tn’ ’ respectively} into the dual space (H’t2e)’A) ({(H,,,)
nA [2,(2e)zAz

4.4. An application to a Dirichlet problem in cylindrical coordinates. Let us
find a conventional function v(r, z) on the domain {(r, z)’0 < r < , 0 < z <
which satisfies Laplace’s equation in a cylindrical coordinate system without a
0 variation"

2v v 2v
(4.4.1) r + -r + 0.

We impose the following generalized boundary conditions on v(r, z)"
(i) x/v(r,z) converges in the dual space (Ho,,a)’, (/0’B) or (Ho ’B,,A)’ to

f(r) ’(0, ) as r 0 +.
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(ii) x/v(r,z) converges in the dual space (Ho,,a)’, (/-)o’B) or (Ho B’,,) to
g(r) e g’(0, ) as z

(iii) v(r, z)converges to zero pointwise on 0 < z < as r --* .
(iv) v(r, z) remains finite at each point of the interval 0 < z < as r 0 +.

/,BNote that since g(0, ) H, and since H, contains HO,,A, I0’B and Ho,,A,
g’(0, o) is contained in the dual spaces (Ho,,A)’, (/o’) and (HoXA)" Set u(r, z)

v4(r, z),

moNou r- 1/2(c/&)r(?/r)r- 1/2u(r, z).

Then (4.4.1) reduces to

(4.4.2) MoNou + (2u/(z2 --O.

The conventional Hankel transformation go of (4.4.2)yields

z2 U(p, z) pZu(p, z) O,

where U(p, z) ou(r, z). An easy computation shows

{eP(f(), /PJo(P)) (g(), -)Jo(P))}U(p,z)
e e -p

(4.4.3)

+eo e-;{ (g(), x/Jo(P)) e-P(f(),x//pJo(p))} ez.

The inverse Hankel transform of (4.4.3) yields

(4.4.4) u(r, z) U(p, z)x//prJo(pr)dp,

where U(p, z) is given by the right-hand side of (4.4.3). Hence we have the solution

(4.4.5) v(r, z) r- 1/2. u(r, z),

where u(r, z) is given by (4.4.4). It is not hard to show that the solution (4.4.5)
satisfies all the boundary conditions (i)-(iv).

Appendix A. On the nontriviality of the spaces of type Hu. A space V is said
to be nontrivial if V contains at least one function which is not identically zero.
We first prove that the spaces H., and Hu are nontrivial for any nonnegative real
numbers and/. Throughout this section # is any real number.

THEOREM A.1. For any real number >= 0, the space H,, is nontrivial.
Proof. At first let > 0. Let q be a smooth function having compact support

in (0, o) whose Taylor expansion near the origin is of a form

(A.1) xu+ 1/2[a0 + a2X2 -+- + a2qx
2q -F R2q(x)], q 0, 1, "..,

where

a2q lim
(x- 1D)q(x-U- 1/2(x))

and R2q(x) O(x2q+2).
xO+ 2q. q!
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Let L sup {xx supp q}. Then from (A.1) we obtain

(A.2) Ixk(x 1D)q(x-"- 1/2o(x))l Cq \--) kAkkk,
where Cq a__

supo_<x_<L [(x-D)q(x -"- 1/2(x)) It is clear that L/(AU) N if and
only if k (L/A)/. Define ko [(L/A)/] + 1, where Ix] denotes the Gaussian
symbol, that is, the greatest integer not exceeding x. Setting C g max {L/A,
(L/(A2))2, (L/(Ak))k}, we get from (A.2)that

(A.3) [x(x D)q(x -"- 1/2(x))[ CCqAk.
It follows from (A.3) that O e H.,. Consequently (0, )c H., algebraically
and topologically. Now suppose e 0. As we have noticed in
in this case and since B.,a is nontrivial (see [16, pp. 168-169J), H.,o U
is also nontrivial. This completes the proof.

TzOgZM A.2. For any real number 0, the space H is nontrivial.

Pro@ Suppose first p -. Then, since the conventional Hankel trans-
formation A, maps the space H.,,a into the space __.H2’12e)a2 from Theorem 4.1.1
and since g, is one-to-one for -, the nontriviality of H., implies the non-
triviality of H. If p < -, by applying .,m instead of g., where g.,m is defined
by (4.3.1) and m is any positive integer greater than -p , we obtain the same
conclusion as before. This proves the theorem.

THEOREM A.3 If fl O, the space H is trivial, that is, the only testing

function o in H is O.,0
O,B u0,B ifA < Aero4 Since H,o U H:g,a and since ..,o,aA,B= ,0,A2 2

and B1 < B2 it is enough to show the nontriviality of uo,n+o for any 6 and p,0,A +
such that A + 3 1, B + p 1. Assume there exists a testing function in
HO,n+o which is not identically zero. Define 0(x) a

.,o,a + x /2O(x). Then supp
supp 0 and 0 if and only if O 0. Suppose first supp

From the definition of uo,n + o
,,o,a + , we get

(A.4) x(x D)qO(x)l Coo(A + 6)g(B + p)q, k, q O, 1,....

From (3.2.3) and (A.4), an easy computation shows that

loO(xl co(( + ( + p + b,,o_( + -( + po-1 +

(A.5)

<= Cat,q!(A + 6)q(B + p)q,

+ ba,(+q)/2(A nt- 6)*"(B + p)q+ lq)/2}

where Iq 0 or according to whether q is an even integer or an odd integer
respectively. The last step of (A.5) is easily justified by induction on q. Since the
Taylor expansion of O(x) near the point x A + is

l (x A a)
O(x) =o/-" r!
(A.6)

()(A + a) +
(x A a)q

q O(q)(A + 6 + e(x A )),

0<<1,
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and since ff(r)(A + 6)= 0 (r 0, 1,
yield

q- 1), the inequalities (A.5) and (A.6)

O(x)l _-< Ix A ,51
q Ip(q)(A + 6 + e(x A 6))1

< Ca,lx-(A + 6)lq(A +6)q(B+ p)q-o asq ,
because the magnitude Ix (A + 6)1 can be taken arbitrarily small. This contradicts
the assumption on . Consequently if(x)= 0 and therefore qg(x)=_ 0 for all
x (0, A + 6. Finally assume that supp : 0, A + 6]. Then for each x q I0,
A + 6] such that (x) 4: 0, we obtain from (A.4) that for q 0,

< C6
A + /I,(x)l 0 ask .

It follows that supp ff [0, A + 6] which contradicts the assumption supp
[0, A + 6]. Hence applying the first argument we have (x) 0 and so q(x) _=

for all x (0, ). This completes the proof.
Example. Consider the function q(x)= xu+ 1/2 exp [-B + p)x2] where

,Bis chosen such that (A + b)Z(B + p)>__, for each. 6 > 0. Then qg(x) Hu,1/2,a
c Hu,1/2

Appendix B. On certain classes of entire functions and their relations with the
spaces of type Hu. I. M. Gel’land and G. E. Shilov [2, pp. 221-222] have proved
the following theorem.

THEOREM B.1. If an entire function f satisfies for each k 0, 1,-.. the in-
equality

(B.1) Ixkf(x + iy)l <: Ck exp (blyl*), 7 > 1,

then for any q 0, 1, ...,
ixf(O)(x)l CkBqqq(1

where B (1/e)(b’e) 1/, b’ is any constant greater than b.
In this section we answer the following questionUnder what conditions

will the entire function f satisfying the condition (B.1) belong to a space of type
9Hu
Now let fll be defined by (3.2.10). Invoking Theorem 3.2.2, we obtain the

next theorem from Theorem B.1.
THEOREM B.2. Let z -u- 1/2f(z) be an entire function, and let the restriction

off(z) to 0 < x < belong to the space Hu. If F(z) z -u- 1/2f(z)satisfies the
condition (B.1), where z -u-1/2 is understood to be the principal value, then for
fl >= ill, the restriction of f(x) to 0 < x < belongs to the space H’, where
B (1/e)(b’e) 1/, b’ any constant greater than b.

Remark. It is easy to confirm by induction on q that fll defined by (3.2.10)
is greater than 1 for large q and so fll => 1/7, since 7 > 1.

Appendix C. Relations between the spaces S and Hu and the spaces of type Hu
and type S. The following theorem is not hard to prove.
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THEOREM C.1. q) Hu if and only if the even extension of x -u- 1/2(D(x belongs
to S and the Taylor expansion near the origin is of the form

(c.1)

where

xu- a/2{a0 + a2X2 + _+_ azqX2q + Rzq(X)},

lim (x-D)q{x-U-/2q(x)) anda2q 2qq xO +
R2(x) O(x2q+2).

Remark. Consider the function q(x) xu+ 1/2e-lxl. Then x -u- 1/2q)(X) S. On
the other hand, since

lim I(x-D)q(x -u- /2q(x))]
xO+

q= 1,2,...

the restriction of q(x) to 0 < x < o does not belong to Hu. Therefore the condition
(C.1) in Theorem C.1 is necessary.

Let flo and //1 be defined by (3.2.5) and (3.2.10) respectively. Define
/32 & max {/3o,/31}. Then Theorems 3.2.1 and 3.2.2 together yield the following
theorem.

THEOREM C.2. Let fl >= f12" Then q) belongs to the space ffI.’B if and only if
the even extension of x --u- 1/2tp(x) belongs to St’B and the Taylor expansion of q)

near the origin is of the .form (C.1).
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ADDENDUM:
QUANTITATIVE ESTIMATES FOR A NONLINEAR SYSTEM OF

INTEGRODIFFERENTIAL EQUATIONS ARISING IN
REACTOR DYNAMICS*

J. A. NOHEL

A recent question by D. F. Shea prompted me to obtain the following improve-
ment of the results of this paper (both Theorems 1 and 2). Condition (2.18),
p. 570, can be weakened to:

There exists a constant F > 0 such that la(x)l =< F(1 + S(x)), - < x < .
(2.18")

In the statement of Theorems and 2 one replaces (2.18) by (2.18") and all conclu-
sions remain valid.

The proofs require only the following changes in the proofs of Lemmas 2 and 3.
To prove the first part of Lemma 2 replace the Lyapunov function W(x, z), p. 577,
by

U(x, z, t) (1 + W(x, z)) exp

where W(x, z) is defined on p. 577. Differentiation of U with respect to the system
(3.12) and use of (3.13) yields the estimate

W(x(t),z(t))<_U(x(t),z(t),t)<= (1+ Wo)exp F-?/ 0<t<
Zol

for any solution x(t), z(t) of the system (3.12), where W0, k, 20 are constants indepen-
dent of N defined previously and F is defined in (2.18"). This a priori estimate
implies global existence and boundedness of solutions of the system (3.12). The
remainder of the proof of Lemma 2 is unaffected by the change of (2.18) to (2.18").

A similar change in the argument is required to obtain global existence and
boundedness of solutions of the system (3.19) in the first part of the proof of Lemma
3. Here one replaces W(x, y, z) (p. 579) by

U(x, y, z, t) (1 + W(x, y, z)) exp F le(r)l dr

This Journal, 3 (1972), pp. 567-588. Received by the editors March 1, 1973.
Mathematics Department, University of Wisconsin, Madison, Wisconsin 53706. This work was

supported by the Army Research Office.
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KRAWTCHOUK POLYNOMIALS AND THE SYMMETRIZATION OF
HYPERGROUPS*

CHARLES F. DUNKL AND DONALD E. RAMIREZ"

Abstract. This paper introduces the method of symmetrization of the measure algebra of a compact
P,-hypergroup. This method is used to form a measure algebra whose characters are Krawtchouk
polynomials (these are the finite sets ofpolynomials orthogonal with respect to the binomial distribution
on {0, 1, ..., N}). As a further application, one derives a theorem about nonnegative expansions of one
family of Krawtchouk polynomials in terms of another family.

Introduction. The role of orthogonal polynomials in harmonic analysis has
long been of interest. For example, certain sets of orthogonal polynomials appear
as sets of spherical functions of compact homogeneous spaces. In this paper we
introduce the method of symmetrization of a measure algebra and use it to form a
measure algebra whose characters are Krawtchouk polynomials (these are the
finite sets of polynomials orthogonal with respect to the binomial distribution on
{0, 1, ..., N)). This method also makes it possible to prove a theorem about the
expansion of Krawtchouk polynomials of one family in series with positive co-
efficient of the polynomials from another family.

The underlying structure is that ofa compact P,-hypergroup. This is a compact
space on which the space of finite regular Borel measures has a convolution struc-
ture preserving the probability measures. Suppose further that a compact group
of automorphisms acts on the hypergroup; then the set of measures invariant
under the action of the automorphism group forms a subalgebra, which itself
has the structure of the measure algebra of a hypergroup.

In the first section of the paper we give the definitions and basic theorems
about compact P,-hypergroups, taken from Dunkl [23. In 2 we discuss the
action of a compact group of automorphisms on a compact P,-hypergroup,
and show the existence of a symmetrization operator on the continuous functions
on the hypergroup. In 3 and 4 we show that the algebra of measures invariant
under the automorphism group is the measure algebra of a P,-hypergroup.
Some key formulas are also determined.

Section 5 contains the harmonic analysis structure of the Krawtchouk
polynomials. The idea is to take the N-fold Cartesian product of a two-point P,-
hypergroup and let the permutation group on N letters act on the product by
permutation of the coordinates. The characters of the symmetrized product are
the Krawtchouk polynomials. To illustrate the techniques of 3 and 4 we compute
the product theorems for these polynomials.

Section 6 discusses the two kinds of homomorphisms of P,-hypergroups
and uses the symmetrization technique to give nonnegative expansions of one
family of Krawtchouk polynomials in terms of another family.

* Received by the editors November 21, 1972, and in revised form March 28, 1973.
"f Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903. This work

was supported in part by the National Science Foundation under Contract GP-31483X.
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1. Basic definitions and facts about hypergroups.
DEFINITION 1.1. A locally compact space H is called a hypergroup if there

exists a map :H H -, Mp(H) (the space of probability measures), with the
following properties:

(i) 2(x, y) 2(y, x), x, y 6 H (so H is a commutative hypergroup).
(ii) For eachf6 Co(H) (the space of continuous functions on H with compact

support), the map (x, y)-,fnfd2(x, y) is in CB(H H) (the space of continuous
bounded functions on H H), and the map x-,f d2(x, y) is in Cc(H) for each
yH.

(iii) The convolution on M(H) defined implicitly by

fu f d# * v fu d(x) fu dr(y)fufd2(x,y),
#, v M(H), f Co(H) (the space of continuous functions vanishing at infinity)
is associative.

(iv) There exists a unique point e H such that 2(x, e) di,, x H.
Remark 1.2. A compact space H is a hypergroup if and only if the space M(H)

of regular Borel measures on H is a commutative Banach algebra and the space
M,(H) of probability measures on H is a compact commutative topological semi-
group with unit in the weak* topology [2].

DEFINITION 1.3. For the hypergroup H with f C(H), x H, and/ 6 M(H),
define R(x)f 6 Cc(H) by R(x)f(y)= ff d2(x, y), y 6 H;and define the function
g(/a)f Co(H) by g(/)f(y) g(z)f(y) d#(z), y 6 H. (That R(/)f Co(H) is
shown in [2, Thm. 1.10].)

DEFINITION 1.4. An invariant measure rn on the hypergroup H is a positive
nonzero regular Borel measure on H which is finite on compact sets and such that
fdm= R(x)f din, x H, f Co(H).
DEFINITION 1.5. If a hypergroup H has an invariant measure m, and a con-

tinuous involution x -, x’, x 6 H, such that fn (g(x)f), dm f{g(x’)g}- dm,
f, g C(H), x H, and such that e 6 spt 2(x, x’), x 6 H and spt denoting the support
of a measure, then H is called a *-hypergroup.

Remark 1.6. The invariant measure m of a *-hypergroup is unique up to a
constant [2, Prop. 3.2]. If H is compact, we denote the normalized invariant
measure ofH by ran, ran(H) 1.

DEFINITION 1.7. A nonzero function 4)6 CB(H) is called a character of the
hypergroup H if the following formula holds:

4(x)ck(y) f,, 4 d,(x, y), x,yeH.

The set of all characters is denoted by/. (For e/-), Ib(x)l b(e) 1, x e H,
[2, Prop. 2.2] .)

Remark 1.8. For compact *-hypergroups,/-) is an orthogonal basis for L2(H),
and/ is discrete in the weak* topology from L2(H), [2, Thm. 3.5].

DEFINITION 1.9. If a compact *-hypergroup H has the further property that
/// c co () (the convex hull of ), then H is called a compact P,-hypergroup.
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Remark 1.10. If H is a compact P.-hypergroup, then the linear span of/ is
sup-norm dense in C(H) (see [2, Prop. 3.8]). For th, e/, we write

(x)@(x) ,^ n(cp, @; co)co(x), x e H.
H

DHNTION 1.11. For H a compact P,-hypergroup, and e , let

c(@) 1[2 dmn 1.

Then B (with the measure c and conjugation as the involution) is a ,-hypergroup
[2, Thm. 3.9].

THEOREM 1.12. Let H be a compact P,-hypergroup. For x H,

s Z c()l(x)l

Proof. First note that &()=, x e H. By the Plancherel theorem for
hypergroups [2, Thm. 3.5], eL(H)= l(R) if and only if S < . Also

L(H)if and only if m({x}) > 0. Finally, in this case,

1
c(@)l@(xjl 2

m.({x}) ,
COROLLARY 1.13. If H is a compact P,-hypergroup, then mH({e}) <-- mH({X}),

xeH.
Poof. s <_ Z c4) s.
COrOLLarY 1.14. If H is a denumerable compact P,-hypergroup, then the

identity e is a cluster point.
Remark 1.15. The authors know of an example of a denumerable compact

P,-hypergroup, and will discuss it in a future paper. The hypergroup comes from
having the group of units of Ap (the p-adic integers) act on Ap.

2. Automorphisms on hypergroups. In this section H Will be a compact P.-
hypergroup.

DEFINITION 2.1. Let W be a compact group of homeomorphisms on the
compact space X. The topology on W is the pointwise topology from X, and the
map (x, z)-, z(x) of X x W - X is separately continuous.

For z W and f e C(X), define z lf C(X) by z lf(x) f(zx), x e X. Let
be the (weak* continuous) adjoint of z, that is, x fdz, x fo z dl,fe C(X),
la e M(X).

DEFINITION 2.2. An automorphism on the compact P,-hypergroup H is a
homeomorphism such that ]’2(x, y) 2(zx, y), x, y e H. Thus for 4) e

fno d2(x, y), x,yeH.
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Also z(x)’ z(x’), x H" for

o (x’)= o (x)= (x)= ((x)’).

THEOREM 2.3. Let W be a compact group of automorphisms on the compact
P,-hypergroup H. Then the set O(dp)= {d z I’z W}, d) I, called the orbit
of d?, is afinite subset of.

Proof. The set O(b) is compact in the pointwise topology from H, and hence
in the weak topology (as a subset of C(H)). Recall from Remark 1.8, is discrete
in the weak* topology (as a subset of L2(H)), and thus in the weak topology (as a
subset of C(H)) and so 0(4)) is a finite subset of/.

THEOREM 2.4. Let W be a compact group ofautomorphisms on the compact P,-
hypergroup H. Then the space W is totally disconnected.

Proof. For /, let A,= {z e W’b z }. The set A, is an open neighbor-
hood ofthe identity ewin W;and for Zl,Z2 A4,,’c1"2 A4,’( -cl"c2)(x) # -c2(x)

b(x), x e H. Also A, is inverse closed" for z e A, and x s H with :(x) y, then
b(y) 4)o z(x) b(x)= 4)o z-l(y). Thus A, is an open (and closed) subgroup
of W, and CI {A," 4 e/} {ew}. This implies that W is totally disconnected.

3. Symmetrization of hypergroups. In this section H will be a compact
P,-hypergroup and W will be a compact group of automorphisms on H.

DEFINITION 3.1. Define the symmetrization operator 1 on C(H) by

fw f(’cx) dmw(’C), f e C(H), x e H,f(x)o"

where row,denotes the Haar measure on W. The function all is in C(H) (by the
Grothendieck theorem that the pointwise and weak topologies are equivalent on
compact subsets of C(H); see also Glicksberg [5]). We let a :M(H) M(H) be the
(weak* continuous)adjoint of a l. Note that a, a are projections.

Example 3.2. Let T denote the unit circle, and let W {ew, z} where (x) ,
x T. Then for f C(T), 1 f(x) 1/2(f(x) + f(X)), x T.

DEFINITION 3.3. Let H be a compact P,-hypergroup and W a compact group
of automorphisms on H. We define the compact space Hw by identifying the
points of H which are in the same orbit; that is, Hw H/ where x y if and
only if there exists : W such that zx y.

Let Cw(H) denote the space

{f e C(H):fo r f, all : e W}.

THEOREM 3.4 OlC(H) Cw(H).
Proof. Let f e O C(H), x e H; then f O’lg, some g C(H), and f(x)
w g(zx) draw(r,). Thus by the translation invariance of the Haar measure on W,

To p(x) w g(zpx) draw(Z) w g(zx) draw(Z) f(x), p e W; and so alC(H)
c Cw(H).

Conversely, if f eCw(H), lf f since rlf(x)=wf(x)dmw()= f(x)
w draw f(x), x e H. Thus Cw(H) al C(H).

DEFINITION 3.5. Let Mw(H p e M(H) fH f dp nf "c dp, all e W,
fe C(H))}.
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THEOREM 3.6. Let H be a compact P,-hypergroup and W a compact group of
automorphisms on H. Then Cw(H - C(Hw) and

aM(H) Mw(H) M(Hw).

Proof. That Cw(H) - C(Hw) is immediate from the definition of Hw. That
Mw(H) - M(Hw) follows from Theorem 3.4; that is,

M(Hw) Cw(H)* -(aC(H))* Mw(X).

Remark 3.7. For convenience, we often identify C(Hw), M(Hw) with Cw(H),
Mw(H) respectively.

THEOREM 3.8. For #, v M(H), H a compact hypergroup, nd W a compact
group ofautomorphisms, r(p * av) a * av.

Proof. For 2 e M(H), a2 is defined by n f da2 a f d2, f C(H). Since
is weak* continuous, it will suffice to let 6, x e H.

Now for f C(H),

ffd * av ; dv(v) fda6(u)fd2(u, v)

fn dav(v) fn fw fu fd2(zu’v) dmw(z,d(u,

fH day,u, fW fHf d2’x’-lu’dmw’’

ffd( * v).

Cooa 3.9. The space M(H) M(H) is a commutative Banach algebra;
and the space Mp(H) ofprobability measures in M(H) is isomorphic to
and it is a commutative topological semigroup with unit (and thusH is a hypergroup).
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COROLLARY 3.10. amn mn and under the isomorphism of Mw(H) and M(Hw),
mH is identified with mHw.

Proof. Since Hw is a compact hypergroup there exists an invariant measure
on Hw which is unique [2, Thm. 1.12].

Let/ aM(H)p then amn * al a(mH * a#) a(mH * #) amH, and so amH
is an invariant measure on Hw.

Further, for z W, Z*mH mH, since Z*mH is an invariant probability measure
onH.

COROLLARY 3.11. If H’is afinite P,-hypergroup, then

mm({a})= L m({y)),
yO(x)

where ax denotes the element ofnw (= n/) which contains x, and O(x) {y s H:
there exists z W with zy x} the orbit ofx.

Proof. Let ZA denote the characteristic function of the set A, A H. Then

m({ax}) fu Z,x dmn

fu 7.o(x)dmu Z mu({y}).
yO(x)

4. Duals of symmetrized hypergroups. In this section H is a compact P,-
hypergroup and W is a compact group of automorphisms on H. Let a l, a be as in
3.

PROPOSITION 4.1. For dp I7I, aidp . Iw.
Proof. A continuous function g on Hw is a character if g defines a nonzero

multiplicative functional on M(nw) (see [2, Prop. 2.3]).
For/ aM(H) - M(Hw),

a dp dla dp da# b d# #(b);

and so a$ /w.
DEFINITION 4.2. Define
THEOREM 4.3. Let dp, tct; then (#$). (#$) al(b- #$).
Proof. Let x H; then

a,(dp. Oqt)(x) fw dp(,x)#q(xx) dmw(x)

#(x) fw dp(vx)draw(,)

,(x)(x).
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THEOREM 4.4. Let W be a compact group of automorphisms on the P,-hyper-
group H. Then Hw is a compact *-hypergroup.

Proof. That Hw is a compact hypergroup is given in Corollary 3.9. The
invariant measure on Hrv (as a hypergroup) is mn by Corollary 3.10.

The involution in Hrv is defined by (ax)’ a(x’), x H. This is well-defined
since (zx)’ z(x’), z W. This involution is continuous since the map a:M(H)

aM(H) is weak* continuous. Let f, g Cry(H), x H; then

fn (R(ox)f), dmn fn (R(ax)alf)alg dm

fn(R(x)af)agdmn= fnafR(x’)agdmn
fHafR(ax’)ag dmH= fn f(R(ax)’g)dmn,,.

w

Since e e spt 2(x, x’), x e H, then e spt 2(ax, ax’). We have thus shown that
Hrv is a compact ,-hypergroup.

THEOREM 4.5. Let W be a compact group of automorphisms on the compact
P,-hypergroup H. Then Hw is a compact P,-hypergroup, and ff-Irv #ffI.

Proof. We show for #qb - #, b, , that nw #c.- dmnw O"

#ok. # dmnw a1(" ’1//)dmnw
W

ck "r, dmv(z) dmn

fw fn ck" @ z dmndmv(z) 0

since distinct characters are orthogonal on H.
Now let , with #b #ft. Thus

fHw acka---dmH fw fw f., ck(zx)l/l(z’x)dmH(x)dmrv(z)dmrv(’C’)

fw fw fn @(z(z’)-X) dmn(x)draw(z)dmw(z’,

m({ e "4 4} 1 am.
We next show that. c . Let , 0 e ; then
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(Note that for r W, n(qS, if;og) n(qSo r, fro r;o9o ), b, , o/ since n(b,
c(o)n ck dmn.) Thus Sp (#/) is dense in Cw(H).
We have thus shown that #/ is a complete orthogonal basis for LZ(Hw),

and so/w #/. It follows that Hw is a compact P,-hypergroup.
COROLLARY 4.6. For b6/_it, c(#qS)= c(b)]O(b)[, where [O(q)[ denotes the

cardinality of the set 0().
We now derive the functional equation for symmetrized characters.
THEOREM 4.7. Let C(H). Then dp ffIw if and only if thefollowing condition

holdsfor all x, y H:

() (x)(y) fw f,, cb d2(rx, y)dr.

Proof. Assume b /w. Then

R(y)d? dab., fn d(a6) * by

fn adp dab,, * by

--fnqdr(rx,Sy)= fttdPdoSx*aby
cb(x)cb(y).

Conversely, assume condition (1). Let xl xz. Then

q(xl)(y) fw fn ck d2(zx y) dmw(’C)

R(y)dp dab,,, fn R(y)dp da6,,

fw fn dpd2(’cx2’y) dmn(r’)=dp(x2)dp(Y)’
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Therefore b(x ) b(x2), and b e Cw(H). Furthermore,

qb d2(ax, ay) fn 4) da6x * a6y

fH 4) da(a6x * 6y)

f 4) d(a6,, * 6y)

4) d(a6,, * by) fu R(y) dp da6

R(y)c/) db,,, draw(r,)

R(y)dp d6,, dmw(’C)

4) d2(’cx, y) dmw(r)

(x)(y).

And so b e/w.
Remark 4.8. As an application of Theorem 4.7, one can derive the functional

equation for the characters of a compact group. That is, for f C(G), f(x) X/n
if and only if

f(x)f(y) fa f(zxz- y) dma(z)

for all x, y G (see Weil [8, p. 87]). The result is obtained by symmetrizing the
noncommutative hypergroup G by the compact group of inner automorphisms
of G.

5. Krawtchouk polynomials. The Krawtchouk polynomials k,, 0 <- n =< N,
are an orthogonal set of polynomials on the discrete set {0, 1,..., N}, where

O < p < l, N is a positive integer, and the weight function is (Nx )P(1- p)v-x,
x 0, 1,.-., N. The polynomials are given in terms of the hypergeometric
functions by

k,(x;p,N)=(1 -p)" )F[-n,x-N;x-n+ 1;p/(p- 1)]

p"( N).
F[ n, x N l/p]

n!
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(see [1, 6]). We normalize the Krawtchouk polynomials by

K(x; p, N)

Szeg6 [6, p. 36] gives the explicit formula

kn(x p, N)
kn(0; p, N)"

K,,(x p, N) -1)
1- p

=o p (n j)!(x j)!(N + j x n)!N!j!

We now show how the symmetrized characters of the product of a two-
point hypergroup yields the Krawtchouk polynomials.

Let -1 =< a < 0 and define H to be the two-point hypergroup with points
{1, a} such that 2(1, 1) 61,2(1, a) 2(a, 1) dia,and.(a, a) -a61 + (a +
The identity e is 1. The hypergroup H has two characters ;to, ;t defined by ;to 1,
and ;tl(l)= 1 and ;tl(a)= a. Furthermore, H is a compact P.-hypergroup.
For notational convenience, we write

H.=
1

where the points of H are the rows and the characters are the columns. Let m
denote the invariant measure on H., defined by m({l}) 1 p and m({}) p.
Then a (p 1)/p and 1/2 _< p < 1. Also c(;to) 1 and c(;t) p/(1 p) 1/a.

Let N be a positive integer, and let H. denote the hypergroup H. x /-/.
x x H., (N times). The elements of//. are N-tuples of l’s and ’s, and the
elements of (H)are N-tuples of )0’s and

The permutation group P on N letters acts naturally on the hypergroup
H. as a compact group W of automorphisms. We let a, e respectively denote the
symmetrization operators on C(H.), M(H.) respectively.

For x H., let Ix] e {0, 1, ..., N} be the number of times appears in the
N a),N- l’sN-tuple x. Let trx (Ha)w be represented by (1, 1, ..., 1, a, a,... Ix]

and Ix] a’s. For 0 =< n =< N, let ;t (Ha)w be represented by (;to, ;to,’", ;to,
So;tl Z1 ", ;tl), N n Zo’S and n

For e e I-Ik__ {0, 1} (H)’, let ;t denote the element of (H)" associated
with e; that is, ;t ;tl;t2"’" ;t,. For 0 __< n __< V, choose e VIk_ {0,1} with
N n O’s and n l’s. We compute the symmetrized character ;t e -H),. Recall
that for x H,

z.(ax) a
’STo compute trl;t we note that ;t, has n ;t and only the ;t’s need be evaluated.

Indeed to get the jth power of a, j of the Ix] a’s must be paired with j of the
and n j of the N Ix] l’s must be paired with the remaining n j of the

The number of times this occurs is
N Ix]| as the permutation group P
n-j
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acts on x. Since characters assume the value 1 at the identity, it follows that

),(crx)= X a1
N-

1=0 n

0 _<_ n _<_ N, x H,. We have thus shown the following result.
THEOREM 5.1. Let H, be the product of N copies of the finite P,-hypergroup

H,=( 1 la) -l < a < O" and let W be the finite group of automorphisms of H,
given by the permutation group on N letters. Then the symmetrized characters of
(H, )rr are given by

z(x) K.([x]; p, N),

xn,0nN,p= 1/(1 -a).
We now derive a product theorem for Krawtchouk polynomials.
Askey and Gasper [1], using a method of Eagleson [3], have shown that the

Krawtchouk polynomials satisfy the following linearization theorem"
N

K(x; p, S)K(y; p, S) t(z, y, x; p, S)K(z; p, S),
z=0

0x,y,nN, 0<p< 1, where

N
I(z, y, x; p, N)

(1 p(2p 1)

ao (J- z)(j- y)(j- x)(z + + x- j)(- j)"

Therefore I(z, y, x; p, N) 0 for N P < 1.
Since the Krawtchouk polynomials are the symmetrized characters of the

hypergroup H, a (p 1)/p, N P < 1, we will be able to obta this result for
N p < 1 from the fact that characters satisfy the functional equation

(x, y e H a hypergroup) once a formula for 6x* y is obtained.

(1 la),N=l,2,.., andtrl, rRecall -1 <= a < O, a (p- 1)/p, H, - 1

are the symmetrization projections on C(H,), M(H,) respectively. For x e n,
Ix] denotes the number of times a appears in the N-tuple x. The convolution struc-
ture of M(H,) is given by * di , 6 6, . and i i -a6 + (1 + a)i,.
For u, v e M(H,), 3. di (3u, 3o, x x (6u,, * 6vN).

We wish to compute adix*adiy for x, ye H,. For z e H,, we define
e Mre(H,)by (z)= or(3, x 6, x... x di, x di. x . x... x .)= ai,(N- [z]
di’s and [z] ft.’s). Now a3 * crfir a((x)* (5), (Theorem 3.8). For z e W, let
denote the number of coordinates where both x a and (zy) a. Hence for
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r W, 6x * 6 is a Cartesian product in which. -a61 + (1 + a)6. appears jr times,
6 appears ([x] jr) + ([y] jr) times, and 6 appears N+jr-Ix]-[y]
times. By applying the appropriate r’e W to 6x* 6y we may assume 6x, 6y

()N+Jr-[xl-[yl x (6a)[xl+[yl-zj X (--a6 + (1 + a)6.)J (where the exponent
denotes the number of successive appearances in the product). The symmetrization

/--

of the last jr factors is the same as that of o {J;l(--a)-k(l+a)k-k6
Since the functions in Cw(H) are constant on the equivalence classes in H/,
we have that

a((x) * by) . (Ix] jr + [y] jr + k) (-a)J-’(1 + a)
W k 0

since
Ix]
J

l- x]- [y] + 2j

(.._a)t.,,:l+tyl-j-/(1 + a)-tx-ty+2j

(let/= [x] + [y] 2fl: + k)

N

N N

/=0 j=O

N

[y] j (i Ix] ix] +

(_a)tX+t,-j-(1 + a)-tx-t:v+2j,

N

[y] j
[y]!(N- [y])! is the number of re W for which jr j.

We have thus shown the following result.
THEOREM 5.2. Let <= a < O, 1/2 <= p < 1, and x, y Hu,. Then

where

N

ax y Z J(t, [y], [x];p, N)(i),
/=0

J(1, [y], Ix]; p, N)
N

[Y]

N

[y] j l- [x] [y] + 2j

(_a)tX]+ty-j-l(1 + a)l-[x]-[y]+

’s and (a’S"and where (1) denotes 0"(61 1 a X X 6.), N 61
Thus for 0 <= n <- N,

N

K,(x p, N)K,(y p, N) J(1, y, x; p, N)K,(I p, N),
/=0

O<=x,y<=N.

PROPOSITION5.3. J(I,y,x;p,N) I(l,y,x;p,N),O <= l,y,x <= N,O < p < 1.
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Proof.

J(l, y, x; p, N)
y(N y) N x!(N x)!j!

N! j=o j!(x-j)!(y-j)!(N- x- y +j)!(l- x y + 2j)!

(1 p)X+r-j-tp-X-r+j+t-t+x+r-2j
(2p 1)/-x-r+ 2j

(x +y-l-j)!
(since + a (2p- 1)/p)

N! N (1 p)t’-l(2p- 1)t+x+r-2’p

Y

(letk=x+y-j)

pk(1 p)k-l(2p 1)l- 2k

=o (k- y)!(k x)!(N k)!(l- 2k + x + y)!(k- l)!

I(l,y,x;p,N).

THEOREM 5.4 Let 1/2 <= p < 1, 0 <__ x, n <= N. Then

=o pX(1 p)-l/(x; p, g)l

Proof The left-hand side is

(c(K,(. ;p, N))) -1 f IK,([x]; p, N)I 2 damnS(x),
a= (p 1)/p.

By Corollary 4.6, c(#b) c(b)IO()1, a character on a compact P,-hypergroup
and a a symmetrization projection. Let ()o,’", o,,"’, )), N n

Xo’s and n Xl’S, be a character on H. Then lO(x)l (Nn), and
(c(;)) -x Iz(x)l 2 dmt_ly(X)

Finally, recall that #)(x) K,([x] p, N).
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6. Homomorphisms between hypergroups. Let -1 __< a __< b < 0 and let

H"=( 11 la) 1 lb) bethetw’pintP*’hypergrupsassciatedwitha’b
() (0a) andrespectively (as in 5). Define pl"C(Hb) C(H.) by p

b-a 1 -b
-1-a 1-a

The map p: is the induced adjoint map of the point map p:H, -o Hb defined by
pl landpa=b.

We compute now the action of p relative to the symmetrized hypergroups
(H,)w, (H)w, where W is the permutation group on N letters, N 1, 2, ....

PROr’OSITION 6.1. p’Cw(n) -0 Cw(n).
Proof That pCw(H)c Cw(Ha) follows since there exists a one-to-one

map a of W() into W(b) such that the following diagram commutes:

N

r(a) 1 1
To see this, let f e C(H) with f ztb) f for all ztb) Wtb); then for x s Ha and
zt) W), (pf) zt")(x) f pN(z()x) f(az() pN)(x) f(pCx) (pf)(x), and
so pf Cw(H), which completes the proof.

For 0 =< n _< N, define Z"), Zt,b) to be the symmetrized characters on H, Hv,
respectively, associated with N- nZto’s, Ztob)’s, respectively, and nz")’s, zb)’s,
respectively. Let x s Ha and so x has Ix] a’s and N Ix] l’s.

We write Zb tr(tob), Zt0b), b),..., b). Similarly for Z. Thus
N

N (b),o,z. (:,,:) o-, ]-1
j=N-n+l

N

(b_aT.to)(xj)+ l _b,ta)tX)a "1 J!l-I 1- a 1-j=-+l

For 1/2 __< pl __< P2 < 1, let b (P2 1)/p2 and a (px 1)/p. Then -1 __< a
=< b < 0, and the above remarks yield an expansion in Krawtchouk polynomials.

TI-IEOREM 6.2. Let 1/2 <_ p <= P2 < 1, 0 n <_ N. Then

K.(x; p2,N)
j=0

K(x p, N)
(P2 pl)n-jp

P2
all x.
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Proof. Theorem 5.1 implies that

=o 1 K(x; p, N),

and the right-hand side is equal to

=o 1 -(Pl 1)/pl 1 (p 1)/p]

2.-’ P2- P "-J P JK(x
j=0 P2 2] ;Pl, N)

(P: P)"-P
K(x; p, N).

=o P,
COROLLARY 6.3. Let x, n O, 1,..., N, and p P2 < 1. Then

K(; p, N K(y; p,.
=o P

Proo The Krawtchouk polynomials are symmetric in x and n; that is,

g(x p, N) gx(n; p, g).

Remark 6.4. Theorem 6.2 shows that the Krawtchouk polynomials K(x; P2, N)
can be expanded in a series of {Ki(x;p,N)}}= o with positive coefficients,
< < 1. Corollary 6.3 shows each xP P2 < 0, 1,..., N can be represented

as a positive measure on {0, 1, -.., N} such that

g(x; P2, N) f K.(y; p, N) d.x(y),

n=0,1,...,N;)<plNP2 <
Remark 6.5. Gasper [4, (5.13)] determined the expansion of K(.; p, N) re-

M andstricted to {0, 1,..., M} (for M < N) in terms of the set {K(., p, )}=o
showed that the coefficients were nonnegative. We can obtain this result with our
techniques (one step at a time, that is, for M N 1). The idea is to first sym-
metrize Hy over Px_ , the group of permutations of the first N 1 coordinates,
thus obtaining an expression involving K(.; p, N- 1) (summing over Ps can
be done by summing over Ps_ and then summing over the two two-sided cosets of
Ps_ in Ps). One obtains

Kn(m p, N)
Nn
N

n
K,,(m;p,N- 1)+ K,,_I(m;p,N- 1)

form=0,1,...,N- 1, n-- 0, 1,..., N,

and

Kn(m p, N)
N

an
Kn(m 1; p, N 1)+-Kn_(m- 1; p, N 1)

form= 1,...,N, a=(p- 1)/p, n=0,1,2,...,N.
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By combining the two formulas one can derive the difference formula"

n
(m- 1,p,N 1)K,(m p, N) K,(m 1 p, N) -(a 1)K,_

forn=0,1,...,N, m= 1,...,,N.

Historical remarks 6.6. Vere-Jones [7, p. 268] identified the Krawtchouk
polynomials (in the symmetric case p q 1/2) with the spherical zonal functions
associated with a certain finite group and subgroup. He asked for which values of
p, 0 < p < 1, is there such a group interpretation.

Let G be a compact group and K a closed subgroup such that there exists
precisely two two-sided cosets K and KxK, x G. Let H {K, KxK}. Then
H has the structure of a finite P.-hypergroup (see [2, Ex. 4.2]). The invariant
measure mn of H is positive on each element of H [2, Prop. 3.2]; indeed, since
KxK is closed K is open. Using our previous symbolism, write

H=
1 la)

where -1 =< a < 0. Now mn(KxK kmn(K), where k is the number of distinct
left K-cosets in KxK; and so k is a positive integer.

By the orthogonality of Zo and Z1, we have the equations

mn(K + amn(KxK 0, mn(K + akmH(K O,

and so

a 1/k.
It follows that the only values of p, 0 < p < 1, for which there exists such a group
interpretation is for p k/(k + 1), k 1, 2,..., for recall a (p- 1)/p; and
indeed, let G Pk+l and K Pk, k 1, 2,....
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AN OPERATOR RELATED TO THE INVERSE LAPLACE
TRANSFORM*

ABRAHAM UNGAR?

Abstract. An operator T is defined and shown to be closely related to the inverse n-tuple Laplace
transform. As T does not involve integration, it partially simplifies and generalizes the Laplace trans-
form technique.

1. Introduction. Some properties of Laplace transform technique can be
simplified and generalized in terms of an operator T introduced in 2. The theory
of Laplace transforms, also referred to as operational calculus is useful in solving
some boundary value problems where the solution is determined by inversion of
the operational solution which can be obtained from the operational problem.
The inversion of the operational solution may be a difficult task. However, it is
known [1], 3] that in some cases, the use of Laplace transform technique and a
suitable contour in the complex plane reduce the complexity of the problem to a
point where integration is not required. Actually, this method, called Cagniard’s
method, can be regarded as a technique in which the integral symbol, appearing
in the Laplace transform definition is cancelled by the integral symbol in the
inversion formula and as a result, integration is not required in obtaining the
solution.

This suggests that a modification of the Laplace transforms,, which includes
the deletion of the integral symbol can be used instead of Laplace transforms when
Cagniard’s method is applicable. A simple example illustrating Cagniard’s method
is given in [3] but the reader need not be familiar with Cagniard’s method in order
to read this paper.

This suggestion led to the definition of the operator T which is closely related
to the inverse L-tuple Laplace transform. Due to its simplicity and applicability,
the case L is considered separately in 3 and 4, although it is included in the
general case of 5. In using the operator T instead of Laplace transforms, when it
is possible, one avoids not only integrations as in Cagniard’s method but also the
transformations of complex contour integrals involved in his method.

2. Formulation of the main result. Let

(2.1)

where x (xl, X2, XN), be a system of L equations, # being analytic over a
region D of the (N + L)-dimensional complex space CN + L of the complex variables

Received by the editors July 25, 1972, and in revised form March 1, 1973.
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x and 2i, 1, 2, ..., L. The Jacobian, (I’, ,-.., )
(21,2, .-., 2,.)

is assumed to be different from zero in D such that the "inverse" (2.2) of (2.1)
exists"

/1 2(X,/21,/22, #L),

(2.2)

’’L ,(X,/21, i//2,

where 2’, 1, 2, ..., L, are L analytic functions in a region R, R Cu + of the
complex variables x and/i. The Jacobian

,, (, ,...,
c(#, #2, "’", #)

is different from zero in R and upon substitution of (2.2) in (2.1), (2.1) reduces to a
system of identities.

For an "index exponent" p (p, P2, "’", Pu) of order N, whose components
are nonnegative integers, ]Pl P + P2 + + P. For any f (fx ,f2, "’", fv),

fp ffff...
This notation will be used with the differentiation operator

6qP 631Pl

as well as with the function

(2.3)

Lastly, an operator T will be defined by

T sF(x, 2)exp(-s,l’(x, 2)) {Fq(x, 2*),;],*}
qQ

for arbitrary analytic functions Fq(x, 2) and Fq(x, 2*) in the regions D and R
respectively. Q is a finite set of index exponents of order L, 2
and 2*= (2,25, ..., 2). Here we adopt the summation convention that
whenever an index (but not an index exponent) is repeated in a given term, a sum
is taken over the index from 1 to L, or otherwise the summation symbol is used.
s (s l, s2 ..., st) are L complex variables.

The main result of the present work is the following commutative relation.
THEOREM 1.

T=T
Oxp Oxp"

Theorem 1 still holds when some of the variables are real, provided that the
functions under consideration possess an appropriate number of derivatives
which are all continuous in the region. The proof of Theorem will be given in 5.
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3. Single equation, L 1. It is useful to prove Theorem for the simple case
of L 1 before proving the general one as the proof of this particular case is simple
and applications can be easily outlined.

For L 1, a single equation is given

(3.1) # #*(x, )

satisfying/i* #*/92 q: 0 in a region D of CN / 1. The inverse 2" of/* is

(3.2) 2 2*(x,/)

with .* 2"// # 0 in a region R of CN+ 1. Upon substitution of (3.2) into
(3.1), (3.1) reduces to the identity

(3.3) # #*(x, ;*(x, #)).

For this case, Theorem 1 has the following form.
THEOREM 2.

y’. sF(x, 2)exp (-s#*(x, 2))
Ox

r sF(x, 2) exp sg*(x, 2))
nel

where I is a finite set of nonnegative integers.
The operator T in Theorem 2 is given by

r sF.(x, 2)exp(-s*(x, 2))

AReplacing T, formally, by 0 d2, we have

F(x, 2")i* T{F(x, 2)exp (-s*(x, 2))}

A F(x, 2) exp s*(x, 2)) d2

A F(x, 2")* e

provided that the integrals exist and the appropriate path transformation in the
complex plane, resulting from the change of the variable of integration, is justified.
According to the definition of Laplace transforms,

h(x; v(x,

is the inverse Laplace transform of

g(x s) F(x, 2")I* e " dg,

where s is the transformed variable of the original variable g. Therefore, under the
above assumptions, the symbol A represents the inverse Laplace transform opera-
tor L- and T is related to it by

T= L- d2.

The validity of this relation depends on the operand, and generally it is not valid
as the integrals involved may not exist or the above path transformation may not
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be justified. However, if this relation holds and differentiation commutes with
integration, obviously, Theorem 2 is true. Using Cagniard’s method, one proves
the commutativity in Theorem 2 by proving that T L-1 d2 when applied
to the operand under consideration. Although the proof (or its converse) may be
extremely difficult, as in the case of Cagniard’s method applied to problems of wave
propagation in horizontally layered media, Theorem 2 has not been conjectured
hitherto.

In order to prove Theorem 2, the following lemma is needed.
LEMMA 1.

c3
{F(x, 2"),*} 6F(x, 2"),, c3 6#*(x, 2*) }(Xi (Xi -#[ F(x, 2"),{*

i= 1,2,..., N,
where 6 denotes differentiation with respect to an explicit variable.

Proof of Lemma 1.

c OF
Ox--{F(x, 2")i*} c2" cxi

and

3 F(x, 2"

I* + F(x, 2*)x +

OF

61a*(x, 2"), OF 6/2* ( (]’/* ,2 + F(x, 2") )*,,2 _jff F(x, 2*)
c2" (x

and hence the result.
Proof of Theorem 2.

T
c3

{s"F(x, 2) exp (- s#*(x, 2))}c3x

F6F(x, 2) 61a*(x,
Tsl] sF(x, 2)

xi
exp(-s*(x, 2))

Here 6F(x, 2)/6xi c3F(x,,)/c3x as xi appears only explicitly in F(x, 2), but
obviously, they are not equal when 2 is replaced by 2*.

On the other hand,

{/(x, 2"),*}
cxi

T{s"F(x, 2) exp (- s#*(x, 2))}
cxi c#" c#" c3xi

{F(x, 2"),(*}.

Hence, by Lemma 1, T(c/c3xi) (/c3xi)T for 1, 2, 3,..., N, and the theorem
is true for p such that ]p] 1.
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The proof of the theorem is by induction on [p[. Assuming that the theorem is
true for all p’ such that [p’[ [p[, then we have

c cv’ c v’

for 1, 2, 3, ..., N. Thus the theorem is true also for all p" such that ]P"I IPl + 1,
and the proof is complete.

of

and

4. Applications. As an application to Theorem 2, consider the particular case

F(x, 2) F(2)

N

(4.1) p*(x, 2) xif(2) c3#*

in a region where Xo 1 and f/(2) are analytic functions of 2 in the region.
THEOREM 3. Let 2*(x, p) be defined implicitly by (4.1) in a region R and let F

be an arbitraryfunction such that F(2*(x, tt)) is analytic in R. Then

c3p
{F(2*),*} (- 1)Ipl

c31pl
.--5-., fP(2*)F(2*))t * }Ox

in R.
Proof of Theorem 3. By the definition of T,

cxT F(2)exp -s xif(2) --/x{F(2*)*}.
i=0

On the other hand,

S xifi(l T (- s)lVlfv(2)F(2) exp s x,f(2)
i=0 i=0

(_ 1)11
cIpl

0- {f(2")F(2")I* }.

But, by Theorem 2, (P/6xP)T T(P/xP), and hence the result.
Theorem 3 is useful for finding progressing waves (see [2] for definition) and

solving some boundary value problems in terms of them as Theorem 3 enables
one to replace differentiation with respect to the variables x by differentiation
with respect to the single "parameter" #. An illustrative example follows below.

Example. For N 4 denote (Xl, x2, x3, x) by (x, y, z, t) and restrict x, y, z,
to real values. Let 2*(x, y, z, t; #) be defined implicitly by

/ #*(x, y, z, t; 2) x sinh o sinh 2 iy sinh o cosh 2 + z cosh a t, a > 0.

Then * is given explicitly by

2*(x y z p) sinh-l(t+#-zcsh) + iO7 sinh
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and

2",* [(t + #- z cosh (Z)2 -- r2 sinh2 0]-1/2
d#

where r, O, z are cylindrical coordinates satisfying x r cos 0 and y- r sin O.
Let [-q be the operator

2 2 2 2
+ z2 Or2;

then, by Theorem 3,

2V]{F(2*)]t*} 2{(sinh2 sinh2 2* sinh2 cosh2 2* + cosh2 1)F(A*)A*}

--0,

and hence, F(2*),* is a progressing wave satisfying the wave equation

(4.2) [-]b 0.

# appears in 4) F(2*)* as a parameter and one can put # 0 for convenience.
It should be noted that F(2*) in this example is also a progressive wave. A

necessary and sufficient condition for 2" to be a phase (see [2] for definition) of an
undistorted progressing wave satisfying (4.2) is that 2* satisfies both

(V2*)
2" 2

and
02* 0,

where V is the nabla operator V (c/cx, c9/c9y, O/Oz). However, the progressing
wave F(2*) is not applicable for Theorem 3.

Applications of Theorems 2 and 3 to the theory of wave propagation in
horizontally layered media are introduced in [4]-[6].

5. The system of L equations. In order to prove Theorem the following
lemma is needed.

LEMMA 2.
O {F(x,2*)*} 6F(x’2*)* O,{6#*"(x’2*)F(x }Oxi 6xi x ,2").* 1,2, N.

Proof of Lemma 2. For the system (2.1),

(5.1) Ij
Ot2j

where Ij is a vector whose L components are zero but the flh component is unity
and

(5.2) 6#* 0#*
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Hence, by (5.1)

(5.3)

On comparing (5.2) with (5.3) and taking into account that the matrix *(./d2k is invertible in the region under consideration, we have

(5.4) 2 fi 2k 1,2, N, k 1,2, L.
Ox 6x ,’

Differentiation of (5.4) with respect to & yields
2 ,

(5.5)
axa#a d2ax d d#, ax #,d#

j 1 2 L

Consider the Jacobian

where ijk.., n are L indices and gijk...n is the Levi-Civita symbol that is antisym-
metric in all the indices and has the value I for el 23...L.

By means of (5.5), c*/3xo, is given by

(5.6)
2m Xo #r ’ijk’’’n [.l & ].lk

+ ’ijk’"n [.l & #r #k

The expressions

r 1,2,...,L,
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appearing in (5.6) are zero for m 4: r since they represent determinants with two
equal rows. The expression in the brackets in (5.6) is equal to &*/O#,. Therefore,

Now both sides of the equation in Lemma 2 can be evaluated and shown to be equal.
Proof of Theorem 1.

T(c3/c3xi) {sqV(x, 2) exp (- si#(x, 2))}

6f(x,2)Tsq[ -xl s,F(x, 2)--
6m*(x, ;0)xi

exp (-si?(x, 2))

c3#--C {F(x 2*) a#*" (x’ 2*)J’*
-xl

Further,

__cx T{sqF(x’ 2)exp (-si#.*, (x, 2))}

Therefore, by Lemma 2, T(/xi) (/Oxi)T for 1, 2,... N, and the theorem
is true for all p such that [Pl 1.

The proof of the theorem is by induction on IPl. Assuming that the theorem is
true for all p’ such that IP’I IPl, then we have

Hence the theorem is true also for all p" such that [p"[ IP[ + 1 and the proof is
complete.

If Ak has the form sqF(x, 2)exp (-sda.*,(x, 2)) where F and #* depend on the
integer k and if A =o Ak, then T is defined on A by

K

TA= TAk,
k=0

and obviously, Theorem still holds. For an infinite series A ff=o Ak, T
is also defined by

TA= TA
k=O

provided that the series converges and Theorem 1 is satisfied. The application of T
to infinite series will be considered in a subsequent paper.
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ON A PROBLEM OF E. L. DE FOREST IN ITERATED SMOOTHING*

Dedicated to the Late Hugh H. Wolfenden on his 80th Birthday
T. N. E. GREVILLE

Abstract. Schoenberg’s results on the limiting behavior of the normalized coefficients of the n-fold
iterate of a symmetrical linear smoothing formula are extended to the unsymmetrical case. When the
formula is exact to an odd degree, the family of limiting functions obtained is the same as that deduced
by Schoenberg. When it is exact to an even degree (possible only for an unsymmetrical formula), the
limiting functions belong to a different family defined by very slowly converging Fourier integrals and
including the Airy function as a particular case.

A critique is made of a certain theoretical objection to even-degree smoothing formulas, and as a
curious by-product, a certain unsymmetrical 5-term formula exact to degree two is shown to be a better
smoothing agent than the corresponding 5-term symmetrical formula.

1. Introduction. We shall consider linear adjustment formulas of the form
q

(1.1) l)l-- 2 CjYl-J’
j=p

where y is an observed, or "crude" value,/31 is the corresponding adjusted value,
and the coefficients cj are real and satisfy

q

(1.2) Z cj 1.
j=p

As we shall see, under certain conditions, such a formula can appropriately be
called a "smoothing" formula. Formula (1.1) is called exactfor the degree r when
the coefficients cj are such that, whenever there exists a polynofnial p(x) of degree
r or less such that

then

yt_j p(l j), j=p,p+ 1,...,q,

v p(l),

but there is a polynomial of degree r + 1 for which the corresponding relation
does not hold.

If we subject the sequence {Yz} n times in succession to the same transforma-
tion (1.1), we obtain a linear transformation

nq

(1.3) vl")= Z c}"Y-,
j=np

which is the n-fold iterate of (1.1).

* Received by the editors January 15, 1973 and in revised form May 10, 1973.

" Mathematics Research Center, University of Wisconsin, Madison, Wisconsin. Now at Depart-
ment of Health, Education and Welfare, Public Health Service, Health Resources Administration,
Rockville, Maryland 20852. This work was sponsored by the United States Army under Contract
DA-31-124-ARO-D-462.
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E. L. De Forest in 1878 [5] proposed the problem of finding the limiting form,
if any, of the (suitably normalized) coefficients c") of (1.3). He quickly realized
that the degree r for which the formula (1.1) is exact plays an essential role, and he
obtained the correct answers for the cases of r 1, 2 and 3. For r 1 (as shown
also by G. B. Dantzig [3]), the limiting curve is the normal probability function.
De Forest’s methods do not meet modern standards of rigor. He showed that the
limiting function, if it exists, must satisfy the differential equation

(1.4) dy/dx k xy

for a suitable constant k, subject to the constraints

6oj, j O, 1,..., r,xJy dx

and he obtained power series expansions for functions satisfying these conditions.
He does not seem to have appreciated that the cases of odd r and even r are funda-
mentally different. (When expressed as power series, the limiting functions for the
two cases look much alike.)

He probably understood that convergence to a limiting function does not
occur for all formulas (1.1) with coefficients satisfying (1.2), and that some further
conditions on these coefficients are needed. However, he does not discuss necessary
or sufficient conditions for convergence. Such conditions would have been diffi-
cult to formulate before the introduction of the characteristic function by
Schoenberg [21] in 1946.

The characteristic function of (1.1) is defined by
q

(1.5) ok(t)

Evidently this is a periodic function of period 27, and has the properties

(0)

and

(1.6) 4(- t) 4(t).

Schoenberg showed [21]-[23] that the condition

(1.7) I(t)l < 1, 0

(sometimes called the yon Neumann condition [29]), plays a central role in con-
sideration of questions of convergence of the normalized coefficients c) to a
limiting function. When the sign of inequality is reversed in (1.7) for any (0, 2t)
such convergence does not occur, and it is doubtful when inequality is merely
replaced by equality for some in the open interval. For the case of odd r, he
showed in 1948 in [22] that when (1.7) holds convergence does in fact occur, and
he obtained expressions for the limiting functions in the form of Fourier integrals.

The case of even r has been less studied, partly for a technical reason. Most
formulas (1.1) used in practice are symmetrical, i.e., p -q and

(1.8) c_ ct, 1,2,..., q.
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It is easily shown that (1.8) implies that (1.1) is exact for an odd degree. Thus, a
formula (1.1) exact for an even degree is necessarily unsymmetrical. Except for a
few general observations, Schoenberg confines his attention to symmetrical
formulas. De Forest, on the contrary, was especially intrigued by the unsym-
metrical formulas [6], and his work on the subject has motivated me to pursue
this question. The main purpose of this paper is to show that in the case of even r
convergence of the normalized coefficients c") to a limiting function occurs under
essentially the same conditions as in the case of odd r.

I have been investigating this problem off and on for many years, and have
benefited from conversations and correspondence with numerous persons. My
indebtedness to De Forest and Schoenberg is very obvious, and very extensive.
As Schoenberg pointed out long ago [23], transformations of the type (1.1) are
utilized in connection with difference methods or numerical solution of partial
differential equations,, and the stability of such methods involves questions
analogous to those raised by De Forest. In this connection I am especially indebted
to G. W. Hedstrom, W. G. Strang and V. Thom6e. While the normalization of the
coefficients c") introduces complications that make it difficult to apply their
results directly, some mathematical techniques developed by these authors
[11], [28], [29] have been utilized in the proofs. A special insight that has made it
possible, after many unsuccessful attempts, to complete the proof of the main
theorem, is due to J. Barkley Rosser, to whom I am therefore especially grateful.
In other connections, I am indebted to R. Hersh and to,the late H. H. Wolfenden,
who almost fifty years ago [35] rescued from obscurity the mathematical work of
E. L. De Forest. I am grateful also to W. F. Trench, whose careful reading of the
manuscript has eliminated some mathematical errors.

2. Normalization and the limiting functions. The Maclaurin expansion of the
characteristic function (1.5) is of the form

(t) + b(it)r+ + ...,
where r is the degree to which the formula is exact and

1 q

cjf+l# O.b
(r + 1)!

There are two distinct cases according as r is odd or even, and the coefficient of
"+ is consequently real or imaginary. First, we proceed heuristically to derive
what may appear to be the limiting functions approached by the normalized
coe/ficients.

In the case of odd r, we write

(2.1) (t) 1 at+ + ...,
where a -bi+ . In a sufficiently small neighborhood of the origin, we have

In b(t) -at+1 + "",

and for the n-fold iterate of (1.1),

In cp"(t) ant + +
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Following Schoenberg [22], we normalize by means of the substitution

(2.2) u(an)-1/r+
and obtain

(2.3) In ,(u) u

where J,(u) b"(t). (If h >__ 0, then h1/+ 1) will denote the nonnegative (r + 1)th
root of h; if h < 0 and r + is odd, it will denote the negative (r + 1)th root of h.)
Now,

(2.4)
2n

e-ijtp"(t) dt (an)-1/,+ 1) e-ix"j,(u) du

(an)- 1/ + 1) 0:" (cos xu Re q,(u) + sin xu Im ,(u)) du,

in view of (1.6), where

(2.5)

and

O rc(an)l/r+ 1)

(2.6) x j(an)- 1/+ 1).

A geometrical description may help the reader to understand what is going
on. Think of the array of coefficients cj as represented by a histogram with bars
(in general, both positive and negative) of unit width. The substitution (2.6) changes
the width of the bars to (an)- 1/,+ 1), and in order to preserve area we compensate
by multiplying the height c") by (an)1/+ 1). As n tends to infinity, the width of the
bars approaches zero, and we would like to know if the heights converge to the
ordinates of a continuous curve. Equations (2.3) and (2.4) suggest that it is a
plausible conjecture that under appropriate conditions the limiting function is

(2.7) cos xu exp (- ur+ 1) du.G,.+ I(x)
rc

For r 1, (2.7) is the normal probability curve, which, of course, is every-
where positive and decreases monotonically toward zero with increasing Ix[.
For r 3, 5, ..., the corresponding function Gr+ l(x) is again an even function,
but takes on some negative values. It has the general appearance of a probability
density function in the middle portion and that of a rapidly damped sine curve in
the tails. As Schoenberg [22] has pointed out, these functions were studied by
F. Bernstein [2] (for r + 1 4) and P61ya [18].

As we shall state more precisely in 5, Schoenberg [22] has shown that the
normalized coefficients do in fact converge to this limiting function when r is
odd and (1.7) is satisfied.

When r is even, we have

(2.8) (t) 1 + ait+1 +...,

where a bi, and

In qJ.(u) iu + + O(n 1/{r + 1)).
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Note that in the odd case a must be positive for (1.7) to hold, but in the even case
there is no such restriction, and accordingly (an) must be replaced by ]anl in
(2.4) and (2.5). In this case, the conjectured limiting function (see [8], [9]) is

(2.9) e-i, exp (iu,+ ) du cos (u,+ xu) du.H, + (x) -Superficially, these functions have some resemblance to the functions (2.7).
However, they are no longer even functions, and damping is very much slower
for positive x than for negative x. Here again the smallest value of r (r 2) is a
special case, in which for negative x, H3(x) is everywhere positive and decreases
monotonically toward zero as x m. H3(:x: is, in fact, a form of the well-known
Airy function of geometrical optics: more specifically,

n3(x 3-1/3 Ai (- 3-

Both families of limiting functions, (2.7) and (2.9), have been derived in-
dependently by Hersh [13], and functions related to (2.9) have been studied by
Watson [33] and Titchmarsh [30]. De Forest was unacquainted with Fourier
integrals and gave [6] only power series expansions for the cases of r 2 and 3.

3. The De Forest differential equation. For r 2, the differential equation
(1.4) is the well-known Airy equation (of which the Airy function is a solution).
On the other hand, (1.4) is itself a particular case of the more general equation

dy_
dx

xy

(where v is a natural number), which has been extensively studied [10], [17], [19],
[32] in connection with asymptotic solutions of ordinary differential equations.
In particular, Molins [17], about the same time that De Forest developed his
equation, obtained by an elegant method power series for that set of solutions
(of the more general equation) which is principal at the origin. Heading 10] wrote
the equation in the form

d"u
dz"

(- 1)"zmu’

and noted that "there is a fundamental difference in the character of the solutions
for n even and n odd."

The following demonstration that the limiting functions, if they exist, must
satisfy the differential equation (1.4) is essentially that given by De Forest [6]
(though he used generating functions rather than characteristic functions).

became aware of these references only at the time of acceptance of this paper for publication,
when they were brought to my attention by F. W. J. Olver, Managing Editor of this Journal. There is a
certain irony in the fact that never discussed the iterated smoothing problem with R. E. Langer, who
was Director ofthe Mathematics Research Center when first became a member, because was unaware
that it was related to his interests. He was an eminent authority on asymptotic solutions of differential
equations and is mentioned in some of the references.
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For any characteristic function

((t) dj eijt

note that

’(t) jd; eit

may be regarded as times the characteristic function of the sequence (jd}.
Evidently also,

(3.1) d(I).
dt

+ (t) (n + 1)’(t)(t).

Equating coefficients of eilt on both sides of (3.1) gives
q

(3.2) lcl" +1) (y/ _[_ 1) jccl.
j=p

By Gauss’ "forward" formula,

(3.3) c(,,) cl") jAcI") +l-j m3In_)l -}-

terminating after a finite number of terms. Now, we substitute (3.3) in (3.2), noting
that (1.1) is exact for the degree r, and that the successive polynomials of degree
1, 2, ..., r obtained by multiplying by j the coefficients of the first r terms of the
right member of (3.3) all vanish for j 0. We obtain, therefore,

(3.4) lcl"+’)= (n + 1)(d,A’cl"_)s + dr+ 1A"+ lc,_, + ...),

where dr and d,+x are coefficients independent of l, s is the largest integer not
exceeding r/2, and is either s or s + 1, depending on the parity of r.

If we now think of the coefficients cl") as being spaced at intervals of
h lanl-1/(r+ 1), (3.4) can be written in the form

l(a(n + 1))-x/(r+ 1)la(n + 1)1/(+ X)cl.+ 1)

n + l(drarh-lcl")_(3.5) an h
+ hdr +1 hr+ +

If we postulate that ]anl /r+)c"), regarded as a function of x l(an)-/+
approaches an infinitely differentiable function f(x), as n oe and therefore
h--. 0, then the arguments x corresponding to and l- s approach equality,
and the limit of (3.5) is

xf(x) drf(’)(x),
a

which is equivalent to (1.4).
De Forest’s procedure was to seek a power series solution of (1.4), subject to

the conditions for exactness to the degree r. It is interesting to note that he obtained
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[6] an expression for the Airy function of the form

Ai(x) dlf(x)= dzg(x),

where

X3 1.4X6f(x) 1 + . + + 1"4"7x9 +9!

2
x4 2.5x7g(x)= x + +-U. +

2.5.8
i0! x + ""’

dl .36, d2 .262444.

The well-known handbook [1] gives the identical expression but with

d .35503, d2 .25882.

Thus, De Forest’s values of the two constants were correct to two decimal places.
As it is unlikely that he had any mechanical calculating aid at his disposal,
consider this a remarkable achievement.

In the case of odd r, it is easily seen that the function Gr+ l(X) satisfies the
differential equation. Since the integral (2.7) and its derivatives are absolutely and
uniformly convergent, one can merely differentiate under the integral sign.

For even r, it is less. obvious that the function Hr+ (x) satisfies (1.4). For the
following argument, I am indebted to R. Hersch. If we regard exp (it)+ and its
Fourier transform as tempered Schwartz distributions, then the limit function
H+ (x) satisfies the differential equation, at least in the sense of generalized
functions [7], [14]. However, since H,+ (x) is an entire function (as shown by
Hersh in [13]), differentiable in the classical sense, it is therefore a classical solution
of the differential equation.

4. Nonconvergence when the stability condition is reversed. In the symmetrical
case, in which qS(t) assumes only real values for real t, Schoenberg [22] has proved
that Ico)l diverges to infinity with increasing n if the inequality (1.7) is reversed
anywhere. In the general (not necessarily symmetrical) case, the corresponding
statement is no longer true. However, we can prove the following related theorem,
portions of the proof being closely analogous to Schoenberg’s proof. This theorem
is also an obvious corollary of the main theorem of Thom6e’s [29].

THEOREM 1. For some to, let

Ib(to)[ > 1.

Then, to every positive M, there corresponds a positive integer NM, such thatfor all
n> NM,

max ’’"’1c’/’)l > M.

Proof Since b(t) is analytic, there is an interval [to e, to + e] in which

Ib(t)l > T > 1.
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Define

(4.1) S,= (c") =- dp"(t)dp"(t)dt.
j=np

Since the integrand is everywhere nonnegative

f 3’
2n

For a given S,, max [c")[ is smallest when the terms of the summation in (4.1) are
all equal. Thus

max [c")[= n(q- p) +
>

(n(q- p) + 1)

Therefore,

g 1/2

rt(q p 4- 1)
n-1/2"’

from which the desired result follows easily.
Some ambiguity remains about the situation in which the inequality is never

reversed in (1.7), but equality holds for some values of not integral multiples of
2z. Schoenberg has shown by an example that in such a case Co") may fail to
approach a single limiting value. His example is the adjustment formula

(4.2) Vl 1/2(Yl- + Yl + 1),

for which

Evidently,

but

(t) cos t.

p(c) oh(- c) 1.

He shows that if n is restricted to even integers 2m,

lim ml/2coZm)= GI(0)= 1/2x/,
as required by the theory. However, Cto") vanishes for all odd n.

Nevertheless, it is my conjecture, without anything very solid to base it on,
that this is not typical behavior, and that convergence to the expected limiting
function normally occurs in the situation being considered. I would point out that
(4.2) belongs to a rather special class of formulas, those having all coefficients cj
equal to 0 for even j. For every such formula, it is easily seen that c") 0 always
for odd n and even j, while q(Tr) 1. (An analogous situation exists in the more
general case in which nonzero coefficients cj occur only for indices j spaced at
intervals of k and not including j 0.)
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5. Convergence in the case of odd r. Schoenberg in [22] has essentially solved
the problem of convergence of the normalized coefficients to a limiting function
when r is odd. However, he limits himself to the case of symmetrical formulas (1.1),
for which the characteristic function (1.5) assumes only real values for real t, and
can be written in the form

q

b(t) co + 2 cjcosjt.
j=l

The modifications required to extend his result to the unsymmetrical case, in
which b(t) may assume complex values for real t, are not quite trivial and enter
into the proof in a way that is most easily explained by giving the entire proof.
Therefore, we state and prove the following more general theorem, emphasizing
that the proof is largely due to Schoenberg [22].

THEOREM 2. Let (1.1) be an adjustmentformula exact for odd r (r 1, 3, 5, ...)
with a characteristic function dp(t) having the properties (1.7) and (2.1). Then, to
every positive there corresponds a positive integer N, such that

[(an) 1/c’+ 1)cn) Gy+ l(j(an)-,/c,+ 1))1 < e

for all j if n > N. In other words, for n ,
c") (an)-1/cr-’)G,+ l(j(an)-1/c,+ 1)) + o(n- x/c,+ 1)),

uniformly for all integral values ofj.
Proof Note that (1.7) requires a > 0. Following Schoenberg [22], we define

(5.1) e-i"’/.(u) du"F,(x) .
then it follows from (2.4) that

(an)l/C+ 1).n) F,(j(an)-1/c,+ 1)),

and it is therefore sufficient to prove that

uniformly in x.
We write

lim F,(x) Gr+

q/,(u) p,(u) exp iO,(u),

with p,(u) and O,(u) real functions. Then

p,(u) Ick(u(an)- ’/" +

(5.3) O.(u) n arg dp(u(an)- 1/c+ 1)).
In view of (1.6), we have

F.(x) G,+ l(X)
rc

[p.(u) cos (O,(u) xu) exp u’+ 1) cos xu] du

+ p,(u) cos (O,(u) xu) du exp U + COS XU du

11 + 12- 13,
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where fl is an element of (0, 1) on which we shall impose conditions later.
Again following Schoenberg [22], we let y max ](t)l for [flr, zr]. Then

y < 1, and p,(u) <_ for u [fl0,, 0,]. Therefore,

(5.4) 1121-< (1 fl)(an)1/’+ 1),n < e/4

for sufficiently large n. Also,

1131 < exp (-u’+ 1) du < -for sufficiently large n. We have

11 rc
(p,,(u) exp u’ + )) COS XU du

f0" p,(u)(cos xu cos (O,(u) xu)) du
7Z o o

Evidently

f"II,l =< Ip.(u) exp (-u+ 1) du.
ao

Employing the same ingenious device utilized by Schoenberg [22], we let

0<al <a<a2,

where we shall later impose further conditions on al and a2. Then,

(5.6) exp a2u,.+ < exp( u,+ 1) < alu,+
a a

for u > 0. In view of (2.1), 14(t)l has a Maclaurin expansion of the form

[b(t)[ at’+1 + ....
Hence, we can choose fl so that

exp (_aztr+ 1) < Ib(t)l < exp (-alt’+ 1)
for e (0, fl]. Then it follows from (5.2) that

(5.7) exp/-azur+ < p,(u) < exp
a

for u
From (5.6) and (5.7) it follows that

Ip,(u) exp u" + 1)1 < exp

al u,+ 1)a
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for u (0, fla,], and substitution of this result in (5.5) gives

(5.8) ]I4] < exp (-u"+ 1) du.

The expression in square brackets can be made as small as we please by choosing
a and a sufficiently close together, and we then choose fl so that (5.7) holds.
As the integral in (5.8) is finite, 1I4 can be made less than e/4, uniformly in x for
sufficiently large n.

Since O,(u) 0 in the symmetrical case considered by Schoenberg, 1 vanishes
in that case. In order to extend the result to unsymmetrical formulas with odd r,
we write

(5.9) I p,(u) sin O,(u) sin O,(u) xu du.

In a sufficiently small neighborhood of the origin, arg (t) has a convergent
Maclaurin expansion of the form

argO(t) cV + +
where h is a positive even integer and c 0. Thus (5.3) gives

[0,(u)[ [ncV+ + [< 2n[c[V+ 2]C]u"+a(an)-ta-)/+
a

for 0 u fla, if fl is sufficiently small (in addition to the condition previously
imposed upon it). Thus, we have

]sin 1/20,(u)] < Lu+a(an)-(- )/(+ )

for some L for u (0, fla,), since ]sin y] < ]Yl for all y : 0. Thus, (5.9) and (5.7) give

2 fo aluv+II1 < -L(an) -(- 1)/(,+ 1) u"+ exp du.

Since the integral converges to a finite constant, II1 < e/4 for sufficiently large n.
Therefore, there is some N such that for n > N,

IF,(x)- G+ i(x)[ < IIl / 1131 / 1141 / llsI < ,
uniformly in x.

6. Convergence in the ease of even r. The main result of this paper is the proof
that the normalized coefficients c") converge to the postulated limiting function
in the case of even r. As convergence is much slower than in the case of odd r,
the proof is correspondingly more difficult. Nevertheless, pointwise convergence
is not difficult to prove;it is the requirement to prove uniform convergence that
introduces complications. We shall need to utilize several lemmas, which grew
out of suggestions made by J. Barkley Rosser.

LEMMA 1. Letf(u) C’ be such that f’(u) is strictly positive or strictly negative
for u [u 1, u3, let g(u) be integrable and such that [g(u)/f’(u)l is monotonic decreasing
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for u,e [Ul, u3] and let ul, U2, U3 be three consecutive zeros ofcos f(u). Then

(6.1) g(u) cos f(u) du > g(u) cos f(u) du

Proof. Let w f(u). Since f’(u) is strictly positive or strictly negative for
u [u, u3], u is a single-valued monotonic function of w, say h(w), for w in the
interval betweenf(ul) andf(u3), and

fi, fv+x/2.,++ ) g(h(w))cosw
g(u) cos f(u) du dw

(v+ 1/2)rt +_ jrt f’(h(w))

for j 1, 2 for some integer v, where we use the plus or minus signs according as
f’(u) is positive or negative. For j 2, cos w goes through the same absolute
values as for j 1, but with the opposite sign. Since [g(u)/f’(u)l is monotonic
decreasing for u [u,u3], the coefficients of corresponding values of cos w
have the same sign and are smaller in absolute value for j 2 than for j 1.
Inequality (6.1) therefore follows.

LEMMA 2. Let g(u) be integrable on (Uo, U l), and let f(u) C" be such that f’(u)
does not change sign and f"(u) > 0 in [Uo, ul], where ul is the smallest argument
greater than Uo such that cos f(ul) 0. Let Uo < b <= Ul. Also let

and

Then

and

r/ min f"(u)
u[uo,ull

max Ig(u)l.
u[uo,ull

g(u) cos f(u) du

Proof. First, consider the case in whichf’(u) _> 0 in [Uo, Ul]. We have

f(Ul) f(uo) + (Ul uo)f’(uo) + (u u)f"(u)du

f(Ul)- f(Uo) <= Zt.

Therefore,

>= (ua uo)f’(uo) + (ux u)f"(u)du >= rl (U u)du 1/2rl(u Uo)2.

Hence,

and, consequently,

Ul

g(u) cos f(u) du < Ig(u)l du <=

Note that equality holds only if 0.
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Iff’(u) __< 0 in [Uo, u l] we employ the substitution u -v and consider the
resulting integral with respect to v.

LEMMA 3. Let f(u) C" be such that f’(u) does not change sign and f"(u) > 0
for u e [a, b], and let g(u) be integrable with no change ofsign on (a, b), and be such
that [g(u)/f’(u)[ is monotonic on [a, b]. Moreover, let

and

Then

q min f"(u)
[a, b]

max Ig(u)[.
[a, b]

(6.2) g(u) cos f(u) du

Proof. If cos f(u) has no zero in (a, b), the result follows from Lemma 2.
Otherwise, let u l, u2, ..., Um be the successive arguments u in (a, b) such that
cos f(u) 0, and consider first the case in which [g(u)/f’(u)[ is monotonic decreasing
on [a, hi. Then

g(u) cos f(u) du g(u) cos f(u) du + g(u) cos f(u) du,
j=l

where the successive terms of the right member arc of alternating sign, and, by
Lemma 1, of decreasing absolute value. Therefore, the left member has the same
sign as

11 g(u) cos f(u) du,

and is less than or equal to I1 in absolute value, where h b when m and
h u2 when m > 1. Moreover,

ul

12 g(u) cos f(u) du

has the opposite sign. Therefore,

g(u) cos f(u) du < max (1111, 1121).

Since the minimum off"(u)on [a, b] is less than or equal to its minima on [a, Ul]
and [u, hi and an analogous remark applies to the maximum of Ig(u)l, (6.2) now
follows from Lemma 2.

In case Ig(u)/f’(u)l is monotonic increasing on [a, b], we employ the substitu-
tion u -v and consider the equivalent integral with respect to v.

LEMMA 4. The integral in (2.9) converges uniformly in x.

Proof. We apply Lemma 3 to the integral

($gr+cos xu) du,
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takingf(u) u’+ XU and g(u) 1. Let

X 1) x/r

l,/x r+

which is the only real zero off’(u). If u _< M, the hypotheses of Lemma 3 are ful-
filled, and we have

2n 1/2

(6.3) IIMI < r(r + 1)M’-1)
We shall denote by Kt the right member of (6.3). If ux > M, we must consider
separately the intervals (M, u) and (u, or). On each subinterval considered
separately, the hypotheses ofLemma 3 are fulfilled, and we have, therefore, for all x,

IIMI < 2KM.
It is clear that, if M is sufficiently large, [I1 is less than an arbitrary positive
With the help of Lemmas 3 and 4, we can now prove the main theorem.
THEOREM 3. Let (1.1) be an adjustmentformula exactfor even r (r 2, 4, 6,...

with a characteristicfunction dp(t) having the properties (1.7) and (2.8). Then, to every
positive there corresponds a positive integer N such that

lanl 1/(+ 1)c") n+ l(j(an)-1/(r+ 1)) <

for all j if n > N. In other words,for n -c [an[-x/t+ H+ (j(an)- i/t+ 1) + o(n- i/t,+

uniformlyfor all integral values ofj.
Proof. We use the same notations (5.1)-(5.3) as in the proof of Theorem 2, but

take , ztlan[1/(+ 1),

since the coefficient a is no longer restricted as to sign. It is then sufficient to show
that

lim F,,(x) H, +

uniformly in x, and we write

F,,(x) H, + I(X) Epn(U) COS (On(U) XU) COS (U + XU)] du

+ p,,(u) cos (O,,(u) xu) du

+ p.(u) cos (O,,(u) xu) du

cos xu) du

11 + 12 q- 13 14.
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Here we shall choose M sufficiently large so that

1141 < /4

by Lemma 4. Conditions on/3 and further conditions on M will be imposed later.
By the reasoning of Schoenberg already employed in the proof of Theorem 2,
we show that for sufficiently large n,

Since

1131 < e/4.

lim dp(u(an)-1/,+ 1))], ei,

uniformly in u over [0, M], multiplying by e-i,,, and equating real parts gives

lim p,(u) cos (O,(u) xu) cos (ur+ xu)

uniformly in u over [0, M]. Thus, for n sufficiently large, the integrand of 11 is
less than zte/4M for all u in [0, M], and therefore

Illl < s/4.

Finally, we consider I2. We observe that q(t) has a Maclaurin expansion of
the form

dp(t) + cf +h +... + i(af +1 + df +k +...),

where h is a positive even integer and k an odd integer not less than 3. By the defini-
tion of the absolute value, we obtain for Ib(t)l an expansion of the form

(6.4) 14(t)l Bt+w +...,

where w is a positive integer. We note that the hypothesis that b(t) satisfies (1.7)
requires w even and B > 0 (since otherwise (1.7) would be violated for values of
sufficiently close to zero on one side or the other). We have also the expansion

arg qS(t) at + Jl"

d
(6.5) d-(arg b(t)) a(r + 1)t + ...,

d2

(6.6)
dt2

(arg 4(t)) ar(r + 1)f- + ....
We are interested in the behavior of these expressions in the interval between
0 and/rc sgn a. It follows from (6.4)-(6.6) that we can choose/ sufficiently small so
that in this interval Ib(t)l is monotonic decreasing with increasing Itl and both
(dZ/dtZ)(arg dp(t)) and (sgn a)(d/dt)(arg dp(t)) are positive and monotonic increasing
with increasing [t[, and so that, moreover,

d2
(6.7) -(arg b(t))>= Kit["-1

and, consequently,
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in the interval under consideration, for some positive K.
Now with

u(an)- lr+ 1),

equations (5.2) and (5.3) give

p.(u)

(6.8) O’,(u) n(an)- 1/+ )_d (arg b(t)),
dt

O’S(u) n(an)- 2/+ 1) d_2 (arg b(t)).
dt2

Therefore, if/3 is chosen as indicated, p,(u) is monotonic decreasing and O’,(u) and
O’S(u) are positive and monotonic increasing for u

We turn now to the appraisal of I2. Different cases must be considered,
depending on the value of x. First if x <= O’,(M), we apply Lemma 3 with f(u)

O,(u) xu and g(u) p,(u). We have then

g!u) p.(u)
0;()

Since the numerator is monotonic decreasing and the denominator is monotonic
increasing, this ratio is monotonic decreasing for u [M, fl0,]. Therefore, the
hypotheses of Lemma 3 are satisfied. Moreover, by (6.8) and (6.7),

d2 KM
l O’S(M) n(an) -2/+ 1)-d-(arg dp(M(an)-1/+ 1))) >

while < 1. Therefore, by Lemma 3,

(6.9) llzl-<

We shall denote by Lt the right member of (6.9).

If x >__ 0,(/0,), we write

I2 COS (O,,(u) xu) du (1 pn(U)) COS (On(u) xu) du

15 16

The first integral satisfies the hypotheses of Lemma 3 with f(u)= O,(u)- xu

and g(u) 1, and we have

g(u)
f’(u) x O’,(u)’

which is monotonic increasing. Consequently

1151 L.



392 T.N.E. GREVILLE

Similarly, in the case of 16, We take f(u) O,,(u) xu and g(u) 1 p.(u),
so that

g(u) 1 p.(u)
f’(u) x O’,,(u)"

Since the numerator is monotonic increasing and the denominator monotonic
decreasing, this ratio is-monotonic increasing, and Lemma 3 gives

1161 =< LM.
Therefore,

1121 =< IIl / 1161 =< 2LM.
Finally, when O’,,(M)< x < O’,,(fl,), it is necessary to consider separately

the two subintervals (M, x) and (x, fl,) and to apply the methods ofthe two preced-
ing cases to the respective subintervals. This gives

1121 =< 2Lt + Lt 3Lt.
Therefore, for all x,

1121 <_- 3Lt.
From the definition of Lt as the right member of (6.9), it follows that M can

be chosen sufficiently large so that

1121 < e/4.

As this proof is rather complicated, it may be well to recapitulate the order
in which the various constants are chosen. First we must choose//sufficiently
small so that the required positivity and monotonicity conditions on Ib(t)l and the
derivatives of arg b(t) are satisfied in the interval between 0 and/rc sgn a. The
choice of/ determines the positive constant K of (6.7) and the positive constant
of (5.4). Next we take M sufficiently large so that both 3Lt and 2Ku/rc (where Kt
was defined as the right member of (6.3)) are less than e/4. This ensures that 1121
and 1I,[ are less than e/4. Finally, n must be taken large enough to satisfy three
conditions" (i) we must have/, >_ M; (ii) the integrand of 11 must be less than
rce./4M for all u [0, M], and (iii) the second inequality of (5.4) (with (an) replaced
by lanl) must be satisfied. It then follows that Illl and 1131 are less than e/4, and
therefore

IF,(x)- nr+ l(X)l-<_ Illl / 1121 / 1131 / II,l < .
7. The classical theory of smoothing formulas. There is a fairly extensive

literature on adjustment formulas of the form (1.1) intended for application to
equally spaced observational data with the object of replacing irregular data by
"smoother" adjusted values. Such replacement is sometimes called "graduation".
Though this literature includes such eminent names as G. V. Schiaparelli [20],
W. F. Sheppard [24]-[27], E. T. Whittaker [34], and I. J. Schoenberg [21]-[23],
it appears to be relatively little known among contemporary mathematicians.
In the past, the chief applications of such formulas have been in actuarial science
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and time-series analysis [15], but in recent years interest has been shown by workers
concerned with other kinds of observational data. For a more detailed account
of this classical theory, the interested reader may consult references [12], [16], [35].
For the present purpose, it will be sufficient to mention that one approach empha-
sizes numerical quantities Rm, m 0, 1, 2, ..., associated with every such formula,
sometimes called the "smoothing coefficient of order m" of the particular formula
[35], [8].

If, for notational convenience, we extend the limits of summation in (1.1t
to o and + o, with the understanding that the additional coefficients cj vanish,
the quantities R are defined by

R2 (N"c;)2
j-"

It has been customary tojudge smoothness on the basis of the numerical magnitude
of the ruth finite differences of the graduated data (if these are numerically small,
the data are "smooth"), for some chosen m (frequently 3), and it has been shown
that a small value of Rm tends to be associated with numerically small mth dif-
ferences.

Schoenberg has shown [22] that R,, can be expressed in terms of the charac-
teristic function by

(7.1) R2 (2 sin 1/2t)2m(t)(t)dt (2 sin 1/2t)TM dt.

Greville has pointed out [8] that, consequently,

(7.2) Roo lim Rm Ib(n)l.

Schoenberg’s definition of a smoothing formula, as a formula (1.1) such that (1.7)
holds, is eminently consistent with the classical theory. Indeed, it follows at once
from (7.1) and (7.2) that if (1.7) holds, then Rm < 1 for all m, including o. The
converse is not true, as shown by the example

/)l-" (6yt-2 + 9Yt-x 8Yt + 9y+ + 6Yt+
which is exact for degree 1. Here,

b(t) 2(- 8 + 18 cos + 12 cos 2t),

and it is easily verified that

4(arc cos (--)) 17

so that (1.7) fails. Yet, it can be shown that

149
R2= 242

18 m 15 m(m- 1)
121 m + 242 (m + 1)(m + 2)

54 m(m- 1)(m- 2) 18 m(m- 1)(m- 2)(m- 3)
121 (m + 1)(m + 2)(m + 3) 121 (m + 1)(m + 2)(m + 3)(m + 4)’

and consequently R < 1 for all m.
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On the other hand, formulas (1.1) that minimize R for some m, subject to
certain constraints, have been much studied [4], [16], [35] and Greville [8] has
shown that an important class of such formulas do, in fact, have characteristic
functions satisfying (1.7). Trench i31] has extended Greville’s results.

8. Critique of formulas exact to an even degree. As stated in the introductory
section, iteration of a transformation of the form (1.1) is utilized as a numerical
procedure in certain difference schemes for numerical solution of partial differen-
tial equations. Some results obtained in the study of such procedures have an
important bearing on the problem considered in this paper. In particular, it is an
immediate corollary of a theorem of Thom6e [29, Theorem 1] that, for every
formula (1.1) satisfying (1.2) and (1.7), the quantity

C. Z Icyl
j=

is bounded for all n if and only if the formula is exact to an odd degree. This finding
is remarkable and interesting, but, I think, not surprising, since the limiting func-
tion Hr+ l(x) for the case of even r is not absolutely integrable over the real line.

It has been suggested that, because C, is unbounded, any formula (1.1) that is
exact to an even degree should be regarded with suspicion. It is pointed out that if
y and v are infinite vectors of "crude" and "graduated" values, respectively,
(1.1) defines a transformation T, so that

v=Ty,

and C, is actually the supremum norm of T". It is evident, in fact, that

T"II _-< c,,
(") sgn c"), we havewhile if we take y") as a vector such that y;

Vo C. C.Ily")llo.

I am indebted to V. Thom6e for the suggestion that by placing the nonzero portions
ofthe vectors y" end to end for n 1, 2, ..., one can even construct a fixed vector
y such that T"yII is unbounded as n tends to infinity. Indeed, Thom6e has pointed
out that the existence of such a fixed vector follows from general considerations of
functional .analysis.

It should be pointed out, however, that there are two basic differences between
classical smoothing and difference schemes for partial differential equations. In the
latter case, iteration of a transformation (1.1) is utilized as an actual numerical
procedure. In the former, such iteration is only a mental construct, motivated in
De Forest’s case solely by intellectual curiosity (and possibly the hope of discover-
ing new probability density functions, a hope not realized because the new func-
tions are found to assume negative values), and in Schoenberg’s case additionally
by the desire for further validation of his definition of a smoothing formula as one
having the property (1.7). I have never heard ofanyone iterating a classical smooth-
ing formula upon numerical data.
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Secondly, in classical smoothing one is not seeking to approximate a well-
defined mathematical function. At most one can postulate an "underlying trend"
in the observational data, on which errors have been superimposed.

A critic strongly oriented toward difference schemes for partial differential
equations has argued that application of an adjustment formula having an un-
bounded norm in the sense described will "make the data rougher rather than
smoother". In my opinion, this argument is based on a misunderstanding. Every
adjustment formula having some negative coefficients cj (as it must have if it is
exact for a degree greater than 1) evidently has a supremum norm TII greater
than unity. It is therefore possible to construct a pathological data vector such
that application of the formula will make the data rougher, This is true whether or
not the norm of the nth iterate is bounded as n tends to infinity. The difference
between the two cases is that if a linear adjustment formula is applied repeatedly
to pathological data, in the one case there is a finite upper bound to how rough
the adjusted data can become, and in the other case there is not. This does not seem
to me an important practical distinction when the formula is intended to be
applied only once in the hope of increasing smoothness.

However, since this question has been raised, it is of some interest to examine
more carefully the smoothing properties of formulas exact to an even degree.
First, for the benefit of the uninitiated reader, it may be well to establish that we
are not talking about an empty class. Consider the formula

v y a A3y_ .
If a - 0, this is exact to the degree 2. It is easily verified that

Iq(t)l 2 16a sin4 1/2t + 64a2 sin6 1/2t,

and (1.7) is satisfied if and only if 0 < a < 1/4.
Since a formula exact for degree 2 must have at least four terms, we must

go to six terms in order to have a meaningful comparison with a symmetrical
formula. For comparison, we first note that the minimum-Rm formula employing
the values y_ 2 to y / 2, inclusive, and exact for degree at least 2 is

(m + 3)(m + 4) A4y/_2.(8.1) UI Yl- 4(2m + 5)(2m + 7)

Since this is a symmetrical formula, it is actually exact for degree 3, and therefore
not subject to the criticism that the operator T" is unbounded.

Let us now broaden the class of formulas considered, by including Yl+ 3

(but not Yl-3) in the summation (1.1). In the resulting class of 6-term formulas
exact for degree 2, we seek the one for which R is smallest. The result is most
surprising, and I think not previously noted in the literature. The minimum-R,,
formula of this class is

rn + 4 A3 (m + 4)(m + 5)
(8.2) Vl Yl 2(2m + 5) Y-1 4(2m + 5)(2m + 7)A4yl-1.
Note that this is again a 5-term formula, as the coefficient of Yl-2 is zero! The
formula is even more unsymmetrical than we required it to be, involving three
arguments greater than and only one less. Since the class of 6-term formulas
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considered includes (8.1), this means that the unsymmetrical 5-term formula
(8.2) has a smaller Rm than the symmetrical 5-term formula (8.1).

This result was so surprising that it seemed desirable to make a numerical
experiment. For the customary m 3, (8.1) and (8.2) become

(8.3)
and

(8.4)

vt yt A4yt_ 2

Vl Yl 2- A3yl-1 13 A4yI-1-

R3 is .274 for (8.3) and .153 for (8.4).
The "crude" data in the second column of Table 1 are observed mortality

rates from a life insurance experience taken from 16]. These are the first and only
numerical data on which I have tested the two formulas. It should be pointed out
that, as a practical matter, a formula with as short a range as 5 terms would not be
used to graduate data as irregular as these. It is evident that the third differences
of the graduated rates obtained by (8.4) are numerically smaller than those derived
from (8.3), whatever norm is used to compare them. It is clear also that (8.4) has
been more successful in attempting to smooth out the accidental fluctuations in
the data; the remaining undulations in the graduated rates are of smaller amplitude
than when (8.3) is used. On the basis of either the classical theory or common
sense, (8.4) is a better smoothing formula than (8.3).

TABLE

Comparison of graduations by symmetrical and unsymmetrical 5-termformulas

Age

35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

50
51
52
53
54

55

Crude

mortality

rate

.00215

.00212

.00169

.00192

.00320

.00238

.00259

.00553

.00311

.00365

.0044.6

.00632

.00741

.00726

.00945

.00749

.00763

.01064

.00999

.01378

.00967

by (8.3)

.00174

.00218

.00274

.00249

.00331

.00433

.00392

.00340

.00465

.00622

.00711

.00800

.00851

.00789

.00817

.00957

.01149

Graduated rate

by (8.4)

.00185

.00191

.00231

.00234

.00280

.00356

.00396

.00363

.00366

.00491

.00607

.00726

.00808

.00800

.00797

.00828

.01006

Third differences of

graduated rates

by (8.3)

-.00093
.00188

-.00087

-.0O163
.00132
.00188

-.00145
-.00100

.00068
-.00038
-.00075
.00203
.00022

-.00060

by (8.4)

-.00071
.00080

-.00013
-.00066

-.00037
.00109
.00086

-.00131
.00012

-.00040
-.00053
.00095
.00029
.00113
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Note added in proof. It has been brought to my attention by J. M. Hoem that
K. Weichselberger (0her eine Theorie der gleitenden Durchshnitte und verschiedene
Anwendungen dieser Theorie, Metrika, 8 (1964), pp. 185-230) gives (8.1) for the
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formula with range 2 to + 3 degenerates to this 5-term formula.
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CONJUGATE INEQUALITIES FOR FUNCTIONS AND THEIR
DERIVATIVES*

A. M. FINKS"

Abstract. We consider finding the best possible constants C C(n,,fl, p,q) such that Ilfllp
<= C(b a)"/ l/p- i/qllft,)llq under several different sets of boundary conditions. Specifically in one case,

f is required to have 0 zeros at a and fl zeros at b where n _< + fl -< 2n, 0 _< n and fl _< n. In the other
case, f has 0 zeros at a, fl zeros at b and fb f(X)Xr(X a)(x fl)t dx O, 0,..., n o fl,
where 0 =< , 0 =< fl and 0 + fl < n. The various problems are related and the numbers C are calculated
exactly in some cases. Finally, we show how some of these can be applied to disconjugacy problems in
differential equations.

1. Introduction. We shall consider inequalities between functions and their
derivatives when the function has a certain distribution of zeros. The case when
the number of zeros is the same as the order of the derivative considered has
been discussed by Brink [1]. Some of these inequalities have also been considered
by Boyd [2]. We are primarily interested in the case when the number of zeros
exceeds the order of the derivative.

Specifically, let Ilfllp (fblflP) lip for 1 < p < o and Ilfll ess sup If(t)l
Then we will consider inequalities of the form

f p _-< C f<)II q(b a)" +1/p -1/q()

when either

(2) (, fl)"

or

(3) (,/).

f has a zero of order e at a and a zero of order fl at b with
n-<e+/3=<2n, e=<nandfl=<n;

f has a zero of order e at a and a zero of order fl at b with e + fl
< n and [.baf(X)(X a)’(b x) q(x)dx 0 for all polynomials
qofdegree__<n- 1-e-ft.

We have chosen the exponent of (b a) in (1) so that C is independent of
translation or change of scale. We thus take a 0 and b for the remainder of
the discussion. We also assume that f has n continuous derivatives and that
f(,-1) is absolutely continuous so that f(") exists almost everywhere and is in-
tegrable in the appropriate sense.

Our discussion includes a novel way of deriving the variational equations,
that is, the equations satisfied by the extremals of the problem. Our study was,
in part, motivated by an attempt to get inequalities between the derivatives of
different orders ofa given function. A discussion ofthis problem and its applications
to differential equations is indicated in the last part of this paper.

* Received by the editors December 19, 1972, and in revised form May 14, 1973.

" Matematisk Institut, Copenhagen, Denmark. Now at the Department of Mathematics, Iowa
State University of Science and Technology, Ames, Iowa 50010.
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2. The ease + fl n. The consideration of the boundary conditions
(2) (a, fl) when a + fl n is relatively simple. We show in this section, by way of
introduction to the more complicated case, a + fl # n, how to derive certain
variational equations.

We will have occasion to use the well-known fact that there is a Green’s
function G(x, t) so that when f satisfies (2) (a, fl), then the representation

(4) f(x) G(x, t)f()(t) dt

holds with G being continuous as a function of two variables. Furthermore,
G(x, t) will be of constant sign. Indeed iff(")(t) _> 0, then f is nonzero on (0, 1).
In the contrary case, iff has a zero on (0, 1), then f("- 1) has two zeros on [0, 1] and
thus ft,) must change sign. An easy argument using ft,) with small support com-
pletes the proof that G does not change sign on [0, 1] x [0, 1]. In fact (- 1)G(x, t)
_>_ 0. This is easy to see for

g(x) G(x, t)l dt
x(1 x)a 1)

n
As a standard assumption for the remainder of the paper, we write lip + lip’

1 and 1/q + 1/q’ 1 with the usual assumptions when one of these numbers is
1or o.

Using the representation (4), it is easy to see thatthere are numbers C which
satisfy (1) under the boundary conditions (2) (a, fl). In fact the constant

is one. We are interested in the best possible constants so we let C(n, o, p, q) be the
infimum over all constants for which (1) is valid.

TORN 1. For 1 <= p <= eo and 1 <_ q <_ oe,

C(n, , p, q) C(n, , q’, p’).

Proof. As a preliminary fact, we note that C(n, , p, q) C(n, fl, p, q) by
consideration of the mapping of the independent variable x - 1 x. Now we
let f satisfy the (2)(a, fl) conditions and define h by ht") If[P-1 sgn (f) and h is
to satisfy the boundary conditions (2)(fl, a). The existence of h follows from the
representation (4) with the appropriate Green’s function. Then IIf

(- 1)" ft)h by use of integration by parts and the boundary conditions. Thus

[[fllpP _-< [[ft")lla[lhl[ __< ft")l[aC(n, fl, q’, p’)llht")[[p

Hft")llaC(n, o, q’, p’)llfl[ -x

Now Ilfll _-< C(n, , q’, p’)llf"lla and by the minimality of C(n, o, p, q) we have
C(n, a, p, q) <= C(n, or, q’, p’). By symmetry the reverse inequality is true. If p
the inequality follows by taking limits.

The two equivalent inequalities ofTheorem 1 are called conjugate inequalities
for obvious reasons. If there is an f for which the inequality (1) is an equality, then
all the inequalities in the above proof must be equalities. Assuming now that
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1-<p< andl<q< o we then must have

(5) Ift’)l AElhl and ht")= Iflp- sgn(f)

such that f satisfies (2)(,/3) and h satisfies (2)(/3, ), for some constant 2. Note that
both f and h must give equality, so that both are extremals or neither. The equa-
tions (5) give candidates for extremals, the existence of which is the content of the
next two lemmas.

LEMMA t. If 1 <-- p <--_ oO and 1 < q < oo, then there is a function ffor which
[If lip C(n, , p, q)[[ ft,)[[q and equations (5) hold if 1 <_ p < and 1 < q < .

Proof. By the homogeneity of the inequality (1) we may assume that [Ift")llq
1 so that we need to show that max Ilfllp is obtained. Let [Ig[[ 1 and define

f(x) G(x, t)g(t) dt for the Green’s function G for (2)(,/3). As g varies over the
unit sphere in Lq, the family F so defined is uniformly bounded and equicontinuous.
If fk is a sequence so that fk]l p sup f lip C(n, , p, q), then we may take
subsequences, which we do not relabel, so that fk fo uniformly on [0, 1] and
ftk") go weakly. The first is by the Ascoli theorem and the second by the weak
compactness of the unit sphere in L. Thus for each x,

fo(x) lim f(x) lim G(x, t)f")(t) dt G(x, t)go(t) at.

Now fo has n 1 continuous derivatives, fro") go, a.e., and fo satisfies the
boundary conditions. Clearly fo C(n, , p, q).

LEUMA 2. Extremals exist unless (p, q) (1, 1) or

Proof. Lemma 1 gives extremals for 1 =< p =< and 1 < q < .By Theorem
l this also holds for l _<_ q’ <_ andl <p’< ovorl <p< andl-<q=< .
Onlyp=q= lorp=q= remain.

In order to give one result with numbers, we give a result proved by Brink [1]
by geometric methods. One method is exceedingly simple and can be generalized.

LEMMA 3. For 1 < q < ,
C(n, o, 1, q)

x,(1 x)t
n

1 F(eq’ + 1)F(flq’ + 1)1/

n! F(nq’ + 1)

while C(n, , 1, 1) e’flt/(n!n").
Proof. Since G(x, t) does not change sign, we note that if g(t)= o G(x, t)

]ft")(t)] dt, then If(t)l -< ]g(t)[ so [[fll -< [[gll. We may thus restrict ourselves to
functions for which ft") does not change sign. It now follows thatf does not change

f f fgt"), wheresign so we assume f => 0. Then f l] o
xt(1 x)

g(x) (- 1).
n!

Then an integration by parts leads to Ilflll (-1)j’ft"g --< Ilft"llllgll with
equality (1 < q < o) for Ift)l 221glq’ for some 2.

Once we had shown f _>_ 0 we could have appealed directly to (5) but we
preferred to show that one does not need to prove that extremals exist; one merely
exhibits it by the proof. The constancy of sign of f and ft") and the inequality
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(- 1)aG(x, t) _>_ 0 allows one to rewrite the extremal equations as

f,) (_ 1)a22/qhq,- for h satisfying (2)(fl, );

(6) h") (- 1)’fp-1 for f satisfying (2)(0, fl);

f>=0, h>=0.
Note that these are linear if p q 2 and then f and h satisfy a 2n-order

equation but with peculiar type boundary conditions. One might expect some sort
of uniqueness of extremals. If this were the case, then h(x) cf(1 x) certainly
satisfies the boundary conditions. This leads to p q’ when h is eliminated from (6).
For p q 2 and n 1 this is indeed the case since one can verify that f(x)

sin nx/2 (2/n)h(1 x) satisfies (6) with 2 r2/4. It follows that C(1, 1, 2, 2)
2/n. Even the general first order case seems hard to solve. We do these com-

putations in a later section.
We can simplify the extremal equations when p q 2. We use the theory of

positive operators. Note that any solution of the extremal equations has a con-
tinuous nth derivative so we can work in the space of continuous functions. Let
G(t,s) be the Green’s function operator for the operator yt") with boundary
conditions (2)(,/3) with 0 < < n and +/3 n.

Define the operator K by Kf(t)=o(-1)aG(t, 1- s)f(s)ds. Note that
(- 1)aG(t, 1 s) >= 0 so K is a positive operator over the cone of functions which
are nonnegative. We first observe that for f(t) 1, Kf(t) t’(1 t)t/n! Next, we
note that Brink [1] has observed that Rolle’s theorem is more appropriately stated
that f’ must change sign if f changes sign twice. Iterating this version, one notes
that if f has n + 1 zeros, counting multiplicaties, then ft") actually must change
sign. This means that the range of K as f >= 0 consists of functions with exactly n
zeros which are then at the endpoints as specified by the Green’s function. This
shows that for any f >_ O, g(t)= Kf(t)/(t(1 t)) > 0 on [0, 1] and continuous
there since limt-.o+ g(t) 0; similarly, at 1. Hence there are positive constants 61
and 62 so that 61t(1 t) <= Kf(t) <_ 62U(1 t)#. In the terminology ofKrasnosel-
ski [3], K is a Uo t’(1 t)a positive operator. The conclusion of the theory of
Uo positive operators is that there is a unique positive eigenfunction and the
corresponding positive eigenvalue has the maximum modulus of all eigenvalues.
We conclude that there is a function fl so that (2-1/2 is the eigenvalue)

t],-1/2fl(t (-- 1)aG(t, 1 s)f(s) ds (- 1)a G(t, s)f(1 s) ds.

Let h(x)= ,1/2f1(1. X). Then f]")(x) (--1)21/2f1(1 x)= (--1)ah(x), fl satis-
fies the boundary conditions (2)(a, fl), and h satisfies (2)(fl,). Then ht")(x)

(-1)"21/2ft")(1 x)= (-1)2fl(x). That is, fl and h form a solution of (6)
with p q 2. Furthermore C(n, , p, q) [[fli2/llhll2 - 1/2 so c is the eigen-
value of K.

Conversely suppose the pair (f, h) forms a solution of (6) with f >_ 0. Then
1)aft") => 0 so h __> 0 and 1)ht") => 0. Then 2- if(x) 1)"o (f o G l(x, t)

G2(t,s)dt)f(s)ds, where G1 and G2 are the Green’s functions for the boundary
conditions (2)(a, fl) and (2)(fl, a) respectively. As before, the operator in question is
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a Uo positive operator and so only one eigenfunction is positive. Thus the one
constructed above is it. We may thus state the following theorem.

THEOREM 2. If 0 < < n then C(n, a, 2, 2) is the largest eigenvalue of the
operator Kf(t)= (-1)aG(t, 1 s)f(s)ds and f is the positive eigenfunction. In
particular if2 n, then Kf(t) (- 1)G(t, s)f(s) ds is also correct. Furthermore,
the differential equations equivalent to the integral equations are ft"(x) 2(-1)/
f(1 x) and ft(x) 2(- 1)f(X) respectively.

We have proved this theorem above except for the case 2 n. But then
h(x) f(x) satisfies the correct boundary condition and we proceed as before.
As an example, to compute C(4, 2, 2, 2) we look at ft 2f, f(0) f(1) f’(0)

f’(1)- 0. Writing/l r with r > 0 then f(0)= f’(0)= 0 implies that f(x)
a(cosh (xr) cos (xr)) + b(sinh (xr) sin (xr)). Writing the conditions at 1 re-

quires that i cos r cosh r 0 and C(4, 2, 2, 2) 2- /2 r- 2 with r the smallest
positive root of cos r cosh r 1.

The above argument for Theorem 2 does not work if n since we have
used the fact that the range of K consists of functions with exactly n zeros. This
is not true for 0 n since Kf(x) o ((x t)"-/(n 1)!)f(t)dt and for this
gives tm+" so this condition no longer holds.

3. The case +/3 4: n. The extra complexity here is two-fold. First, there is
no well-known Green’s function representation and the orthogonality relations
in (3)(e,/3) are hard to verify. We begin by showing how one might find solutions
of differential equations of the form yt") g with the boundary conditions
(2)(, fl) or (3)(,/3).

LEMMA 4. Let g be integrable. Then there exists a unique function h such that
h") g, a.e. and h satisfies the conditions (3)(cz, fl).

Proof. Let ho be a solution of the differential equation ht") g that satisfies
the zero conditions at 0 and 1. Since z + fl < n this is possible. The general
solution of ht")= g that satisfies the zero conditions is then given by ho(x)
+ axe(1 x)aq(x), where q(x) is an arbitrary monic polynomial of degree =< n

fl, and a is a real number. This collection of functions is a closed finite-
dimensional convex set in L2 It therefore has an element of minimum norm. We
assume the notation has been chosen so that ho is this function. Writing out the
inequality Ilho(x) / ax’(l x)aq(x)ll2>= Ilholl22 gives

2a ho(x)x(1 x)aq(x)dx + a2 x2(1 X)2#q2(x)dx >= 0

ho(x)x’(1- x)aq(x)dx O’ thus ho satisfiesfor all real a. This requires that o
(3) (,/3).

If h is a second function satisfying h") g and (3)(, fl), then h(x) ho(x
+ x’(1 x)q(x). Multiplying by x’(1 x)Oq(x) and integrating yields x2"

(1 x)2#q(x) dx 0 and thus ql(x) =- O.
There is an integral representation for h in terms of ht") with the boundary

conditions (3)(z, fl). See Reid [4, Chap. III].
LEMMA 5. Suppose n < z + fl <= 2n, o <= n, fl <= n and let g satisfy (3)(n 0,

n fl). There exists a unique function h so that h")= g and h satisfies (2)(, fl).



(lfn a or n fl then delete the appropriatefactor in (3)(n o, n fl) and require
no zeros at 0 or 1 respectively.)

Proof. If n then take h(x)- (1/(n- 1)!)(x- t)-g(t)dt. It follows
that htk(O) 0 for k 0,..., n 1 by the representation. To get the required
zeros at 1 we need (1 t) -kg(t) dt 0 for k 0, 1, ..., fl 1. The integral
condition in (3) has become (1 t)-q(t)g(t)dt 0 if degree q(t) <__ a + fl

n 1. Take for q(t) the polynomial (1 t)i,j 0,..., + fl n 1. This
gives the required condition. By the change of variable x - 1 x we also have
the lemma when fl n, and any . We thus assume that < n and fl < n. Let
6 n fl and let h(x) G(x, t)g(t)dt, where G is the Green’s function for the
boundary conditions (2)(6, fl). Let p(x)= x"-’(1 x)"-tq(x), where q is a poly-
nomial of degree _<a + fl n 1. Then we know that p(x)g(x)dx 0. We
write this as p(x)h(")(x) dx 0 and integrate by parts n times to conclude that

n-1

(- 1)k+ h(,,-1-k)(x)ptk)(x)
k=O

We now use the boundary conditions ptk(1)= 0 for k 0,
ht--k)(1) 0 for k n fl,..., n 1; ptk(o) 0 for k 0,...
and h(- -k(0) 0 for k fl, ..., n 1. Then the above becomes

n-/t-

k=n-ot

1)kht, k)(O)pk(O O.

Take for p(x) the choices pj(x) x"-+(1 x)"-t for j 0, ..., + fl n 1
and note that pk)(o)= 0 for k 0, ..., n- e + j- 1 and p"-’+J)(0)4: 0. The
equations become

n-f-1

1)kh"-’ k)(O)p}k)(o) O,
k=n-a+j

j=O,...,a+fl-n-1.

This is a system of 6 equations in the 6 unknowns h(k)(o), k 6, ...,
1. The determinant of coefficients is _+I-I=-o- p"-’+)(0)= 0. Thus htk)(o)

0 for k 6, ..., 1. This gives h the correct number of zeros. Uniqueness
follows since the difference of two solutions is a polynomial that vanishes at
+ fl > n points and so is zero.

Note that in all cases of Lemma 5, h may be given by a Green’s function. It
can be shown that the Green’s function for 2(6, ) boundary conditions will work
so long as 6 _<_ and y _<_ fl and y + 6 n.

We now seek best possible constants for which

(7)

and

Ilfll D(n, , [3, p, q)llft")lla
when f satisfies (2)(, fl), n < + fl, __< n, fl __< n;

(8)
f p E(n, , fl, p, q)ll

when Iflp- sgn (f) satisfies (3)(n o, n fl), n < a +/3, a _<_ n, fl <__ n.
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It is easy to see that the numbers D exist since D(n, , fl, p, q) <= C(n, 6, p, q) for
any such that __< and n __</3. We now show that the numbers D and E
are conjugately related.

THEOREM 3. For all p and q, D(n, , fl, p, q) E(n, , fl, q’, p’).
Proof. Let Ifl- sgn (f) satisfy (3)(n , n fl), and ht") Ill v- sgn (f)

with h satisfying (2)(t, fl). Then

Ilfll- fh")= (-1) f")h <_ IIf)llallhll

<_ D(n, , , q’, p’)ll f)llllh)ll,, D(n, , I, q’, p’)ll f)llll f ll
In particular, E(n, o, , p, q) exists and is =< D(n, , , q’, p’).

For the reverse inequality, let f satisfy (2)(e, fl) and select h) [J]’- sgn (f)
with h satisfying (3)(n e, n fl). As before,

Ilfll (- 1)" fn)h <= Ilf=>llallhll __< IlfCn)llqE(n, , , q’, p’)llfll;-,
so D(n, o, fl, p, q) <= E(n, o, fl, q’, p’).

Again we can extract candidates for the extremals from the proof of Theorem
3. They are

h") [f[P-lsgn(f) for If[p-I sgn(f) satisfying (3)(n 0, n fl);
(9)

Ift")l 221hl for h satisfying (2)(, fl).

Herel =<p< andl <q< .
Note again that f is an extremal for (3)(n 0, n fl) and h for (2)(0q fl) so

extremals exist for both problems or neither.
LEMMA 6. For 1 <= p <__ and 1 < q < , there exist functions f and h so

that Ilfll, D(n,n,n, p, q)llft")ll and Ilhll E(n,n,n, q’, p’)llht")ll,, and the pair
(f, h) satisfies (9).

Proof. We use the fact that iff exists which gives D, then h must exist and the
pair satisfies (9). To establish the existence off we note that the proof of Lemma 5
shows that f(x) o G(x, t)ft")(t)dt for G the Green’s function for (2)(n fl, fl).
We can thus repeat the argument of Lemma 1. Note that weak convergence of
ftkn) -- go loses any zero conditions, so =/3 n is necessary for this argument.

Further simplifications of the extremal equation is difficult. We cannot have
ht") of constant sign, for h has too many zeros, and we cannot have f of constant
sign if the orthogonal conditions in (3)(n- , n-/3) are to be satisfied. As a
result, p q 2 does not result in a linear equation, for the conditions become
([flp-x sgn (f) f)

h") f; ft") 2h(x) sgn (h) sgn (ft")); with
(10)

f satisfying (3)(n 0, n fl) and h satisfying (2)(0, fl).

Note also that the case p 1 leads to ht) sgn (f) so that h is a spline function.
Also for n 1 we have only one problem, that is, e fl 1 is the only choice.
We can show that we need only consider extremals h for which h >_ 0. In any case
2 in (9) is to be minimized, for using Iht")lP’ Ill p and Ift")l ,21hl’’ and the
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normalization ft")l]q 1, then hi q, 2- 2/q, and since both h andf are extremals
for the same constant we have

hll. - 2/
-pq’/2II/llp- iih,>llp II/ - or 2- flip

Since we are trying to maximize f p we must minimize 2.
LEMMA7. For n 1, h >__ 0 characterizes the extremal which obtains

D(1, 1, 1, p, q).
Proof. Suppose (f, h) is a pair of extremals and that h(c) 0 for 0 < c < 1.

Let c be the smallest such number. Assume this exists, for the zeros of h are not
dense, so there is some interval which we can translate to (0, c) if necessary. Assume
h > 0 on (0, c). Then define f(x)= f(xc) and h(x).= c-h(xc). Then h’(x)

Ifl(X)l- fl(X) and If’l(X)l )2/qclh(x)lq- 1. Furthermore hx(0) hi(1 0 and

I/ll p- sgn f dx f(xc)l"- sgn f(xc) dx

c-’ If(t)l p-1 sgn f(t)dt

C-1 h’(t) dt c-lib(c)- h(0)l-- 0.

Now 22/qc < .2/q, and therefore is not the minimum D(1, 1, 1, p, q).
For example, when p =q 2 it is easy to verify that h(x)= sin nx and

f(x) n cos nx satisfy (9) with 2 n2. Thus C(1, 1, 1, 2, 2)= n-1. We compute
the general case in the next section.

4. Computations for n 1. We first give a method for computing C(1, 1, p, q)
and this will lead to a similar computation for D(1, 1, 1, p, q)= E(1, 1, 1, q’, p’).
For p 1 it is easier to give a direct proof rather than use the extremal equation.
Recall that we may assume f >__ 0 and f’ >__ 0.

Ilfllx f (1 x)f’ <= I1 f.
1/q’

(1 x)q’

with equality when If’l q-- .2(1- x)q’ or f(x)=/].2/q(1- X)q’-l- /].2/q. Thus
C(1, 1, 1, q)= (1 + q’)-l/q, for 1 < q < or, and C(1, 1, 1, oe)=< 1/2. Consideration
of f(x)= x shows that C(1, 1, 1, oe)= 1/2. For q oc we note that C(1, 1, p,

C(1,1,1, p’)=(1 +p)-l/P if 1 <p’_< oe, that is, 1 <_p< oz. To compute
C(1, 1, or, oe) note that f(x)= f’ so Ilfllo _-< I[f’l[oo and equality holds if
f’ 1. Thus C(1, 1, 1, 1) C(1, 1, oe, oe) 1. We thus may assume that p 4:1
and q’ 4: 1. Recall (a =/].z/q) that we have h’= -fP-1, f,= ahq’- 1, f(0) h(1)

0 and consequently h’(0) f’(1) 0. Also f >_ 0 implies that h’ =< 0 so h >= 0.
We have both f and h twice differentiable and

f"= a(q’ 1)hq’-2h’= a(1 q,)fp-1 _) (q’- 2)/(q’ 1)
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Multiply both sides of this equation by (f’)q/q’ and integrate to get

-q’
lfp(11) (f’)q q aq- + c

P

and

-q’ f/(12) (f’)q q aq-1 fP + c.
o P

We now take the qth root of both sides of (11), divide both sides by the right-hand
side and integrate from 0 to 1. The result is

fO )-l/qq’aq_ lfP(x) + c f’(x) dx.1= q
P

Let u (q[q’ 1)/p]aq- c- i)/Pf(x) to get

.u
(13)

(1 uP)/q
[f(1)]-xf’(O)"

We have used the identities q[(q’- 1)/p]aq-fp(1) c and (f’(0)) c which
follow from (11). By a similar analysis one gets

(14)
o

du

(1 uq’) ’/p’ -h’(1)(h(O))-’.

We now normalize f by assuming that f’(0) 1. Then f(1) is determined by (13).
By the extremal equation h’(1) fP- (1) is thus determined. Now (14) deter-
mines h(0) but h(O)q’- a f’(0)= 1. Eliminating f(1) from all these equations
we find that

(15) a
(1 uq’) x/p’ f/ du (p )(q’

(1 u’)/q

We now use the identities Ih’l p’--- Ifl p, If’l alhl q’, C(1, 1, p, q)= Ilf Iplf’llq
and (11) and (12) Combining the first four yieldsIlhllq, llh’llp,

-’ a- X/q’ll f’ ,-,,C(1,1, p, q) hll q’ h’ p’ f
1-pa x/’llf’llg-XC(1, 1,p, q) llf’ll

or

C(1,1, p, q)*’ a-’/q’llf’ll -p.

The constant c in (12) is 1 since in (11), f(0) 0, if(O) 1. We then use (12) to
eliminate f’llqq -p from the formula for C(1, 1, p, q). We have first for q p that
C(1, 1, p, q) a- 1/pq,. If q :/: p then

1-q’
IIf’llg C(1, 1, p, q)Pq/(q-P)a(q- 1)/(q--p) q aq- 1C(1, 1, p, q)Pllf’ll + 1.

p
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Thus

(16) C"q/(- p) a(q- )l(q p) .+.
q’ atq + pl((q p)q’) 1,
P

with a given by (15). To compute D(1, 1, 1, p, q) we use the similarity of the extremal
equations (6) and (9).

LEMMA 8. For 1 < p < and 1 < q < ,
D(1, 1, 1, p, q) (1/2)1 + l/p-l/q,.

Proof. Since C(1, 1, p, q)= C(1, 1, q’, p’) we let (f, h) be extremals for this
problem, that is,

h’= _fq,-1, f(0)=0, (f’)P’= 22(h)p, h(1)=0

and h’(0)= 0, f’(1)= 0, h >_ 0, f >_ 0, h’ _< 0, f’_>_ 0. Define k(x)= (2/2)-/.’f(2x),
0 -< x <= 1/2, and k(x)= k(1 x). Similarly, take g(x)= h(2x) on 0 __< x =< 1/2 with
g(x) -g(1- x). It follows that g and k are differentiable on (0, 1), k >__ 0,
k(0) k(1) 0, g(x) >= 0 on (0, 1/2) and g(x) =< 0 on (1/2, 1). Also

Ig’(x)l- 2alh,(Zx)l 2lf(2x)l’-- 2q+q’2 2q’-p-;- k(x)l’
-1on 0 __< x =< 1/2 and a similar equation on 1/2 _< x =< 1. It is easy to see that o Igl p

sgn (g) 0. Finally,

h’ 2- 2/f’(2x) 2- 2/p’22/p’h(2x)P- g(x)p- g(x)p- sgn (g)

on 0 __< x __< 1/2 and a similar computation on (2x-, 1). Thus the pair (g, k) satisfies the
extremal equations (9) and g >_ 0. According to Lemma 7, this characterizes g as
giving D(1, 1, 1, p, q). Thus

Ilgllp (2/2 Ih(2x)lp) x/p C(1, 1, p, q)
D(1, 1,1,p,q)=

IIg’ll (2j’/2 Ih’(2x)l’2’9 x/’ 2

Again for p 1 there is a direct proof, for we may assume that f _>_ 0. Then

f= f’(x)(c x)dx for any c. Thus Ilfllx <_- [If’llll(c x)ll, and we pick c
to minimize this. However, the choice c 1/2 and f’ 11/2 xlq- 122/q, 0 <= x <= 1/2,
and f’ -11/2 xlq- 122]q, 0 X 1/2, and f’ -l1/2 xlq- l],2]q shows that there
is an f for which equality holds. Thus

D(1, 1, 1, 1, q) - x + q’)- l/q,, D(1, 1,1, 1, oo) __< 1/4,

and D(1,1,1,1,1)__<1/2. The choice f=lx- 1/21- 1/2 shows D(1,1,1,1,
1/4. More generally the last part of the argument of Lemma 8 leads to

D(n, n, n, p, q) <_ C(n, n, p, q)/2" + 1/p-

5. Computations for n => 2. Recall that extremals for p q 2 n satisfy
f"= (-1)a2h, h"= (-1)’f if +/3 2 and for + fl - 2, h"= f, f"=
h(sgn (h))(sgn (f")). In either case the appropriate constant C or D was shown to

be 2-a/2. We first note the classical result that C(2, 1, 2, 2)= n-2, which results
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from the choice f(x)= sin nx, h(x)= n-2 sin nx, 2 n4. The other case when
+/3 2 is t 2 and /3 0. We note then that ft’) 2f 0, f(0)= f’(0)
f"(1) f"(1) 0. Writing 2 r#, then

f(x) Cl(e cos (rx) sin (rx)) + C2(e cos (rx) + sin (rx))

satisfies the left end conditions. A simple computation shows that the two con-
ditions at are satisfied if and only if 1 + cos r cosh r 0. Taking the smallest
positive solution of this equation and h (f")r -4, then (f, h) is an extremal pair
and C(2, 2, 2, 2) r- 2.

For the computation of D(2, 2, 2, 2, 2), we may start as above and take
ft4) ;f 0, ; s’, and f as above. Note that the same choice for h, namely
h(x) s-’f’’, will satisfy (3)(0, 0) and thus will be an extremal pair. This time the
computation to get the right endpoints leads to the equation cos (s)cosh s 1
and D(2, 2, 2, 2, 2) <= s- 2. Is s2 2r2? As a final example we consider the boundary
condition 2, fl 1. It is not possible to solve the boundary value problem
ft) + 2f 0,f(0)- f’(0)= f(1)= f"(1)= 0nontrivially. Ifwelookatft#)- 2f

0 with these boundary conditions with 2 r4, again we start as before and
get the equation tan ro tanh r0. If we define h(x) ,;t- If"(x) as we need to do to
get the extremal equations, then we note that h must satisfy the orthogonal re-

lation (1 x)h(x) dx 0. This is satisfied. So again we have D(2, 2, 1, 2, 2) < r 2.
For n > 1 and + fl : n we have not been able to show that extremals are

nonnegative. However, as we can see in the next two sections, adding this hypothesis
still gives some interesting applications. Meanwhile, for p 1 we can see how
other inequalities can be generated.

LEMMA 9. If f >= 0 also satisfies (2)(0q fl), then

where h(x) (1In !)xn-(1 x) (- 1)- ap(x) and p(x) is a monic polynomial of
degree + fl n. If n <= 0 or n fl <- O, delete the appropriatefactorfrom h.

Proof. Merely integrate by parts n times as we have done previously. Nat-
urally we would like to minimize the norm Ilhll. We have solved this problem in
Lemma 4 for q 2. We take h(x) so that h(x)x-(1 x) at(x) dx 0 for all
polynomials r of degree +/ n 1. Since h is a polynomial this looks easy,
but seems difficult to do in the general case. For example, for fl n 2, h is
an arbitrary quadratic with leading term 1/2, and we need to min Iix2/2 + ax + bile.
One can do this indirectly, for if h(x) is such that f" hq- has a solution which is
positive and has the required zeros, then this h must minimize the above norm.
According to Lemma 5 this requires flhl-2 sgn(h)= 0. This required that h
have a zero in (0, 1), but the choice h(x) (x 1/2)2 does not work. A good guess
is probably h(x) x a)(x 1 +.a) for 0 < a < 1. In general a is a function
ofq.

As another simple example, consider the case n 2,/ 1. Then h(x)
(x 1)(1/2x + a) and a must be selected to minimize the q’-norm. The require-

ment that equality hold in the use of H61der’s inequality then is f" hq- and

o Ih[q- 2 sgn h(1 x) 0. This then is 11 x[- 1ix 2a]-2 sgn (x + 2a)dx
0. It is clear a exists, for example, when q 3, a 1/8, and when q 4, then
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a is a solution of
236a4 + 108a3 15a2 + 20a + 15 0.

When q 2 then h is an appropriate Jacobi polynomial. This leads to the formula

4+o-"(n + fl )!(n + z /)![(n z )!]2
D2(n, z, fl, 1,2)

(2n + 1)!(2n)!(3n cz /)!

As a final result in this section, we compute C(2, 1, p, p’). The extremal here
should be symmetric about x 1/2 so we make this guess. Let

g(Y)= (1-uV)/2
for0_<_y_<_ 1,

with a chosen so that g(1) 1/2. Since g’ > 0, g has an inverse function f such that
f(0) 0 and f(1/2) and ax o du/(1 uP) 1/2. Thus f’= a(1 fv)/2 and
f’(1/2) 0 and (f’) a2(1 f"). A further differentiation yields f" -(pa2/2)
fp-1 on (0, 1/2). We now define f on (1/2, 1) by f(1 x) f(x). Since f’(1/2) 0 this
extended f is differentiable on [0, 1] and satisfies the extremal equation (6) with
h f. Now C(2, 1, p, p’) f pill f" p’ (2/a2p) f p2-p, but using the equation

fo fo fo fopa
2( a2 a2

2
[flp ff,,= (f,)2 a 1 fP) [flP

one computes f , Thus

C(2,1 p,p,)=
2 )’2-v)/Vl f du

p 2 2p (1 uP) 1/2

Note that

du 2 F(2/p)F(1/2)

o (1 uP)/ p F(Z/p + 1/2)

6. Applications to disconjugacy. A linear differential equation is disconjugate
on an interval ifno nontrivial solution has the same number ofzeros on this interval
as the order of the equation. All sufficiently small intervals are intervals of dis-
conjugacy, but we may like to get lower bounds for this length. We illustrate for
n 2; the generalization to nth order equations is clear. Consider the equation
y" + r(x)y 0. This equation is disconjugate on (a, b) only if there is a positive
solution on this interval. Suppose on the contrary that there is a nontrivial solution
with two zeros at c and d but positive in between. Then, computing norms on this
interval

y"ll Ilrylll <= r p,[ yllp <= rllp,C(2, 1, p, 1)lly" [l(d c) +

so 1 =< [[r p,C(2, 1, p, 1)(d c) + lip. This gives a lower bound for (d c). That is,
if > Irl p,C(2, 1, p, 1)(d c) / lip then [c, d] is an interval of disconjugacy.

If one wants to extend the above method to equations of the form y" + r l(x)y’
+ r2(x)y 0 then one needs to have an estimate of the form IlY’II =< KllY" I. Now
y’ has a zero but it is unknown where it is. However, Brink [1] has shown that in
general iff has n zeros on [a, b] then [If lip < maxo_<x, C(n, o, p, q)[f=)lla. In our
case then, one would get Ill’lip =< C(1, 1, p,q)llf"llp. What has motivated this
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study is the fact that this is not a very good inequality. In fact, note that f’ 0
iff(c) f(d) 0, so II/’[Ip =< E(1, 1, 1, p, q)llf"llq. But

E(1, 1,1, p, q) O(1, 1, 1, p, q) (21-) + l/p-1/q,c(1, 1, p, q)

according to Lemma 8. One can argue that if y > 0 on (a, b) but y(a) y(b) O,
then

[[Y" 12 < [[rllloollY’[[2 + 11r2[[oo[lYl[2

C(1, 1,2, 2)< Ilrl oo(b a)
2 IlY" 2 + Ilr21loo(b a)2C(2, 1,2, 2)ly"ll2.

Thus 1 __< [Ira lloo(b- a)(1/rc)+ Ilr2lloo(b- a)2(1/r). Willett [5] reports that the
best previous constant pairs have been (1/4, 1/8) instead of (1/, 1/2).

The general problem to find best possible constants for I[f() < CI f()lp q

when f has n zeros remains to be solved.
Other sources for inequalities related to ours should be mentioned. Beesack

[6] is a long paper giving inequalities between functions and the first derivative,
and his list of references is extensive. Most of his results do not overlap ours. At
one point of contact we have given a slight improvement. He shows that iff has a
zero and f(-r/2) f(n/2) then I’/2 f2 < rn]2

.In/2 .n/2 (f,)2. Putting this in our form it is
f 112 =< zt- 111f’[2 if f has a zero on [0, 1] and f(0) f(1). By our observations, if
f has a zero on [0, 1] then f 2 =< C(1, 1, 2, 2)11f’ [2 zt- 111 f’ 12. This shows that
the condition f(0) f(1) is superfluous.

Hardy, Littlewood and P61ya [7] give the result C(1, 1, 2k, 2k) (2k 1)- 1/2k

(2k/re) sin (zt/2k) while we have shown that for all q e (1, oe),

C(1, 1, q, q)
(1 uq’) 1/q’ (1 uq) 1/q
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A VOLTERRA EQUATION IN HILBERT SPACE*

KENNETH B. HANNSGENf

Abstract. This paper concerns the asymptotic behavior of the solution of a Volterra equation in
Hilbert space. The proof uses spectral decomposition and a result of independent interest on the global
dependence on a parameter of the solution of a scalar integro-differential equation.

1. Introduction. Let H denote a real Hilbert space. Let L be a self-adjoint
linear operator with domain in H and such that (Lq, q) > 2o(q, o), where
2o > 0. We consider the integral equation

(1.1) y(t) + L h(t- s)y(s) ds + t

( and are prescribed elements of H), where h(t) fto a(s) ds and a is a real-valued
function such that

(1.2)
ae C1(0, ) f3 LI(0, 1); a is nonnegative, nonincreasing, and convex;

and a(t) a(O).

With certain additional assumptions, we shall prove that y(t) tends to a limit in
Has t v.

We study (1.1) in terms of the formula

(1.3) y(t) u(t; 2) dEx + w(t; 2) dEx,

where {E} is the spectral family associated with L and where u and w (defined
below) are particular solutions of the scalar equation

(1.4) x’(t; 2) + 2 a(t s)x(s 2) ds k, x(0) Xo.

Here k and x0 are fixed real numbers and 2 is a positive parameter. (Primes denote
differentiation with respect to the first variable, in this case.)

We proved in [6] that when (1.2) holds, the solution x(. ;2) of(1.4) belongs to
BC, the Banach space of bounded, continuous functions on [0, ) and that

k
(1.5) lim x(t 2)

a(t) dr’t J’O
where the right-hand side is interpreted as zero if a L(0, ). With R + (0, ),
Xo and k arbitrary but fixed, define

@’R + BC by (I)(2)= x(.;2).

* Received by the editors December 22, 1972, and in revised form April 30, 1973.
r Department of Mathematics, Viginia Polytechnic Institute and State University, Blacksburg,

Virginia 24061. This research was supported in part by the National Science Foundation under Grant
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We denote by u(t; 2) the solution of (1.4) with k 0, Xo 1 w(t; 2) is the
solution of (1.4) with k 1, Xo 0. It is easy to verify that

(1.6) x= kW+XoU and w’= u.

THEOREM 1. Suppose (1.2) holds. Then is differentiable and

(1.7) 2 ddy(t kw(t; 2) + x’(t s" 2)u(s 2) Ms,

0<2< o, 0__<t< o.

We apply Theorem to obtain our results for (1.1).
THEOREM 2. Assume that (1.2) holds and

(1.8) a(t) dt < oe

Ify is a continuous solution of(1.1), then

(1.9)
too
lim Y(t) a(t) dt L- I O.

/f 0, (1.2) alone implies that Ily(t)ll 0 (t ).
THEOREM 3. Assume that (1.2) holds and a(t) 0 as t o but o a(t) dt

o. Assume further that a(0+) < , a is twice differentiable on (0, ), and a" is
bounded awayfrom zero on every finite interval (0, T]. If y is a continuous solution
of(1.1), then

(1.10) lim Ily(t)[I- 0.
t--

The existence of y is a consequence of the proofs of Theorems 2 and 3.
If L has a compact inverse, Theorems 2 and 3 are contained in [8, Thms. 2, 3, 4

and Cor. 1]. (The conclusion of Corollary 1 in [8] is correct only if a
if a L1(0, oe), equation (1.9) above holds.)

We make the assumptions in the second sentence of Theorem 3 so that the
uniform boundedness result [8, Thm. 4] holds; alternative conditions for the
validity of that theorem are given in [8] and would suffice here.

Our proof of (1.10) also works with a(oe) > 0 and hypothesis (1.2) alone.
Using a Lyapunov method as in [7], one establishes that [u(t; 2)1 + Iw(t; 2)[ is
bounded in {0 __< < oe, 2o =< 2 < oe the remainder of the proof is as below.

C. M. Dafermos [1], [21, A. Friedman I3, A. Friedman and M. Shinbrot [4],
and R. C. MacCamy and J. S. W. Wong [10] have studied Volterra equations in
Hilbert and Banach spaces. In particular, MacCamy and Wong consider equations
including (1.1) with L a symmetric, strongly elliptic differential operator with
discrete spectrum. They determine the asymptotic behavior of the solution if (1.2)
holds and either f [a(t) + f a(s)ds] dt < o or a(oe) > 0 and f [a(t) a(c)] dt
< oe. Our method, based on spectral decomposition and the scalar equation with
parameter, follows [3] and [4]. Dafermos and MacCamy and Wong operate
directly in H. We shall consider variable kernels L(t s) in [9].
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Concerning our proof of Theorem 1, we note that S. I. Grossman and R. K.
Miller [5] have used this method (the variation of constants formula together with
L2 estimates on the transforms u* and (u’)*) systematically to prove perturbation
theorems for nonlinear versions of (1.4).

Remarks on piecewise linear kernels. Assume that a(0) < and that (1.2) holds,
except that a C 1. Instead suppose that a’ is piecewise constant with jumps only
at integral multiples of to 2r[2a(0)]- 1/2 in this case we say condition H(2) holds.

We proved in [6] that when H(2) holds, x(t;2) is asymptotically periodic
(t ---, oe). In all other cases, the condition a C can be replaced by a C in (1.2)
and (1.5) still holds. For a given kernel a(t), H(2) can hold for countably many
values of 2 at most. It follows that is not continuous at 2 if H(2) holds.

With this exception, our proof of Theorem goes through with a C instead
of a C in (1.2).

2. Proof of Theorem 1. We shall use the Fourier transforms
T

itu(u*(r; 2) lim e 2) dt
T-oo

and a*(r).
In [6, Lemmas 3 and 5] we established the following consequences of (1.2):

a*(r) is continuous in {Irl > 0} and tends to 0 as Irl --* c a*(r) is continuous at 0
if a LI(0, ), while [a*(r)[ (r 0)if aq LI(0, o); and Re a*(r)> 0 (all r).

As in [6], one may now use Laplace transforms to establish that

(2.1) u*(:; 2) [ir + Ra*(r)]- 1.

LEMMA 1. Suppose(1.2)holds. Thenu(. 2)andu’(. 2)belongtoL2 L2(0, o).
Theformula q(2) (u(. 2), u’(. 2)) defines a continuous mapfrom R + to L2 L2.

Proof of Lemma 1. It follows from (2.1) and the remarks above that u*(r; 2)
is continuous in {Irl < o, 2 > 0} and is O(r -1) as Irl , uniformly in compact
subsets of {2 > 0}. In particular, u*(r 2) is in L2( zt3, oO) as a function of r and
it is easy to estimate [[u( ;2) u(. #)112 [[u*(. ;2) u*(. P)112 and show that
u(. ;2) ---, u(. ;/t) in L2 as/], p.

Since [u’]*(r 2) -2a*(r)[ir + 2a*(r)]- 1 + ir[ir + 2a*(r)]- 1, the
same argument works for u’(t, 2). This proves Lemma 1.

It suffices to prove (1.7) at the point 2 1; in the general case where 2 2o
we substitute b 2a, p 2/2o and obtain (1.7).

In the following, we write u(t) u(t; 1), x(t) x(t; 1), and xx(t) x(t; 2).
Set zx (2 1)- (xz x) when 2 - 1. Then by (1.4), z4(0) 0 and

z’(t) a(t r)zx(r) dr + 2- [x’(t 2) k].

Variation of constants yields the formula
-1 lfl(2.2) z(t) ---kw(t) + - x’(t s; 2)u(s) ds.

To complete the proof, we must show that as 2 1, this function of tends uni-
formly to the function given by the right-hand side of (1.7) with 2 1, and that the
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latter function is bounded. Since w(t) is bounded (see (1.5)). we need only consider
the last term in (2.2). But by (1.6),

x’(t s; 2)u(s) ds <= k u(t s; 2)u(s) ds + Xo u’(t s; 2)u(s) ds

and this is uniformly bounded for 2 near 1, by Lemma 1. Similarly,

x’(t s; 2)u(s) ds x’(t s; 1)u(s) ds

<= Ilull2(lklllu(, ;)- ull2 / Ixolllu’(, ;,)- u’ll2);

this tends to zero as 2 ---, 1, by Lemma 1, and the estimate is uniform in t. This proves
Theorem 1.

3. Proof of Theorems 2 and 3. Consider the integrals

(3.1) U(t)

In [8, Thms. 2, 3, 4J we proved that under the hypotheses o the present Theorems
2 and 3, u(t, 2) and w(t, 2) are uniformly bounded, say ]u(t, 2)] + ]w(t, 2)] B, in
(0 @,20 2 < @). It ollows that the integrals (3.1)exist. Moreover,

L- U(t) + h(t s)U(s) ds- lu(t; 2) + h(t s)u(s; 2) ds dEa

=L-.
Similarly, L- W(t) + h(t s)W(s) ds tL- . Then y U + W is a solution
of(1.1). (This argument follows Friedman [3, Thm. 4.1] .) If Yis another continuous
solution of (1.1) and Z y Y, one sees that

gxz(t)ll h(t s)llgx/(s)ll ds 2h(t) ExZ(s) ds

for any fixed 2. Thus ExZ(t) 0 (all and 2) and Y y.
By Theorem 1 is, in particular, continuous. It follows that (1.5) holds uni-

formly on compact subsets of {2 > 0}. Thus for Theorem 2 (or 3) set A
( a(t) dr)- (or 0) and let e > 0. Choose g > 2o so that

(x + (l( . + II( .ll < /,

and choose T so that

lu(t; )1
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Then if => T,

Ily(t)- AL-’II <= tlE.g(t)ll + IlE.[W(t)- AL-’]II + [l(I- Eu)y(t)ll

+ AIIL-1(1 g,,)ll

<__ u(t, 2) dE + [w(t,/) A/- 1 dEa,z + /2
)to

This proves Theorems 2 and 3.
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SINGULAR PERTURBATION OF AN IMPROPERLY POSED
CAUCHY PROBLEM*

L. E. ADELSON"

Abstract. In this paper we consider the solution of an improperly posed Cauchy problem (assumed
to exist) for a coupled system of two second order elliptic differential equations one of which has a
small coefficient multiplying the highest order derivative. We compare the solution of this problem
with the solution of the appropriately defined Cauchy problem for the elliptic differential equation
resulting from setting equal to zero. We prove that if the two solutions belong to the appropriate
spaces of functions, then their difference in the ’2-norm over some appropriately defined subdomain
is of order to some positive power which depends on the coefficients of the system and the particular
subdomain considered.

1. Introduction. In an earlier paper [2], we considered the following type of
singular perturbation ofan improperly posed quasi-linear elliptic Cauchy problem"

ebLv + v= u
inD

Lu E(x, e, v, u)

with appropriate Cauchy data specified on ]2 a portion of the tD, where L denotes
a symmetric strongly elliptic operator. We proved that if v and w (the solution to
the corresponding appropriate unperturbed problem) were suitably restricted,
then the difference of v and w in the 2-norm for some subdomain of D is of order
e to some positive power. The power depends on the constant b and on the size of
the subdomain. These results were also extended to include the case when E
depends also on any first partial derivatives of u and v.

In this paper we wish to consider the case when the operators on u and v
differ. This introduces additional difficulties, but the basic results remain valid.

2. Notation and statement of the problem. Let D be an N-dimensional domain
bounded by a closed surface C, and let ]2 be that portion of C on which Cauchy
data are prescribed. The complement of E with respect to C is denoted ]2’ and on
E’ no data are given. For the purpose of this paper we shall assume E (the closure
of E) is a C3 +%surface.

Let L and L2 denote the elliptic operators

Lu (aiju,i),,

L2u (biju,),j,
where we have adopted the summation convention over repeated indices and the
comma denotes partial differentiation. We also assume that the aj’s and bij’s are
Cl-functions of the space variables x (x:, x2, ..., xu).

Let the operators L and L2 be symmetric and strongly elliptic, that is the
matrices a and bj are symmetric and there exist positive constants ao and b0 such

* Received by the editors May 23, 1972, and in revised form April 21, 1973.

" Department of Mathematics, North Adams State College, North Adams, Massachusetts,
01247. This work was carried out while the author was at the University of Kentucky, Lexington,
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that for all vectors i the inequalities
N N

(2.1)
1

>_-aijij>_-ao 2ao i= i=

and
N N

(2.2)
boi= i=1

hold at every point in D.
We shall compare solutions v and w of the following set of improperly posed

Cauchy problems.
Problem A:

.bL2v + v u !, in D
LlU E(x, e, v, u)

with

with

Lv hi(x e,), grad (Lv) i(x, ,f,) on Z, 0, 1.

Problem B:

Llw=E(x,O,w,w) inD

w=ho(x,O), gradw=,o(X,0) onZ,

where b is a constant and ,i(x, e) denotes for each a vector-valued function.
We assume that E satisfies a uniform Lipschitz condition in its last three

arguments, that is there exist constants 2o, 21, and 22 such that

(2.3) IE(x, e, v, u) E(x, O, f;, fi)l =< Roe + 211v 1 + 221u ill.
Furthermore, we assume that

(2.4) fo E2(0)dx <= P,

where E(O) E(x, O, O, O) and P is a constant.
On E we require the Cauchy data hi(x, e) and ’i(x, e) to satisfy

for known constants 7ri and i (i 0, 1) independent of e. Also we assume

ho(x, e) ho(x, O)l O(e.)(2.6)

and

(2.7) I’o(X, ) g’o(X, 0)1 o(e).

To determine the boundary data for u and grad u, we substitute the data for
v and its derivatives into the first equation ofProblem A. In this way we always know
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that

and

Similarly

and

lu vll.- (u v)2 ds o()

Igrad (u- v) z- O(e).

Ilu- wl . O()

grad (u- w) z O(e).

As mentioned in [1] and [2] we can allow for small errors in the measurement
of the Cauchy data without affecting our results. In fact such relaxation in the
data might result in Problem A having a solution for a range of values of the
parameter e.

To assure ourselves that the solutions of our problems depend H61der con-
tinuously on the data, we must restrict the class of admissible solutions (see John
[3, Laurentiev [41, [51 and Pucci [61). To this end we introduce a class of functions
M as follows" a function q9 will be said to belong to M if

O
(D

2 dx <= M2

for some prescribed constant M. In addition a function will be said to belong to

M if

Dl[t2 dx + folgrad q12 dx <= M2
for some prescribed constant M. We shall be concerned with solutions v of
Problem A and w of Problem B which belong either to or x. We assume
throughout that for the particular value of e under consideration these solutions
exist and belong to the appropriate spaces. We assume further that these solutions
are sufficiently differentiable for carrying out the indicated operations. In each
case sufficient conditions can be readily found in the literature. Note that we do
not require a priori that u M or M.

We propose to prove that if v and w belong to , then the difference v and w
in the 2-norm for some subdomain of D is of order e to some positive power.
The power depends on the constant b and also on the size of the subdomain.

We do not compare v and w over all of D, but only over a class of subdomains
D, = D. We define these subdomains as follows.

Let f(x) const, define a set of (not necessarily closed) surfaces. This set is
to be so chosen that for each satisfying

(2.8) 0 < a __< 1

the surface f(x) intersects D and forms a closed region D whose boundary
points consist only of points of E and points on the surface f const.
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We shall require that f(x) have continuous second derivatives in D and further
that if f satisfies (2.8), then

(2.9) fl=<?=:,DacDr, 0</3=<7__< 1.

We assume that the surfaces have been so chosen that for 0 satisfying (2.8),
D, has nonzero measure, but that Do has zero measure.

As in [2] we compare the solutions v and w in the following sense. We show
that

IIv wll 20= fo (v w)2 dx O(()),

where 7(a) is a positive function of a for 0 =< e < O < 1 and 7(el) 0. Thus for
0 -< e < a < 1 our inequality will show that if e is sufficiently small, v will be
arbitrarily close to w in ,2 over D,.

3. Results. We first show that for 0 < a < the quantity u vl 2 is of
order e in general and under certain conditions is of order e2.

We introduce the function z(x) defined in D as

(3.1)
l in D, U E,

(x)
l-f(x)

inO-(D,U

where E, is the portion of E which lies on the boundary of D, and S, will denote
the portion of the surface f(x) e so that the entire boundary of D, is E, U S,.
Clearly z(x)= 0 on S and Iz(x)l _-< 1 in /31. Since fe C2(), Iz,iz,il _-< M3 and
[’C,ijT,,ij[ M4 in D for constants M3 and M4.

Thus we have

(3.2) Ilu- 112o fo (u v)2dx fB zs(u v)2dX

where s is a positive integer to be chosen so large that all subsequent integrals over
$1 vanish.

We begin by proving the analogues of Lemmas 3.1 and 3.3 of [2].
LEMMA 3.1. If V fill is a solution of Problem A with b < O, or if v 1911 is a

solution ofProblem A with b > O, then

(3.3) z(u v)2 dx <- 0() + Koe fo z- 2(u v)2 dx

for a computable constant Ko
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Proof. From the equations of Problem A and Green’s identity, we have

(3.4)

TS(U_ /))2 dx be D z(u v)Lzv dx

be rS(u V)v2 ds

be, f.o "cSbi(u v),jv,i dx

be, "rS,bij(u v)v,i dx,

where /(Y2 is the conormal derivative bijnj(8/Sxi) on the boundary Z.
Also since we can bound the conormal derivative in terms of the normal and

tangential derivatives, the boundary integral in (3.4) involves data terms and is
0(2).

We shall in this paper make frequent use of the arithmetic-geometric mean
inequality (henceforth abbreviated A-G inequality) Unless we specifically need
the constants which enter, we shall use the letters j for the coefficients of the terms
we shall subsequently wish to make small and ks as coefficients of the other terms
which are computable and may be large (but do not depend on 0.

Thus using the A-G inequality and the bounds for derivatives of z we find

(3.5)

fo ’r(u v)2dx <= O(e2) + be, fo "cb,jv,,v,jdx be, f "cb,ju,jv,,dx

--F k e, D T,s- 2(U v)2 dx -F , e fD "csv,iv,i dx

<= o(ez) + be fD zSb’jv"v’J dx-F [Yl-F Y2]e fD T’sl)’iO’i dx

+ kl, fD "cs-2(u v)2 dx F k2g, fD "cSu,iu,i dx.

By the ellipticity of L1, we have for the last term on the right-hand side (R.H.S.) of
(3.5),

(3.6) k2 zSu,iu,i dx <- --e T, Saiju,iu,j dx.ao

And by Green’s identity we see that

kze fo z’u,,u, dx < k2 [ f z U-v ds -" fy. OTs
bl
2 ds

(3.7)
k2 k2e fo zSuLxudx + e, fD (LIT, S)u2 dx
go o
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Thus

k2e. fD "cSu,,u,,dx <= O(e,) + k3e, f "c-2v2dx

+ k4 f.o "SE210’dx, + kg-, o ’s-2(u )2 dx

by the Lipschitz condition on E and the A-G inequality. Substitution of (3.8) into
(3.5) yields

rS(u v)2 dx <__ O(e) + be fD zSb,jv,ivv dx

(3.9)
+ [71 + 72]efo zSv,iv,,dx

+ koe fo rs- a(u v)2 dx

It follows then that if b < 0, we may choose 71 and 72 sufficiently small so
that the second term dominates the third term on the right of (3.9) and both terms
may be dropped. If b > 0 and v e r1, we combine the second and third terms and
bound them by an O(e) term. Hence with our bounds for E(0) and v, we have
completed the proof of Lemma 3.1.

LEMMA 3.2. Regardless of the sign of b, if v M is a solution ofProblem A, then
for any positive integer a so that all integrals over $1 vanish,

(3.10) o a(u /))2 dx <- K

for some computable constant K.
Proof. We proceed as in the proof of Lemma 3.1 up to equation (3.5) which

becomes by a slightly different use of the A-G inequality

(3.11)
f, "c"(u v)2dx <= O(e,2) + be f, zabijv,iv,jdx be, fD

-4-74fD z(u v)2 dx + kse2 fo "ca- 2fp,il),i dx

Hence we may choose 74 < and solve for the left-hand side (L.H.S.) of (3.11).
We then apply the A-G inequality to the third term on the right and use the
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ellipticity conditions on all the grad v and grad u terms to obtain

fo "cr(u v)2dx <= (e2) + 5 f. zr+2aiju’iu’jdx
(3.12)

-t- k6, t z’r- 2 bijv,iv, dx., D
We use Green’s identity on the last two terms on the R.H.S. of (3.12) to get

fD1 "c(u v)2dx <-- (2) + 75 f,. "/2" + 2U UY1 ds

bl
2 ds 7 ,.ftr + 2uL u dx

2 c3v

fD +2)/,/2 dx(3.13) + (L1z_
k6gfE T 2 6u _2 fE 2 s

We now use the equations of Problem A, the Lipschitz condition and the A-G
inequality to obtain

fo z(u v)2dx 0(1) + 75fo z(u v)2dx
(3.4)

fo fo +e(O)dx+ k13 za-4v2dx + ko
Hence we may choose 7 suciently small to allow us to solve for the term

on the L.H.S. of (3.14). If we then apply our bounds for v and E(0) we have the
desired result.

By combining Lemmas 3.1 and 3.2 with a s 2 and using the fact that

(u v) dx <= | r(u 02 dx,
.]O

we obtain, if we choose a > 5, the following.
THEOREM 3.3. If V Ill is a solution of Problem A with b < O, or if v ]1 is a

solution of Problem A with b > O, then

Ilu vll2D
for in the range 0 _< < 1.

We now use the results of the convexity argument of 3 of [2] with L L1 to
conclude that

(3.15) [lu- WII 2 O(g1-v())D

for Problem set (A, B).



424 C.E. ADELSON

Therefore, combining Theorem 3.3 with (3.15)and using the triangle in-
equality we have the following theorem.

THEOREM 3.4. If V 1 is a solution of Problem A with b < 0 or if v )Qll is a
solution of Problem A with b > 0 and w 1I is a solution of Problem B, and u is a
solution to

Lu E(x, e,, v, u)

as in Problem A, then the difference v w satisfies the following continuous depen-
dence inequality for o in the range 0 <_ < < and v(e) with 0 <= v(e) < 1"

IIv wll=- O(l-v(a))
Remark. We note that the order of e here is half of what it was for Problem

(A, B) in [2] with L L1 L2 and E dependent only on x, e, v and u, and b < 0.
If we assumed that bij and aij were related by

bij-- aij -I-- Cij

then we would again obtain the same order as in [2].
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ASYMPTOTIC EXPANSION OF LAPLACE CONVOLUTIONS FOR
LARGE ARGUMENT AND TAIL DENSITIES FOR CERTAIN

SUMS OF RANDOM VARIABLES*

RICHARD A. HANDELSMAN" AND JOHN S. LEW

Abstract. An asymptotic series Zra,n=O amntatm)(log t) with Re [a(m)] either increasing or decreasing
is called a Mellin series respectively near either 0 + or + oz. Letfbe a complex-valued locally integrable
function on [0, + oz), and let L[f; s], its Laplace transform, be absolutely convergent on Re (s) > 0
and have a Mellin series near 0 +. Thenf need not have a Mellin series near + oz, but if it does .then
this series is uniquely determined by the given series for L[f; s]. Two earlier theorems of Doetsch,
slightly extended, give sufficient conditions on L[f; s] that f have a Mellin series near + oz, while a

counterexample shows that these conditions are not necessary.
The class of functionsf having Mellin series near + oz is closed under pointw!se addition, scalar

multiplication, and Laplace convolution; whence it yields a number of useful subalgebras. These re-

sults are used to calculate Mellin series near + oz for convolutions of: (i) gamma densities; (ii) auxiliary
functions h,,m(t) t"- 1(log t) on [1, + oz), 0 elsewhere (iii) Pareto densities with L but asymptoti-
cally small perturbations.

1. Introduction. In this paper we consider locally integrable functions on
0, + ) with certain asymptotic expansions near + , and we recover such
expansions, here called Mellin series, from the corresponding series near 0 + for
the Laplace transforms of these functions. We show also that the set of functions
with such expansions is closed under Laplace convolution, hence that the series
near + for these convolutions are obtainable via Laplace transforms. How-
ever, the convolution of two probability densities corresponds to the sum of the
associated random variables. Thus we apply these results to expand the tail
density for finite sums of random variables with gamma, Pareto, and related
distributions--extending various special computations through our general
technique.

Let f be a complex-valued locally integrable function on [0, + ), and let

(1.1) f(t) am,tatm)(logt)" as +,
m, 0

where {n :am, :/: 0} is finite for each m and Re [a(m)]$ as m . According
to van der Corput [12, p. 366], asymptotic series of form (1.1) were first treated
systematically by Mellin [33]. Hence series near + of this form, or near 0+
with Re [a(m)]’ + , will be called Mellin series or expansions in our work.
Series of form (1.1) occur naturally in the expansion of many special functions,
and in the solution of ordinary differential equations. Some further series with
nonintegral n have been treated by Erd61yi [18].
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(1.2)

For any such function f, the Laplace transform

L[f s exp (- st)f(t) dt

is absolutely convergent and holomorphic in Re (s) > 0, while the Mellin trans-
form

Mf z] if(t)dt

is well-defined and meromorphic in some right half-plane, either through the
integral (1.3) or through analytic continuation (Handelsman and Lew [23, (4.9)).
From M[f; z] in this half-plane we have shown that L[f; s] near 0+ can be
expanded systematically as a Mellin series in s. Indeed we have obtained Mellin
expansions in two further papers (Handelsman and Lew [22], [24]) for all integral
transforms

(1.4) H[f s] h(st)f(t) dt

with suitably dominated kernels h(t).
In this investigation we wish to recover a Mellin series forfnear + oe from a

Mellin series for L[f; s] near 0+. First we show that this can be done uniquely
when f is assumed a priori to have a Mellin expansion--and cannot be done at
all whenfis assumed only to be locally integrable. Then we slightly generalize two
earlier theorems (Hull and Froese [26], Doetsch [16, pp. 144-162], Riekstiqa [38,
[39]) which derive a Mellin series for f from additional hypotheses on L[f;
We recall that an Abelian theorem is a result which obtains the limiting behavior
of a transform from the limiting behavior off, whereas a Tauberian theorem is a
converse result which, in its characterization by Doetsch, involves an auxiliary
condition on f. Hence our first result is a simple Tauberian theorem for L[f; s],
whereas the other results are Abelian theorems for the inverse transform. The
auxiliary condition for our first theorem is clearly necessary and sufficient, but
we shall construct examples of functions f with Mellin series near + v which
cannot be recovered by these other theorems.

Naturally, to benefit from the first theorem we must establish by other means
thatfhas a Mellin series near + oe. Therefore we prove that the set of all functions
which have such expansions is closed under pointwise addition, scalar multiplica-
tion, and Laplace convolution:

(1.5) If* g] (t) f(t u)g(u) du.

Thus we produce a family of convolution algebras all of whose elements have
Mellin expansions, and we need only show that a given f is some algebraic com-
bination of suitable functions. Analogously we might express f, to prove it differ-
entiable, in terms of functions already known to be differentiable. To obtain these
closure theorems and simplify our later applications, we introduce on [0, + ) a
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class of functions ha,m whose Laplace transforms and Laplace convolutions involve
well studied functions.

These results are used to approximate finite sums of random variables with
probability density functions defined on [0, + oo). Indeed if the independent
random variables T1 and T2 have respective densities fl and f2, then the random
variable T + T2 has associated density fl * f2. Iffl and f2 have expansions of the
form

(1.6) f(t) a,,,exp[a(m)t]t" as +oo,
m,/’/-- 0

under the same restrictions as (1.1), thenfl * f2 has an expansion of the stated form
with coefficients obtainable by earlier methods (Doetsch [16, pp. 98, 110]). (Con-
vergent series of form (1.6) have been called hyperdirichlet series by Lepson [29].)
However iffl and f2 have Mellin series near + oo then fl *f2 has a Mellin series
near + oo which can be computed sytematically via our relations between functions
and transforms. In particular the series (1.1) for f, through the derived expansion
of L[f; s], yields a corresponding series for f*", the nth convolution power off.
Thus we do not treat densities with expansions like (1.6), but give several examples
involving Mellin series near + oo to show the range of our techniques.

In a recent talk (Handelsman and Lew [25]) we have previously sketched a
preliminary version of these results. In our future work we shall also consider the
corresponding developments for cumulative distribution functions. Moreover we
plan to discuss applications to compound stochastic processes, as in the theory of
single-server queues and the theory of collective risk. Parts of this paper anticipate
the needs of these extensions.

The classical Tauberian theorems for the Laplace transform have been used
primarily to approximate distributions of high eigenvalues and of large prime
numbers; but the functions f which occur in such problems have sizeable jumps
for arbitrarily large t, and thus have no complete expansion near + oo. Accordingly,
results like Karamata’s.theorem (Widder [47, pp. 189-197]) deduce merely a
leading term ct for f(t) from a leading term cs-/F(a) for L[f; s]. Similar
Tauberian theorems for generalizedfunctions f have been obtained recently by
Lavoine [28], but through a regularization offwhich suppresses some information
about its global behavior. Further Tauberian theorems of Wagner [46] which
approximate log f(t) can produce asymptotic forms for f(t) more singular than
eta- 1.

Of course we can sometimes recover f(t) exactly from Lf; s] by the classical
inversion integral or the Post-Widder formula (Widder 47, pp. 66, 288], Doetsch
15, pp. 212, 290]). Moreover f(t) can be determined exactly by a method of
Goldenberg [21] when L[f; s] satisfies a linear differential or difference equation
with polynomial coefficients; and f(t) can be obtained as a convergent power
series by a more recent method of Widder I48], I49, Chap. 9] whenf(t) and LIf; s]
satisfy appropriate smoothness conditions. If L[f; s] is known only for 0 < s

< + oo then f(t) can be computed approximately by various methods (Bellman,
Kalaba and Lockett [3]), but all of these demand prior assumptions about
f(t) near + oo. If L[f;s] is known for Re (s) > 0 thenf(t) can be obtained numer-
ically by the fast Fourier transform (Cooley, Lewis and Welch [11]); indeed,
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the convolutions fl *f2 can be obtained directly through this algorithm.
However, for large these numerical methods become less reliable while our
analytic results become more accurate, so that these algorithms complement our
theorems.

In a closely related paper, Riekstirl, [40] considers two locally integrable
functions with asymptotic series near + in related powers of t, and expands their
Laplace convolution as a corresponding series near + , with a possible factor
log (t/2). He extracts a series for this integral by detailed arguments on two sub-
intervals, but claims the validity of his method for all functions with Mellin series.
However we need such direct methods to establish only the existence of Mellin
series for general convolutions f* g, and use Laplace transforms to obtain con-
veniently the coefficients of such series, even for powers f*".

The limiting behavior of the density function for an algebraic combination of
random variables has been widely studied by other investigators. Indeed by a
standard result of probability theory (Feller [19, p. 271]) if

(1.7) fi(u) du cit-L(t) for 1,2 as + ,
with L(t) a slowly varying function, then

(1.8) If, *fz](U)du (cl + c2)t-rL(t) as + ,
with an immediate corollary for f*". Moreover a leading term for fl * f2, under
asymmetric hypotheses onf and f2, has been given by Muki and Sternberg [36]
in a study of integral equations. However an expansion like (1.1) can be carried
to any number of terms, and the polynomials in log which occur in such series
are all slowly varying functions, so that our results are sharper than these alterna-
tives.

Through the use of integral transforms, other authors have derived general
formulas for densities ofsums and products (Abraham and Prasad 1], Prasad [37])
or power series for combinations of special densities (Brennan, Reed, and Sollfrey
[9], Springer and Thompson [43], Blum [8]). However our results produce a
Mellin expansion near + for any fl *f2 from the corresponding series and
moments for f and f2. Products of random variables are not discussed in this
paper--because a Mellin series near + for the resulting density

(1.9) fo f(t/u)fz(u) du/u
can be obtained by earlier theorems (Doetsch [16, pp. 131-135], Handelsman and
Lew 24, (1.9)]) from the corresponding behavior off andf2.

If the functionfhas variance < + v and Fourier transform in L( , +)
then the central limit theorem for densities (Feller [19, p. 489]) states that f*" for
large n is approximated by a normal density. However the relative error for such
approximations need in general be small only in some neighborhood of the mean
whose width grows slowly with n (Feller [19, p. 517]). Thus our results hold when
the central limit theorem fails, namely for n fixed and + . If the functionfhas
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a series (1.1) with exponent a(0) > -3 then other well-known theorems in prob-
ability (Feller [19, p. 3033) state that f lies in the domain of attraction for some
nonnormal stable density. Possiblyf*" for large n may be approximated in a useful
sense by this stable density near + oe--under some further hypotheses; but our
results are valid even when no limit density is relevant, that is, for all negative
a(0) in the expansion (1.1).

2. Convolution algebras. In this section we introduce a number of function
spaces on 0, + oe) and discuss their closure under Laplace convolution. Later we
distinguish those functions which have Mellin expansions near + , but initially
we consider all functions which are locally integrable on [0, + o). We also define
some simple isomorphisms among these spaces and review some basic properties
of Laplace transforms. We establish our notation through this summary, and
state various results for convenient reference.

For any nonnegative let R(t) denote the interval It, + oe) and let R’(t) denote
the interval 0, t). For any such interval I let AI denote the set of all complex-
valued locally (Lebesgue-) integrable functions on [0, + oe) which vanish outside
the given I, so that in particular AR (0) is the set of all such functions which satisfy
no such restriction. Furthermore let AR(O+) denote the union of all AR(t) with
> 0, and let AR’( -) denote the union of all AR’(t) with < + v. Clearly these

sets of functions are all complex vector spaces under pointwise addition and scalar
multiplication, with

(2.1) AR(O) AR(t) AR’(t) AR(O +) + AR’( -).

As usual in integration theory, we identify any two functions which differ only on
a set of Lebesgue measure zero.

For anyfand g in AR(O) let f* g denote their Laplace convolution, given by

(2.2) If* g] (t) f(t u)g(u) du.

For almost all nonnegative this convolution can be shown to exist and to define
a function in AR(O) (Widder [47, pp. 91-92]). We shall usually call this function
simply the convolution off and g, since we shall rarely need to discuss other
convolutions (e.g., Fourier, Mellin). We observe for all t, u >_ 0 that

(2.3)
AR(t) * AR(u)c AR(t / u),

AR’(t) * AR’(u)c AR’(t / u)

by definition, so that AR(O +) and AR’(-) are both closed under convolution.
Moreover convolution is associative, commutative, and distributive with

pointwise addition, by standard integration theorems, so that AR(0), AR(O+),
and AR’(oc--) are complex algebras under this further composition (Mikusinski
[34, pp. 345-349]) The Dirac delta "function" is not contained in AR(O) since it
is only a distribution on [0, + oe), but will be denoted by e since it is clearly an
identity for AR(0), and will be adjoined at times to generate the algebra e + AR(O).
Iff* g 0 in AR(O) then either f 0 or g 0 by Titchmarsh’s theorem (Miku-
sinski [34, pp. 15-23]), so that both AR(O) and e + AR(O) are integral domains
under these compositions.
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For anyfin AR(O) we can define its nonnegative integral *-powers by

/* e, /*’ f,
(2.4)

f,,+l =f,f,, forn= 1,2,....

Following Mikusinski, we might define negative integral *-powers as suitable
generalized functions, but we shall not need these and prefer to work within
e + AR(O). For any polynomial P(z)= "m=O Pmz" with coefficients Pm in C we
can define

(2.5) P*(f) PraY*";
m=O

and for any fixed fin AR(O) the mapping P(z) P*(f) is a homomorphism from
C[z] into e + AR(O). Indeed if f- 0 then this mapping is one-to-one, since
e + AR(O) is a commutative integral domain. Moreover if P(z) has no constant
term, that is, if Po 0, then P*(f) is in a given subalgebra of AR(O) whenever f is
in this same subalgebra of AR(O). Actually we can define P*(f) for any power
series P(z) which converges.in some neighborhood of 0 (Lew 30]), but we shall
not need this extension.

For any positive a, any complex c, and anyfin AR(O) we let

(2.6)
D(a)f(t) af(at),

E(c)f(t) exp (ct)f(t)

whence by direct computation we find

(2.7)
D(a)[f * g] D(a)f] * [D(a)g],

E(c)[f * g] E(c)f] * [E(c)g].

Moreover D(a) and E(c) are linear and invertible, so that they are automorphisms
of AR(O), AR(O +), and AR’( ).

For anyfin AR(O) and any p __> we let

/p;o(2.8) I[f p If(t)[ p

and we allow f p the value + so that f Iv is defined for all suchf We recognize
the set of allfin AI with f p < + as the Banach space LP(I) imbedded naturally
in AR(O). Extending this notation, we thus let E(c)LP(I) be the set of allfin A! with
E(-c)f p < + and we let E(c +)LP(I) be the intersection of all E(d)LP(I) with
Re (d c) > 0, or equivalently the set of allf in AI with

(2.9) lexp (-ct et)f(t)l dt < + oe for every e > O.

Iffis in L(R(t)) and g is in Le(R(u)) thenf, g is in LP(R(t + u)) and

(2.10) f* g p p

by a well-known result of harmonic analysis (e.g., Dunford and Schwartz [17,
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p. 528]). Thus the following spaces, with the following norms, are Banach algebras
under convolution for 0 < < + oo, by (2.7) and (2.10).

(2.11)

L(R(t)),

L(R(t)) L(R(t)),

E(c)L’(R(t)),

E(c) [L ’(R(t)) LP(R(t))

Ilflll,

max (11 f 11,, f p),

E( c)f

max (11 E( c)f

Moreover if <= p <= q then LI(R(t)) ffl Lq(R(t)) c L(R(t)) I’) LV(R(t)) by the Riesz
convexity theorem (e.g., Dunford and Schwartz [17, p. 535]). The spaces
E(c +)LI(R(t)) and E(e +)[L(R(t)) ffl LP(R(t))], like the basic space AR(0), are
closed under convolution; however these spaces have natural topologies which
are metrizable but not normable.

For anyfin AR(O) let L[f; s] denote its Laplace transform, given by

(2.12) L[f; s] exp (- st)f(t) dt

whenever and wherever this integral exists. In particular if f is in E(c)L(R(O)),
then L[f; s] is absolutely convergent for Re (s)>_ c, hence continuous on this
half-plane and analytic on its interior; while iff is in E(c +)L(R(O)), then L[f; sl
is absolutely convergent, continuous, and analytic for Re(s)> c (Widder [47,
p. 57]). The mapf---, L[f; s] is a linear function on either of these spaces, and

(2.13) L[f* g; s] L[f; s]L[g;s]

on the corresponding domain of definition (Widder [47, pp. 91-92]).
It is convenient to put f(t)= 0 on (-oo, 0) in discussing the inverse map,

and thus extend any f in AR(O) to a function on (-oo, + oo). If this extended
function has bounded variation on some (t, t2), then f(t +) and f(t-) are well-
defined in this interval; and if this f is also in E(a)L (R(0)) for some (real) a, then

+ ib

(2.14) 1/2[f(t +) + f(t-)l (2gi)- lim_ exp (ts)L[f; s] ds
aa- ib

for t < < t2 (Widder [47, p. 66], Doetsch [15, p. 212]). Iffis in either E(c)L(R(O))
or E(c + )L (R(0)), then

(2.15)
L[D(a)f s] Elf; s/a,

L[E(b)f s] L[f s b]

on the appropriate domain of definition. Thus problems involving these two
spaces can respectively be reduced to problems involving L(R(O)) and
E(O+)L(R(O)) through (2.7), (2.11), and (2.15).

Iff and g are elements of AR(O) which satisfy

(2.16) f + g f* g,

then each is called a quasi-inverse of the other. It can be shown for the algebra
AR(O) that each elementfhas a unique quasi-inversef’, hence that there exists no
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linear map except L 0 which takes all of AR(O) into some space of functions and
which satisfies (2.13) for all f and g (e.g., Lew [30]). Thus while the Laplace trans-
form can be defined for a large class of generalized functions (Krabbe [27]), it
cannot be defined for all the functions in AR(O) (but see Ditkin [14], Berg [5]).

3. Mellin series. We wish now to discuss functions f in AR(O) for which there
exist complex numbers am, and a(m) such that

(3.1) f(t)

where {n" am, 4: 0} is finite for each m and Re [a(m)]J, as m . Series of
this form near + o, or with Re a(m)]T + near 0+, are called Mellin series
or expansions in our work for the historical reasons offered in 1. If A is any
set of functions on I0, + ) then MA will denote the subset of functions with
Mellin series near + . Hence if A is a vector space then MA is clearly a
vector space, but if A is a convolution algebra then MA is not obviously such an
algebra.

For any functionf in MAR(O), by the remarks of 2, the transform L[f; s] is
defined and analytic for Re(s)> 0; and its asymptotic expansion near 0+,
through the results of our earlier work (Handelsman and Lew [23]), can be ob-
tained systematically as a Mellin series in s. Conversely, given any function f in
AR(O) such that L[f; s] converges for Re (s) > 0, we should like to deduce a Mellin
series for f near + o from a Mellin series for L[f; s] near 0+. However such
inverse results are not generally true without some auxiliary conditions. To see
this we need only exhibit some nontrivial functions g in AR(O) (see also Lew 31])
such that

(3.2) L(g;s] =o(s") ass0+ forn-- 1,2,...,

since any multiple of some such g can be added to anyfin AR(O) without changing
the expansion of

Example (Stieltjes 45, p. 105]). If we let

exp(-tl/4)sin(t 1/4) on [0, +),
(3.3) g(t)

0 on (- ,0),

and let M[g; z] be its Mellin transform for Re(z)> 0, then M[g, r] 0 for
r 1, 2,..-through integration by parts. However L[g; s] can be expanded with
these M[g; r] as coefficients (Handelsman and Lew [23]), so that

L[g s] Z M[g m + 1](- s)m/m!
(3.4)

m=O

=O(S") ass-O+ forn= 1,2,....

Example 2. If for any k > 0 we let

t- 1/2 cos (kt)l/2 on (0 + ),
(3.5) gk(t)

0 on (- o,0],
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then from standard tables (Abramowitz and Stegun [2, (29.3.76)]) we find

(3.6) L[gk; S] (r/S) 1/2 exp (-- k/4s),

which satisfies (3.2) for any such k.
Example 3 (Berg [6]). We plan eventually to treat problems in which f is a

Mellin-expandible probability density function; hence we wish also to give an
example in which g is a slowly decaying but absolutely integrable function. Thus
we define gk(t) by (3.5), we let

(3.7) g(t) t-[cg(t- 1) + Czgz(t- 1)] on (-oo, +oe),

and we choose nontrivial constants c, c2 such that

(3.8) c exp (- s)L[gl s] ds + c2 exp (- s)L[g2 s] ds O.

Then g(t)= 0 on [0, 1] and g(t)= O(t-3/2) near + oe, so that g is in L I(R(O)),
while

(3.9)

L[g; s] exp (- z)L[cgl + C292 Z] dz

exp (- z)L[c lg + C292 Z] dz,

which satisfies (3.2) by virtue of (3.6).
The function of Example has an exponentially .decaying oscillation and

thus has a vanishing Mellin expansion near +oo, whereas the functions of
Examples 2 and 3 have algebraically decaying oscillations and thus have no
Mellin expansion near + oo. To recover a series for f(t) near + oo from a series
for L[f; s] near 0+, we must therefore insure that f(t) near + oo contains no
slowly decaying oscillation, whence we shall simply require that f(t) near + oo

possess a Mellin expansion (3.1). This straightforward condition is clearly necessary
for the result, and is shown sufficient by Theorem 1. The proof involves two pre-
liminary lemmas, of which the second is a simple remark leading to a partial
summation for Mellin series, and doubtless has much stronger forms corresponding
to the related theorems for power series (Ritt 41], Carleman [10, Chap. 5],
Franklin [20]).

LEMMA 1. Iff is in MAR(O) with expansion (3.1), and if L[f; s] =o brsr
near O+ for some complex br, then (3.1) is identically zero.

Proof Choosing any fixed to > 0 we define

fo(t) E amnta(m)(log t)" on (0, + oo), fo(0) 0,
< Re[a(m)]

f(t) fo(t) on [0, to),
(3.10) f(t)

0 on [to, +

f2(t) f(t) fo(t) f(t) on [0, +
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The Laplace transforms of thesef can be evaluated explicitly or expanded analyti-
cally (Handelsman and Lew [23]) as

Lifo s
Re[a(m)]

a,,,
3

1-’(1 + a(m))s- 1- 1-a(m)

(3.11) L[f;s] M[f;m+ 1](-s)m/m! ass-+0+,
m=O

L[f2 s] Res M[f2 z]r(1 z)s 1} as s -, 0 +.

The exponents of s in the series (3.11) have respectively negative real parts, non-
negative integer values, and nonnegative real parts; the exponents of log s in these
Mellin series are always zero for L[fl ;s and nonnegative integers for the others.

By linearity the sum of all series (3.11) must equal =o brst, so that amn 0
whenever Re [a(m)] > 1. If the expansion (3.1) is not identically zero then it has
a nonzero term a,,,t"(log t)" of highest order, in which Re (a) < by the preceding
remark. However by our previous results, if a is not an integer, then in L[f2;s]
this yields a sum

(3.12) (- 1)"am.S-1-
j=O

(log s)

while if a is an integer then in L[fz;s] this yields a sum

j= o J
[rrz/sin rtz. F(z a)]z o-

The term of highest order in either (3.12) or (3.13) can be cancelled neither by
any term of=o brs nor by any term of L[fl s] so that am, 0, a contradiction.

LEMMA 2. Iff is in MAR(O) with expansion (3.1), thenfor any real p there exists
a finite sum

(3.14) fp{t) exp (-t- 1/2) bm.t{m}{log t)"
p _< Re[b(m)]

such that f(t) fp(t) o(t- P) near + c and LEf fp ;s] (polynomial in s)
+ o(sp- 1) near 0+. Also for any 0 < zt, fp has a" Mellin expansion near + and
fv(t) o(tq- ) near 0 for all real q, both uniformly in [arg t[ =< 0, while L[fp; s] has
a Mellin expansion near 0 and L[fp; s] o(s -) near oo for all real q, both uniformly
in [arg s[ =< 0 + rt/2.

Proof By (3.11)-(3.13), logarithmic terms and nonintegral exponents in the
expansion of L[f; s] can arise only from terms am,t(m)(log t)" in the expansion of
f(t), and indeed the set ofterms involving s- can arise only from the correspond-
ing set involving . Taking {b(m)} {a(m)- 1/2:1, m 0, 1, 2,... we can thus
choose {bin,} by induction so thatf fp satisfies the required estimate, and we can
then verify by the preceding remark that L[f- fp;S] has the required form. The
remaining properties offp are obvious by construction, while those of L[fp;s] are
obtained by superposition from the properties of h(t)= exp(-t-1/2)tb(1og t)".
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Our previous work (Handelsman and Lew [23) yields

M[h; z] 2 F(- 2b 2z),

(3.5)

L[h;s (2rri)- s F(1 z)M[h;zl dz

for Re (c) < b, and Stirling’s approximation implies M[h; x + iy o[exp (-Oy)]
for any 0 < . By shifting the contour we thus get an expansion of L[h;s] near
either 0 or , with a remainder estimate valid in arg sl N 0 + /2.
To 1. Iff is any element of MAR(O), then the Mellin expansion ]rf(t)

near + is determined uniquely and linearly by the Mellin expansion for L[f s]
near 0+. If C(O) is the contour which runs in from exp (-iO), circles counter-
clockwise about the origin, and runs out o exp (i0), then the series (3.1)for f(t)
can be recovered to any order by the following replacements, with /2 < 0 "
(3.16) s (2i)- exp(ts)s ds t--/F(-b)

c(o

for all complex b (including b O, 1, 2,... for which 1/F(-b) 0);

(3.17) s(log s) (2i)- exp (ts)s(log s) ds -- /F(- b)
(0/

for all integers n O, 1, 2,... and all complex b O, 1,2,...

s(log s) (2i)- exp (ts)s(log s) ds
c(0/

(3.18)
(- /

=o 2j +
F(b + 1)t--

for all integers n, b 0, 1, 2,....
Proo The integral in (3.17) is evaluated by differentiation from the integral

in (3.16), which is evaluated by the inversion (2.14) when Re(b)< 0 and by
deforming the contour into C() when Re (b) 0. The circle about 0 contributes
nothing to the integral when Re (b) 0. Thus the contour in (3.18) is deformed
into C(), and the two integrals along rays are combined into

;o(2i)- (- 1)+ exp (- tu)u[(log u + i) (log u i) du

(3.19)
(n- 1)/2

=(--1)+’ (--1)Y2J( n foj=o 2j +
exp (-- tu)u(log u) - du.

If g is in MAR(O) thenf g is in MAR(O), and if L[g; s] near 0+ has the same
expansion as Lf; s], then f(t) g(t) near + has zero expansion by Lemma 1.
Clearly the linearity off L[f; s] implies the linearity of this asymptotic inversion,
and the terms involving s yield the terms involving . However by Lemma 2
we can choose p > 0 and so large that we get the same expansions, to any pre-
assigned order, for f(t) and f(t) near + , hence for LIE; s] and L[fp; s] + (poly-
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nomial in s) near 0+. Then we can use (2.14) to recoverfp from its transform, and
deform the contour to some C(O) with rt/2 < 0 __< re. Terms in the expansion of
L[fp; s] up to O(s- 1) can be inverted by (3.16)-(3.18), and the remainder in the
expansion offp near + can be estimated by Watson’s lemma.

4. Other inversion theorems. Asymptotic inversion by Theorem for any
function f in MAR(O) obtains the Mellin series for f near + oe from the Mellin
series for L[f; s] near 0 +. We wish now to compare this result with some earlier
theorems which treat the inversion integral for the Laplace transform as an
integral transform in its own right:

(4.1) f(t) L- I{F; t} (2ri) -1 exp (ts)F(s) ds

with a given function F(s) which is analytic in some region. The asymptotic
behavior of (4.1) is known to depend primarily on the singularity So lying left of
the contour but having largest real part (or, in general, on all such singularities
with the same largest real part). In particular, Doetsch [16, Chap. 7] proves two
Abelian theorems for this inverse transform according as the contour can be
deformed into a vertical line through the point So, or into an angle opening to the
left, with vertex So.

These results are valid for any So but can be stated specifically for So 0 at
no loss in generality and some gain in convenience. We shall therefore assume
for F(s)a general Mellin expansion

(4.2) F(s) bm,Sb’)(log S)" as s 0 +,
m,n 0

and introduce for real r the associated finite truncations

(4.3) Fr(s) bm,sb")(log s)",
Re[b(m)] <

where {n’b,,, :/: 0} is finite for each m and Re [b(m)] T + as m . In his work
Doetsch treats either a single term sb(1ogs)" (Doetsch [15, pp. 500-501]) or a
series (4.2) with r __< 1, so that we sketch here the required extension of his original
proofs. The explicit series forf(t) is determined uniquely by Theorem 1, and need
not be stated in our reformulation. For contours deformable into an angle,
together with slightly stronger hypotheses, Hull and Froese [263 have considered
some series of form (4.2) and some singularities of more general type, while
Riekstiqa [38], [39] has discussed all Mellin series with real b(m) and further
singularities of other types.

THEOREM 2 (compare Doetsch [16, pp. 150-154]). For some real r and some
complex b(m), bran let F(s)= b(s) + G(s) on 0 <= Re (s) <= c, where F(s) and G(s)
are holomorphic on 0 < Re (s) <= c and G(s) is continuous on 0 <= Re (s) <_ c so that
F(s) is singular at s O. For s x + iy and some integer m >= 0 let (d/dy) 1G(iy)
be absolutely continuous on - < y < + , so that (d/dy)"G(iy) is locally in-

tegrable on - < y < + . Let F(s) --, 0 as s uniformly in 0 <= Re (s) __< c"
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let (d/dy)kF(iy) 0 as y 4- oo simultaneously for k O, m and let the
integrals

(4.4) and dy exp (ity)(d/dy)mF(iy) for some u > 0

converge uniformly for all >_ some o > O. Iff(t) is defined, by (4.1), then f(t) is
continuousfor >= to, and has thefinite Mellin expansion corresponding to Fr(s) with
remainder o(t-

Proof Construct fp by Lemma 2 with a Mellin expansion near + oo which
agrees to o(t 1) with the finite series determined by Fr(s). Then L[fp; s] F,(s)

(polynomial in s) + o(sm) near 0, while L[fp;S] and its derivatives vanish to all
o(s -q) near oo so that the assumptions of this theorem are valid with all bin, 0
for F(s)- L[fp; s]. Thus we may shift the contour to the imaginary axis and
integrate m times by parts to get

(4.5)
f(t) fp(t) L- l{F(s) L[-fp; s]; t}

(-t) dyexp(ity)(d/ds)m{F(s) L[f;S]}s-i,.

The last integral for >= to is the uniform limit of continuous functions, and as
--, + oo, is o(1) by an extension of the Riemann-Lebesgue lemma (Doetsch [15,

p. 171]).
TI-mOREM 3 (compare Doetsch [-16, pp. 159-160]). In any sector larg sl =< 0

with rc/2 < 0 <= re, let F(s) be holomorphic on some punctured neighborhood
0 < Isl =< 6 and locally integrable on the rays arg s 4-0 even outside this neighbor-
hood. Let the contour C(O), in the counterclockwise sense, be the union of
{6 exp(iqS)’[l < 0} and {p exp(+_i0)’6 <= p}. For all >= some to let the integral

(4.6) f(t) (2rti)- fc exp (ts)F(s) ds
(o)

be well-defined. If F(s) has a Mellin expansion near 0 uniformly in [arg sl -<_ 0, then
f(t) has the Mellin expansion near + oo determined uniquely by Theorem 1.

Proof By hypothesis F(s) F(s) + o(s) near 0, with r positive and arbitrarily
large. However the terms of Fr(s) yield a finite Mellin series via the integrals
(3.16)-(3.18), while the remainder o(s) yields a term o(t 1)near + oo by Watson’s
lemma. We obtain the same series by this result and by Theorem 1, since we evaluate
the same integrals in both demonstrations.

As an alternative to equations (3.16)-(3.18) in the use of Theorems 1-3, we
can obtain the expansion off(t) by assuming an arbitrary form (3.1), computing
the series for Lf; s], and equating coefficients. If the terms which involve sb in
the expansion of L[f; s] have the form sbQ(log s), where Q is a polynomial of
degree n, then the corresponding terms in the expansion off(t) have the form
t-- 1P(log t), where P is a polynomial of degree n when b 0, 1, 2, and
is a polynomial of degree n otherwise. In particular if b 0, 1, 2,... and Q is a
constant, then P is identically zero, as Lemma has shown.
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The existence near + of a Mellin series for f(t) is assumed in Theorem
but proved in Theorems 2 and 3, so that these additional results offer sufficient
conditions thatfbe in MAR(O), given thatfis in AR(O). However the assumptions
of Theorem are patently necessary, whereas the assumptions of Theorems 2 and
3 are demonstrably not. Indeed the following construction yields many functions

f with Mellin series near + oe such that Theorems 2 and 3 do not apply to the
corresponding L[f; s]. Our further development provides other conditions under
which functions f lie in MAR(O)..

Example 4. For an arbitrary sequence A (a l, a2,"-) of complex numbers
and any increasing sequence T (t l, t2, ...) of positive numbers, we may define
A(T; s) to be the Dirichlet series

(4.7) A(T; s) E ai exp (- sti)
i=1

whenever and wherever it converges. It follows from standard theorems (e.g.,
Widder [47, pp. 44-45]) that A(T; s) has a maximal half-plane of convergence
Re (s)> r within which it is holomorphic, and has a maximal half-plane of
analyticity Re (s)> ah into which it may be continued, where -oe _<_ ah < ac
< + o. Moreover if

(4.8) -< +,
i

then Re(s)--ah is a natural boundary for A(T; s) by a theorem of Bernstein
([7, pp. 139-141], Schwartz 42, p. 63]).

Now let T be any increasing sequence which satisfies (4.8), and let A be any
positive sequence with {a,(t,)r’i 1, 2,... } bounded, {a, exp (rti)’i 1, 2,... un-
bounded, forallr > 0;forexampletakeai exp(-t]/2).Alsoon- < < +
let q(t) be the characteristic function of [0, 1) and let

(4.9) g(t) E aiq(t- ti)"
i=1

Then g(t) vanishes on (-, 0] and converges on (0, + c), since no bounded
interval, by (4.8), can contain an infinite number of gi. Indeed g(t) is bounded on
(-, + oe) and g(t) o(t -) near + o for all r > 0, so that M[g; z] converges
absolutely for all. complex z and L[g;s] converges absolutely for Re(s)>= 0.
Thus L[g; s] can be expanded by moments to yield

(4.10) L[g;s] M[g;n+ 1](-s)"/n! ass--,0+.
n=0

By construction g(t) has a Mellin expansion near + oe which is identically
zero, and thus can be recovered from (4.10) by either Lemma or Theorem but
cannot, as we shall see, be recovered by either Theorem 2 or Theorem 3. Indeed if
Theorem 2 were valid in this situation, then g(t) would be continuous near + oe,
whereas this is false by construction. Moreover L(g; s] diverges for s < 0 so that,
by a standard theorem (Widder [47, pp. 58-593), it has a singularity at the origin,
and

(4.11) L[g s] s- [exp (s) 1]A(T; s)
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SO that, by the cited theorem of Bernstein, it has a natural boundary, on the
imaginary axis. Clearly Theorem 3 cannot apply in this situation. Finally iff is in
MAR(O) and c is any nonzero complex number, thenf + cg is in MAR(O) with the
same Mellin series near + oe but if L[f; s] can be treated by either Theorem 2 or
Theorem 3, then L[f + cg;s] cannot be so treated.

Remark. Let U be a region in the complex s plane which has the origin on its
(piecewise smooth) boundary, and let F(s) be a C-function on U which has an
asymptotic power series at the origin. Then F(s) is uniquely determined, through
some theorems on quasianalytic functions (Carleman [10, Chap. 5, Mandelbrojt
[32], Davis [13]), whenever the remainders for this series, or the derivatives of F(s),
are bounded in a suitable norm by a related sequence of constants. Similarly one
might try to find bounds on analytic functions which would uniquely determine
F(s) L[f; s]. However any such result would then uniquely specify f, whereas
we wish not to distinguish betweenfandf + g, where g is any function in MAR(O)
with vanishing Mellin series near + oe, for instance, the functions of Examples
and 4.

5. Auxiliary functions. Our next goal is to prove MAR(O) closed under con-
volution, so that iff is a ,-polynomial in elements of MAR(O), then necessarilyf is
also an element of this space, and Theorem 1 can be used, even when Theorems 2
and 3 fail, to obtain the Mellin series for f near + oe from the Mellin series for
L[f; s] near 0 +. However we postpone to 6 the study of general convolutions,
and introduce first a set of auxiliary functions ha,,, whose form is motivated by the
expansion (3.1) and whose convolutions are described by Theorem 4. Previous
authors (Brennan, Reed, and Sollfrey [9], Blum [8]) have treated some convolutions
of this type, but their results apparently fail when a 0, 1, -2, ..., so that we
give an independent analysis of this problem.

Our result involves an application of Theorem 1, but the preliminaries require
some identities for the incomplete beta function B(a, b;s) including several well-
known expressions (Abramowitz and Stegun [2, 6.6]) and a nontrivial Barnes
integral representation. However in order to use these relations over the full
complex range of a, b, and s, we define B(a, b;s) in terms of the hypergeometric
function and sketch proofs of these identities in the next lemma. In particular, for
all complex s in the set

(5.1) C* C-

all complex b, and all complex a q: O, -1, -2,..., we define

(5.2) B(a, b s) a- 1saF(1 b, a, + a s),

where F(a, b, c; z) denotes the hypergeometric function. Also for any complex
number a and any nonnegative integer m, we let

0 on[O, 1),
ha,,,(t)

l(log t) on [1, + oo),

Ha,,,(s) L[ha,m s] on Re (s) > 0.
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LEMMA 3. The incomplete beta function satisfies the following identities"

(i) B(a, b s) a- sa(1- s)bF(1, a / b,1 / a s)

(ii) B(a, b s) u 1(1 u)b- du for Re (a) > 0

(iii) B(a, b s) + B(b, a; s) B(a, b; 1) F(a)F(b)/F(a + b) for
a,b 4 0, -1, -2,

i(1 s) _f-c+ F(-a- z)F(a + b + z)
(iv) B(b, a; s)

2F(1 a)F(a + b). -c-i sinz Sa+z dz

for Re (- b) < Re (a) < 0, where c is any positive number < 1, Re(a + b).

Proof We may obtain (i) from a standard identity for hypergeometric functions
(Abramowitz and Stegun [2, (15.3.3)]), verify (ii) for 0 < s < by expanding
(1 u)b- and integrating term by term, then extend (ii) to all other s in C* by
analytic continuation. By a simple manipulation (iii) now follows from (ii) for
Re (a) > 0, Re (b) > 0, and by analytic continuation it extends to all other a, b 4: 0,

1, -2, .-.. Thus by (i) and (iii) we may write

(5.4) B(b, a;1 s) B(a, b;1) a-1sa(1 s)F(1, a + b, / a;s)

for a, b - 0, 1, 2, whence to establish (iv) for all stated values of a, b, and
s we need only prove

B(a,b; 1)(1 s) -b a-lsaF(1,a + b, + a;s)

[-2iF(1 a)F(a + b)]-1 F(-a- z)F(a + b + z)csc rcz. s+ dz

for 0 < s < and for nonintegral a with Re(-b) < Re (a) < 0.
As a function of z x + iy with any fixed x, the integrand of (5.5) is

O(lyl-1 e-2lrl) as y - + (Abramowitz and Stegun [2, (6.1.45)]); so that the
contour of integration may be shifted rightward as far as we please, and the integral
in (5.5) may be evaluated as a sum of residues. Indeed the remainder estimates go
to zero, so that the resulting series converges to this integral. But under the stated
restrictions on a and b the singular points of the integrand to the right of -c are
simple poles at z -a, -a + 1, -a + 2, and at z 0, 1, 2, .... By computa-
tion we find that the terms corresponding to these two sets of poles yield respectively
the standard expansions of B(a,b; 1)(1 s)- and -a-lsaF(1, a + b, 1 + a;s).

LEMMA 4. For all complex numbers a, b and all nonnegative integers m, n, the
function ha, , hb, is in MAR(2).

Proof This convolution must clearly vanish on [0, 2) and be locally integrable
on [2, + o), so that we need only check the form of its asymptotic expansion.
However by a simple manipulation,

(5.6) t[h,,, hb,n](t) [ha+ ,,m * hb,n](t) + [ha,m * hb+ 1,,] (t)

so that by induction, for q 0, 1, 2, ...,

(5.7) [h,,,,, * h,,](t) -q [ha+ p,m +q
p=O
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Thus, through the commutativity of * and repeated use of (5.6) we can express
the given ha, , hb, as a linear combination of such convolutions with Re (-b)
< Re (a) < 0.

However for all complex a and b, by differentiating under the integral,

(5.8) ha,,, * hb,,
c3

[ha,o * hb,o],

and for Re(-b) < Re(a) < 0, with s t-1 < 1/2,

(5.9)
[ha,o * hb,o](t) "+b- (1 v) lye-1 dv

a+b- liB(b, a; s) B(b, a; s)].

Thus for all > 2, by Lemma 3.4,

[ha,m, h,,](t)
c3

-b-lta-lF(1 a,b, + b;t -1)

i(1- t-1)b f-c+iF(-a-z)F(a+b+z)t,_Z_ldz}"+ 2r( )’-h - b)._c_ioo sin nz
In the first term on the right side of (5.10) we may expand in t- and differenti-

ate term by term, since the hypergeometric function is absolutely convergent for
It- 11 < 1. In the second term on the right side of (5.10) we may differentiate under
the integral and again shift the contour rightward, since the integrand remains
exponentially decreasing along vertical lines. However (O/Oa)mt"= t"(logt)m,
(O/Ob)"t t(log t)", and (O/Oa)mF(- a z) is a meromorphic function with poles
of order m + 1 at z -a, -a + 1, -a + 2, ..., so that the resulting series has
the form (3.1) as + .

LEMMA 5. The transform Ha,,,(s of (5.3) can be analytically continued to a
holomorphic function on the Riemann surface of logs. Near O, uniformly in
larg sl-< rt/2,

Ha,re(s) m !(- s)"/n !( a n)" +1

(5.)
.--o

+ s-" F(a)(-log s)k

for all a :/: O, 1, -2,..., and

Ha,re(S) 2 m !(- s)n/Fl !( a ?’l) +1

:/: O
(5.12)

l(m+ 1)(-1)m+l(lgs)"[-" S
k=O k (m + 1). (-a)! sinrcz. F(1-a+ z) z:o

for all a O, -1, -2,.... Near oe, uniformly in larg sl -< 0,

(5.13) Ha,m(S exp (- s) s-m-1 2 c(a, m, r)s
r=O

for any 0 < 3rt/2 and some real constants c(a, m, r).
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Proof. The Laplace transform of h,,m is continuable to any s - 0 via

(5.14) Ha,,,(s) s-" exp (-u)u"- 1(log u log s)" du.

From the Mellin transform of h,,, we get (5.11) and (5.12) by shifting the contour
to the right in

(5.15) H.,(s) (2hi)- r(m + 1) s 1(1 a z) 1F(1 z) dz.

Indeed the remainder has form (5.15) to any order with F(1- z)
O[e-lyl/2lyi-Rec)+ 1/2] as y (Abramowitz and Stegun [2, (6.1.45)])

whence this remainder is O(s ) for larg sl n/2. Moreover

(5.16) H,,m(S exp(-s) exp(-st)(1 + t)"- [log (1 + t)]dt,

which has the desired expansion near by the complex form of Watson’s lemma
(e.g., Doetsch [16, p. 48]).

TORE 4. For all complex numbers a, b and all nonnegative integers m, n, the
function [h,, * h,,](t) has an asymptotic expansion near + ofform

(5.17) "+- P(log t) + "- (t- )(log t) + - g(t- )(log t).
j=o k=o

In (5.17) the expressions(t- ) and g(t- ) are asymptotic power series in t- , and
the expression P(log t) is a polynomial in log t, of degree m + n when both a, b O,

1, -2, ..., and ofdegree m + n + otherwise.
Proof If a, b 0, 1, 2, ..., then this follows from (5.8) and the identity

[h,o.h,o](t t"+-B(a,b,1)- a-t-F(1 b,a,1 + a;t-)
(5.18)

-b-t".-F(1-a, +b;t-) for2 <t,

which in turn follows from (5.9) and Lemma 3.3 by analytic continuation. However
for the remaining values of a and b it is tedious to argue from (5.10), whereas by
Theorem 1, having just proved that h,, h,, is in MAR(O), we need only show
that L[h,,;s]L[h,,;s] has a Mellin series near 0+ corresponding to (5.17).
However by Lemma 5,

(5.19) L[h,,m; s] s-"Q,(log s) + S,(s) as s 0+,

where S(s) is an asymptotic power series in s, and Q,(s) is a polynomial in log s,
of degree m if a 0, 1, -2, and of degree m + 1 otherwise. Since L[h,, ;s]
has a similar expansion, we find

(5.20) L[h,, * h,,; s] s-"-Q,Q + s-"Q,S + s-QS, + S,Sb,

which is, for all a and b, a form corresponding to (5.17).
By more detailed study of (5.10), of the hypergeometric equation, or of some

other representation for h,, * h,, (Blum [8]), we can show that the series and
g converge for [t[ > 1, but we shall not need this additional information.
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6. Closure under convolution. In the preceding sections we have introduced
various convolution algebras of functions defined on [0, + or), and have distin-
guished the corresponding subspaces of functions with Mellin expansions near
+ . Also we have introduced the auxiliary functions ha, in MAR(I) and proved
that their convolutions lie in MAR(2). We proceed now to show that the space
MAR(O) is closed under convolution, hence that various subspaces of MAR(O) are
convolution algebras. Our argument relies upon estimates of many remainders,
hence begins with a lemma on finite expansions. Also we shall use without further
comment the following immediate consequence of Theorem 4: iff and g are two
complex-valued, locally bounded, locally integrable functions on [0, + ), both
vanishing on some nonvoid interval [0, to), and if f O(h,,,), g-- O(hb,n) near
+ , then f* g is O(ha+b,m+,+ + h,, + hb,,) near + . To prove this we need
only change the t-scale so that to ->_ 1, and observe thatf * g is dominated by some
multiple of h,, * hb,,.

In a closely related investigation, Riekstirl [40] considers two locally inte-
grable functions with asymptotic series near + in certain related powers of t,
and expands their convolution in a corresponding series near + , with a possible
factor log (t/2). He calculates the leading term of his result explicitly for functions
assumed of this type, but claims the validity of his approach essentially for all
functions with Mellin series. His method involves splitting the integral into more
tractable parts, treating each by an iterative method (e.g., Tihonov and Samarskii
I44], Millar [35]), and regrouping terms into a final series. By comparison, we use
such direct calculations, as in the next lemma, only to show the existence of a
Mellin expansion, and invoke Laplace transforms, as in Theorems and 4, to
obtain systematically the successive terms of the series.

LEMMA 6. Let F be a complex-valued function on [0, + ) which is of bounded
variation on each finite interval, is absolutely continuous on some nonvoid [to, + ),
and satisfies dF/dt O(hb,o) near + for some b < O. Then for any complex
number a and nonnegative integer rn the function

(6.1) h(t) ha,m(t u)dF(u)

is defined for > o + and can be expanded near + in a finite series ofform
r-1

(6.2) h(t) bjkto-J- 1(log t) + R(t)
j=Ok=O

for b + r < O, where R is O(h,_,,, + hb,m) near + . In particular ifdF/dt o(t-")
near + for n l, 2,.-. then h(t) can be expanded in an infinite Mellin series.

Proof For Ix[ < we have the expansion
r--1

(6.3) (1 x)"-’[log (1 x)]J= cjx + Qj(x),
k=0

where the cj are the coefficients given by Taylor’s theorem; and for 0 =< x <
we have the inequality

(6.4) Ix-Qj(x)] <= C + C2(1 x)"-llog(1 x)l J,
where C and C2 are some positive constants.
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If t> to + 1then

(6.5) h(t) h,m(t u) dF(u) + h,,(t u)--d-uu du,

and both parts of this integral are defined for almost all t. Without loss of generality
we may therefore take __< to < and use (5.3) to get

h(t) t"- 1(1 t- lu)"- 1[log + log (1 t- lu)]m dF(u)

0 (’) f1-1 lu)a-l(1og t)m-j (1 [log (1 lu)JJ dF(u)
j=

(6.6)

[foE t"-(log t)-j cjt- u aF(u)
j=o k=o -+ (t- ul f(ul

0

u dF(u) in (6.6) are convergent since k + b < 0, and thus yield aThe integrals o
finite series as required; the integralsu dF(u) and the functions Q(t-u)
yield remainder terms, and must therefore be shown small enough.

Since b < -r, a typical remainder term of the first kind is

cj J
u+- du

(6.7)

a-k- 1(log t)m-j u dF(u) a-k- 1(log t)m-Jo
-1

O(ha + b,m- j) O(ha_ r,m) as --, + o.

By (6.4) a typical remainder term of the second kind is

(6.8)

t"-1(log t)-j

+t--,-l(logt).,-O(fl-’
The first O-term in (6.8) is

Qjr(t- lu) dF(u) 1(log t)m-Jo

(1 t-u) llog(1 t-u)lJu"ldF(u)l

1(log t)m-J + u IdF(u)l (log t)m-Jo(1 + b+r)
(6.9)

O(h,_,m_j) as +.

The second O-term in (6.8) may likewise be split into an integral from 0 to to,
whose contribution is O(ha_r,m_j) and an integral from to to 1, whose con-
tribution is dominated by

t-(log t)’’-J (t u)"- lllog (t u) log Ju+- du

(6.10)
J t-r(1og t)m-k (t U) l[1og (t U)JkUb+r- dtl.

k=O
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However a typical term in (6.10)is

)t-r(logt)m-kh,,,k*hb+r,o(t)
(6.11) t-r(logt)m-kO(h,+b+r,+ + h,, + hb+r,o)

O(ha_r, / hb,m_k) as ---, + .
Collecting (6.7), (6.9), and (6.11), we verify the stated estimate for R(t).

TI-IOREM 5. The following sets are commutative complex algebras (in fact,
integral domains) under pointwise addition, scalar multiplication, and Laplace
convolution"

(i) MAR(O /),

(ii) MAR’( -) AR’( ),

(iii) MAR(t)for 0 <= < + ,
(iv) MLl(R(t)) for 0 <= < + ,
(v) M/((t)) Ml(l(t)) for <= p <= + , 0 <__ < + .
Proof By definition, MAR’(-) AR’(-) and by (2.3), AR’(-)is a

complex algebra. We recall that the intersection of two algebras is an algebra,
and that AR(0), hence any subalgebra, i an integral domain; and we note that
each of the other given sets is the intersection of MAR(O) with the set obtained by
deleting M. In 2 we found that the latter sets are all complex algebras, whence
now we need only show that MAR(O) is such an algebra.

Since MAR(O) is a complex vector space, we need only show that it contains
h.2 whenever it contains h. However we can decompose h g + j with g in
AR’(-),flocally bounded, andj’in MAR(to) for some to >_- 1. By (2.2) and (2.3),

(6.12) g.2 e AR’(-) = MAR(O),

while g * f f* g and f.2 are in AR(O). Hence we need only verify to any order
that the last two convolutions have Mellin expansions near + .

If the Mellin expansion off has the general form (3.1), then

(6.13) f(t) am,h,(,,), + O(h,p(t)) as - +
Re[a(m)]

for any real number c and some nonnegative integer p. Thus g * f is a finite linear
combination of terms g * h,,m, each of which is in MAR(l) by Lemma 6, plus a
term g * O(hc,p), which is O(hc,p) by Lemma 6. Alsof.2 is a finite linear combination
of terms h., * hb, each of which is in MAR(2) by Lemma 4, plus a finite linear

O(hc,v)and O(hc,p) * O(hc,p) each ofwhich, for any ; > 0,combination of terms h,,m
is a finite Mellin series + O(hc-,o) by Lemma 6. However c can be chosen arbitrarily
near -, so that h.2 is in MAR(O) as required.

If the functionf, for some complex c, is an element of E(c)L I(R(0)), and if P(z)
is a complex polynomial without constant term, then (2.5) yields an element P*(f)
in E(c)LI(R(O)) and (2.13) shows that

(6.14) L[P*(f) s P(L[f s).
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Moreover iff is in one of the algebras treated by Theorem 5 then P*(f) is in this
same subalgebra of MAR(O), so that P*(f) has a Mellin expansion near + o.
However this expansion follows by Theorem from the Mellin series for L[P*(f); s]
near 0+, which follows by (6.14) from the Mellin series for L[f; s] near 0+, which
follows by our previous work (Handelsman and Lew [23]) from the Mellin series

forfnear + o. Thus Theorems and 5 enable us to find the series for P*(f) to any
order from the series forfto a corresponding order, via straightforward calculation
with approximate transforms. The examples of 3 show that such calculations are
unreliable without the rigorous foundation of these theorems.

7. Applications to probability. Our results find immediate use in the theory of
probability, specifically in the study of random sums. By a simple argument
(Feller [19, p. 7]), if the independent random variables T1 and T2 have respective
probability densitiesf andf2 on 0, + oe), then the sum T + T2 has densityfl * f2.
Hence by induction if the independent positive random variables T1, .’., T, have
identical probability density f on [0, + oe), then the sum T +... + T, has
density f*". However,f ,fz, and f lie in L(R(0)) so that, by Theorems and 5 of
this paper, we can obtain the behavior off * f2 near + given Mellin series for

Ji and f2 near + o, or the behavior off*" near + o given a Mellin series for f near

+ oe. To expand an n-fold convolution by the direct method of Riekstiqg [40]
would require n repetitions of his detailed procedure for such integrals. We
introduce some notation for standard densities, and offer some examples of our
method.

Hereafter go will be any function in L(R(O)) which is o(t-") near + o for
all m > 0; in particular go may be the function of Example 4, which is not tractable
by Theorems 2 and 3. Then the moments of go are absolutely convergent, and its
Laplace transform near 0 + is given by

;02(7.1) L[go s; l,(- s)"/n with/, t"go(t) dt.
n=0

For any a, p > 0 the gamma density is defined by

(7.2) g,,p(t) exp (-at)aPtp- /F(p) on I0, + oe),

and its Laplace transform on larg (s + a)[ < rc is found to be

(7.3) L[ga,p; s (1 + a- is)- P.

For any r > 0 the Pareto density is defined by hr rh_r,o or, from (5.3), by. 0 on E0, 1),
(7.4) h(t)

rt onI1, +oe),

and its Laplace transform near 0 + is given by Lemma 5. Moreover if F(a, z) is the
usual incomplete gamma function and if M(a, b, z) is Kummer’s confluent hyper-
geometric function, then (Abramowitz and Stegun [2, (6.5.3), (6.5.12)])

L[hr s] rsF( r, s) -F(1-r)sr+ M( r, 1- r, s) forr4= 1,2,....
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To construct some examples amenable only to Theorem 1, we define

(7.6) kr(t) hr(t) + g0(t),

and we note that k has only a finite number of moments but has a Mellin series
near +. Near 0+, for r 4: 1, 2,...,

Like;s] -r(1 r)s + G(s) r(1 r)s +
(7.7)

,:0

c,:(-1)"[#,+ r/(r-n)]/n! for n 0,1, 2,

by Lemma 5 and equation (7.1); while near 0+, for r 1,2,...,

L[k s] -(- s) log s/F(r) + Gr(s) -(- s) log s/F(r) +
(7.8)

cr, same as.(7.7) except % (- 1)[#r + rO(r + 1)]/r!,

with O(z) (d/dz)log F(z). The transformation D(a) of (2.6) preserves integrals on
[0, + ) and commutes with operations in MAR(O), hence changes the scale of
and generalizes our results for k. Our results will be obtained for this unnormalized
function k and must be corrected by suitable factors c"0 to be valid for the proba-
bility density

* ga,q ga,p+ by (7.3) so thatExample 5. If 0 < p, q, then ga,p q ga,p ga,,p by
induction; but if 0 < b < a then both ga,p and gb,q are in E(-b)MAR(O) by (2.6),
so that

(7.9) exp (bt)[go,p * gb,q] (t) f(t)e MAR(O)

by (2.7). Moreover by (7.3) we have

(7.10)
L[f; s] aPbqs-q(s + a b)-

aPbq(a b)- n;o (a b)-

whence by Theorem we can recover the Mellin expansion for f near + . On
the other hand,

(7.11) [ga,p * gb,q](t) aPbqe-bttv+q-1M(p,P + q,bt at)/r(p + q)

from an integral representation of M(a, b, z), so that the Mellin series for fcan be
found in standard compilations (Abramowitz and Stegun [2, (13.2.1), (13.5.1)3).
However the method involved, after more work, yields the expansion near +
of any ga,p * gb,q * gc,r’

Example 6. The Mellin series near + o for h * hs is given by (5.13) for r, s,
:/: l, 2, and described by Theorem 4 for all r, s. The Mellin series for h; is given
by Brennan, Reed and Sollfrey [9] for r va 1, 2,... and generalized to k" in the
next example. Here we note by Theorem 5 that ga,p * kr is in ML(R(0)) and by
Theorem 4 that [g,p * go](t) o(t -") near / o for all m > 0, hence directly that
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* hr then byga,p * kr and ga,p * hr have the same Mellin series near + Iff ga,p
(7.3) the transform L[ga,p; s] is analytic at the origin, whence by Lemma the
expansion off near + o is determined by the function

(7.12)
-F(1 r)s(1 + a-1s)-P for r - 1,2,

(- s)(1 + a- IS)- p log s/F(r) for r 1,2, ....
In either case we can expand near s 0 and invert by Theorem to get

(7.13) f(t) rt --1 p...(p + n- 1)(r+ 1)...(r+ n)(at)-"/n! ast +o.
n=0

To understand (7.13) for r -- 1, 2,..., we take the integral (2.14) forf(t) and
deform its contour to the path C(n) which runs from - to 0 + just below the
real axis, then from 0+ to -oc just above the real axis. The integrand is the
product of (7.3) and (7.5), so that

f(t)=(2ni)-l{F(1 -r) fc exp(st)s(l+a-ls)-Pds
(7.14)

fc(, exp(st)M(-r’l-r’-s)(l+a-s)-Pds}
and M(a, b, z) is an entire function, so that the second integral is O(e-attp- 1) near
+ o. If we split the contour C(n) at -a both below and above the real axis, and
recall standard integral formulas for the confluent hypergeometric functions
(Abramowitz and Stegun [2, (13.2.1), (13.2.6)]), then we can evaluate the resulting
four integrals for p < and extend the resulting identity to all other p. Hence by
analytic continuation the first integral in (7.14) becomes

[ar+ F(1 p)/F(r p + 2)][rM(r + 1, r p + 2,-at)
(7.15)

+ F(1 r) exp(-at)U(1 p, r p + 2, at)/F(p r 1)].

As + in (7.15), the first term yields (7.13) and the second term is O(e-"ttp- 1),
whence the first term approximates f(t) within o(t -m) for all m > 0, although it is
not equal tof(t) on [0, 1), or any other interval.

Example 7. We now consider the functions k;", which are in ML(R(O)) by
Theorem 5, and recall the functions G with coefficients c,, which were introduced
in (7.7)-(7.8). The constants c(r, m, j) are defined here for convenience by

(7.16) Gr(s) c(r, m, j)s as s 0 +
j=O

and can be expressed simply in terms of the c,. For example if m _>_ 3, then

(7.17)

c(r, m, O) c’o
m-1c(r,m, 1)=mco crl,

c(r, m, 2) mc’o- 2[CrOCr2 qt_ (m 1)c21/2],
c(r, m, 3) mc’o- 3 2[CroCr3 + (m- 1)CroCrlCr2 + (m- 1)(m- 2)c31/63.
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For all r 4: 1, 2, by (7.7) and (3.16),

L[k;";s]= L[kr;s]"=
m=0 r) (-1)mF(1 -r)msmrGr(s)n-m

(7.18)
n

(_ 1)"F(1 r)mc(r,n m,j)smr+ as s 0+
m=0j= m

k;"(t) 1)mF(1 r)mF( mr j)-lc(r, n m, j)t- j-1

m=0j=

ast +m.
Some distributions of insurance claims have recently been described by densities
of type kr with =< r =< 2 (Benktander [4]). Thus we take r 3/2 as a special case,
and find

L[k3/2;s]n=G3/2(s)n+2nF )s3/2a3/2(s)n-l+erc )$3G3/2(s)n-2
-t-87"c()F )s9/2G3/2(s)n-3 -+-

k*3"/a(t) n{(3/2)c(3/2, n- 1,0)t-/:- (15/4)c(3/2.n- 1,1)t -7/a

+ (105/8)c(3/2, n 1,2)t -9/2
(7.19)

(945/16)[c(3/2, n 1,3)

+ (2r/3)(n 1)(n 2)c(3/2, n 3,03t -a 1/2

-+- 0(t-13/2)} as -- -+-
For all r 1, 2, by (7.8) and (3.18),

L[k;; s Lk; s] (- "F(r) "s"(log s)mGr(s)
m--O m

(7.20)
n

1)m+mF(r)_mc(r n_m j)s,r+J(logs)
m=O j=O m

as s --, 0 +, and k" has an explicit series near + s in powers of t- and log which
is more complicated than (7.18). Thus we give the rest of this computation for the
special density k2, which lies just within the domain of attraction for the normal
distribution (Feller 19, p. 544]). In this case,

n
G2(s)"- 2S4(1og S)2L[k2 s]" Gz(S) nGz(s) ls2 log s +

2

()G2(s)n-3s6(log s)3 -+ ’’’,

k2" n{2c(2, n 1,0)t- 6c(2, n 1,1)t -4

+ 24[c(2, n 1,2) + (n 1)c(2, n 2, 0)(log O(5))]t -s
(7.21)

120[c(2, n- 1,3)+ (n- 1)c(2, n- 1,1)(log t- O(6))lt -6

+ OEt-V(log02]} ast +oo.
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For an arbitrary go, as in Example 4, we might conjecture these expansions
from Theorems 2 and 3, but can prove them only by Theorems and 5. On the
other hand, for go -0, we can use standard results (Abramowitz and Stegun
[2, (6.3.5)]) to obtain the simplification

h*zn(t) 2nl)t -3 + 12n2)t -’r + _48n3)- 14n2) + 24n2) logt]t -5

(7.22) + [160nt4)- 188n13) + 40n/2) + 240nt3) log tit -6

+ O[t-7(log t) 2] as --, + c,

n{m)= n(n 1)... (n- m + 1).
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AN ESTIMATE FOR THE RATE OF CONVERGENCE
OF CONVOLUTION PRODUCTS OF SEQUENCES*

R. BOJANIC AND Y. H. LEEr

Abstract. Suppose that the series : PkXk has a positive radius of convergence R and suppose
that the sequence of positive numbers (a,) satisfies the condition a,/a,+ 2 + 0(6.) where 0 < 2 __< R
and (6,) is a sequence of positive numbers converging to zero. If 0 < 2 < R and if 6,/6,+ l, then

an_k
p--= pk, + o(a.) (n-* ).

k=O an k=O

If /l R, the same result is true, but one has to assume that =1 kalpk[RR < o for every a > 0
and nti, O(1), n(5,/5,_ l) O(1)(n o).

1. Let (a,) and (p,) be two sequences. The convolution product of (a,) and
(p,) is the sequence (c,) defined by

c, Pka,,- n 0,1,2,’’’.

One of the simplest result n the study of convolution products can be
stated as follows.

If the series :o Pk converges absolutely and if lim,_ a, c, where 0 < c

< , then

an-klim Pk Y’ Pk"
n--* k=O a k=O

If: Pkl k" < for some r/ > 0, the same result is true if we assume, more
generally, that (a,) is a slowly varying sequence, that is,

lim a"---! 1, for every 2 > 1.
a

This result follows from a general theorem of M. Vuilleumier (see 1, Thm. 1).
Results of this type under much weaker hypotheses about the sequence

(an) are also known [2, Chap. IV, prob. 178]. A typical result in this direction
can be stated as follows.

Suppose that the series =o PkXk has a positive radius of convergence R.
If (a,) is a sequence of positive numbers such that

(1.1) lim
a,

2
n-m an+

and if0<2<R, then

an_k
(1.2) lim Pk---- 2 Pk2k"

noo k=O an k=O
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The aim of this paper is to give an estimate of the rate of convergence of the
convolution products assuming that we have information about the rate of con-
vergence of the sequence (G/a,+ 1). We shall assume here, instead of (1.1), that

a

an+
+ o(.) (-+ ),

where (6,) is a sequence of positive numbers converging to zero, satisfying the
condition

(1.3) lira 6.+ 1/6. 1.

Sequences like 6, n-(log n) (e > 0) or 6, n/e -" (0 < ? < 1) obviously
satisfy these conditions.

If 0 < )L < R, we obtain then, instead of (1.2), the asymptotic relation

p-- p; + 0((.) (n --, o).
k-0 an k=0

If 2 R, the same result is true under somewhat stronger hypotheses about
the sequence (,) and the nature of convergence of the series =o Px on the
boundary of the circle of convergence. More precisely, we shall prove in the next
sections the following results.

THEOREM 1. Suppose that the series =o Px has a positive radius of con-

vergence R and suppose that a sequence of positive numbers (an) satisfies the condi-
tion

(1.4)
a

an+
=<_ cSn, n 0,1,2,...,

where ((3n) is a sequence of positive numbers such that

n --+ O

If 0 < < R, then we have

(1.5) lim sup’/,-k= 1Pk-----

and 3 +1/6 --* n --. o

an- E Pk"kan k=

THEOREM 2. Let R be the radius of convergence oj’ the series o Pkxk"
Suppose that

(1.6) kpklR < for every > O.

Let (a,) be a sequence of positive numbers such that

(1.7)
a,-1 R c5,,_1, n 1,2,
an

where (6n) is a sequence of positive numbers satisfying the fi)llowing conditions"

(1.8) no3 0(1) and --- 0(1) (n ).
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Then
an_

(1.9) lim sup Pk-- 2 PkRk < Znn ank=l k=l

A typical series which satisfies the condition (1.6) is =1 e-xk" The con-
ditions (1.8) are obviously true if 6, n (0 >= 1). The sequence 6, n
< 1) does not satisfy the first of the conditions (1.8), but it satisfies the second.
On the other hand, the sequence 6, e- satisfies the first of these conditions
but not the second. If we assume that n6, o(1) instead of n6, O(1) it is interest-
ing to observe that the sequence (a,) has then the representation
where (1,) is a slowly varying sequence.

The proofs of Theorems and 2 will be given in 2 and 3, respectively.

2. The proof of Theorem is based on two lemmas. The first lemma shows
essentially that a sequence (6,) satisfies condition (1.3) if and only if the sequence
(p";5,) is eventually increasing and the sequence (p-"6,) eventually decreasing for
every p > 1. The second lemma establishes a basic inequality.

LEMMA 1. Let (6,) be a sequence of positive numbers. Then

(2.1) lim .+ 1/6.

if and only if the sequence (p"6,,) is eventually increasing and (p-"6,) eventually
decreasing for every p > l.

Remark. If (p"6,) is eventually increasing for every p > 1, it is easy to see
that p"6, (n o) for every p > 1. If p > 1, we can find Po such that p > Po
> and NOo such that the sequence (p6,) is increasing for n > Noo. We have then

p"S, (p/po)"pb, >= (p/po)"pobNoo - (n ).

Proof. Suppose that the sequence (p"6,) is eventually increasing and
eventually decreasing for every p > 1. We have then, for n >__ No,

(2.2)

or

pn6n P"+ l(n+ and p-"6, >__ p-(’+ 1)5,+

(2.3) < 6,+1 _< P

Hence
_1 < li,rn inf

6, +. lim sup
6, +

p- -o 3, ,-.o

< p’

and (2.1) follows, since p can be chosen arbitrarily close to 1.
Next, suppose that (2.1) holds. Given p > 1, we can find No such that (2.3)

holds for n => No But then (2.2) holds for all n __> No Hence (p"6,) is an eventually
increasing sequence and (p-"6,) is an eventually decreasing sequence.

LEMMA 2. If

(2.4)

We say that a sequence (q.) is eventually increasing if there exists N such q.+ => q. for all n >_ N.
The eventually decreasing sequence is defined in the same manner.
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where , -, 0 and 6,+ 1/6, (n ---, ), then for every p > and e, > 0 there
exists N such that for n >= N + and 1, 2, we have

(2.5) k <= ka,_kpk- 1(/ + g,)k- for k 1, 2, 1.

Proof. Suppose that we are given p > and : > 0. Since, by Lemma 1,
(p-"6,) is eventually decreasing, we can find No such that

(2.6) 0-"6, >_- p-C,+ 1)6,+1 for n >= No.

Since 6, ---, 0 (n -, m), we can find N such that

(2.7) 6,<e forn>N.
Let N > max (No, N). The statement (2.5) is clearly true if 1. Suppose

that it is true for some r. We shall prove then that it is true for r + 1.
Suppose that n >__ N + r + 1. Then n > N + r and consequently we have,

by the induction hypothesis,

Cln-k ,k <: k6n_kpk- 1(2 + )k- for k 1, 2, r.
/n

Hence in order to prove that the statement (2.5) is true for r + 1, we only have
to show that

(2.8)

We have

and so

6in (r + r+l < (r + 1)6,_(r + 1)pr(2 + ,)r.

n-r-

ln-r- r+ n-r-

Since n __> N + r, we have, by the induction hypothesis,

n-r- < rn pr-l(,/],
__

_,)r-

Using this inequality and (2.4) we find that

ln-r- r+ < rn pr-1(/ + :)r-l(n + )+ ’rcn 1"
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Since n >_ N and t >__ No, we have by (2.6) and (2.7),

(n- < : and p--(,,-r- 1)3n_r - O-(n- 1)(n- 1’

Hence it follows that

a._r_ )f+ < i’(n p-(2+)+

._<= (r + 1)p6,__ 1( + c).
Thus, the inequality (2.8) is proved and the proof of Lemma 2 is completed.

Proof of Theorem 1. Let

an_kS,= pk- pk2k.
k=l an k=l

Since 2 < R we can choose c > 0 such that 2 + e < R. Next, choose p > such
that

(2.9) < /9
2 <

R

By Lernma 2 we can find a number N such that for n > N and =< k =< n N,
we have

an k <__ k6,_kpk- I(2 + c)-
Since (p"/,) is eventually increasing we can assutne also that

(2.10) p"cS, pn+ l(n+ for all n >= N.

If n > N, we have

an
Pk

k= an
n-N- Ipl
k=l

2 Pk’k
k=l

I, + J, + K,.

+ iPla._
k=n-N an k=n-N

We have first, by (2.5),
n-N

I, Ip l
k=l

n-N

-< klPklPk- ’(Z +
k=l

Since for every =< k __<_ n N, we have n k _> N, it follows from (2.10) that
i,__ okla,. Using this inequality we find that

n-N

I,, <= 6, klPlp2- (Z + 0k-1
k=l
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and it follows from (2.9) that

I,
(2.12) lim sup <

Next, we shall estimate J,.

klplp- *(A + 0-’ < o.
k=l

We have

k=n-N a

max a IPkl.
O<=k<-N an k= n-N

Since 0 < 2 < R, we can find r/e (0, (R 2)/(R + 2)) such that

(2.13) l-r/ l+r/

Then from lim sup. .0/P.[ R- and lim._ 2-
that, for n > N,, we have

we can conclude

an > R

Hence, for n N, + N, we have

and so

max ak)O<_k<N

max ak)O<_k<_N

Since + r//2 < + r/, by the remark following Lernma 1, we have

+ /+r/
6.0 (no).

Hence,

(2.15) lim Jn/fn O.

Finally, for k _>_ n N and n > N, + N, we have k _>_ N,
we have

,pkl < (1 d- )R

and it follows that, for n N, + N, we have

Kn: Z IPkl 2k=< Z
k=n-N k=n-N R

+ l) kfk"

and so by (2.14),
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Since, by (2.13), (1 + r/)2 < R, it follows that

K, _< .1____ 2
-((1 + r/)/R)2

and we conclude, as before, that

(2.16) lim K,/6, O.

Thus, from (2.11), (2.12), (2.15) and (2.16), we find that

anlira,-sup pa- pR klpl(R+e)u-p2u< ,
an k=

and the theorem follows by letting p + and e 0 +.

3. In order to prove Theorem 2, we shall first establish an inequality similar
to that of Lemma 2. Then we shall obtain some simple consequences of our
hypotheses (1.8).

LEMMA 3. U

where (ln) satisfies

an-
a

(3.2) n6, 0(1) and n

R =<6,_1, n= 1,2,--.,

o() (n--, ),

then there exist positive numbers M and N such that for n >= N + and 1, 2,
we have

Proof. By (3.2) there are numbers M and N such that for n _>_ N we have

MR
(3.4) I =< and

n+l
M

The statement (3.3) is clearly true if 1. Suppose that it is true for some r.
We shall then prove that it is true for r + 1.

Suppose that n >= N + r + 1. Then n => N + r and consequently we have,
by the induction hypothesis,

j=n-k +

Hence we only have to show that

an (r + 1)

a
Rr+l < (r + 1)R6._(+ )
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We have, as in the proof of Lemma 2,

an-(r+ 1)

a
Rr+l an-r-

an-
an_1

an

+ Rr
a,_

R
an

Since n _>_ N + r, we have, by the induction hypothesis,

a,__ R <= rRr-ltn-l-r H +
an- j=n-r

Using this inequality and (3.1) we find that

Since n r _> N, from (3.4) it follows that

,,_ <-_ MR and

_
N +

__
=n-r

and (3.3) follows from these inequalities and (3.5).
LNNa 4. If n 0(1) and n(/_ 1) 0(1) (n ) then there exists

a number M such that

[-I,=, (1 + 6k/R)
(3.6) lim sup n <

and

(3.7) lim sup n-M/6, < o.

Proof. For n => N we have, by (3.4),

1/ =< 1+
k=N k=N k +

Nexp M
k=Nk+l

(n + 1)

and (3.6) follows.
Next, let N be such that M/N < ). For n N we have, by (3.4),

(3.8) c5, >

and so
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On the other hand we have

k=N+ k=N+l

Hence,

exp (-M k=N+l

"qI- " log
k=N+l

>= exp

-M

k=N+l

nMf">----cSuexp( (--+log(1---)))k=U+l
> 6 exp -+ log

k=N+

Since the series=+ (M/k + log(1 M/k)) converges, it follows that

lim inf n6, > 0

and (3.7) follows.
Proof of Theorem 2. We have, as in the proof of Theorem 1,

an_k
Isl p- pe

k=l an k=l

In/2] an_
R

an_
R(3.9) [Pkl + IPkl + IPklan In/2] + an [n/2] +

I,+J,+ K,.

By Lemma 3 we can find N and M such that the inequality (3.3) is true for
all n >__ N + and 1, 2, Let n >= 2(N + M). We have then that N + In/2]
< n and it follows that the inequality (3.3) is true for n >= 2(N + M) and
k 1,2,..., In/2]. We have then,

[n/2]

k=l

In/2]

<= klPklek-
k=l j=n-k+

[n/2]

< klPklRk-a6,,-k
k=l

1+
M

n-k+l
n/2 [n/2]

+ klPklRk- l(n_ k.
k=l
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On the other hand, since n > 2M, we have by (3.8), for k 1, 2, ..-, In/2],

Hence,

and it follows that

n-1

6.>-- 1-[
j=n-k+

M
n-k+1

>= 1-

Ill<=6,
+ 2M/n n/2 [n/2]

2-] k=lZ klpklek- 1,

(3.10) lim sup 1,]6, <= CTM 2 klPkl Rk- 1.
n--* k=

Next, we shall estimate J,. From (1.7) it follows that

an-
all

=<R + 6ll-1 forn= 1,2,...

and so

Hence,

a,,_ kIP,I
[n/2 + an

=< h(l+-) ’Pkl Rk.
[n/21 +

Next, since

it follows that

and so

K, IPkl Rk,
In/2] +

Jll + Kll <= 2 + IPkl Rk
j= k =[n/2] +

Jll + Kll <2 1-[,= (1 + 6k/R) rI2M ZnMtn k=[n/2]+

Since k >= n/2, it follows that

Jll + Kll _< 22M+1H= (1 + (k/R)
(n /,/M

k [n/21 +
k2MlPklRk
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and in view of Lemma 4 and (1.6) we find that

J + K.(3.11) lim 0.

Thus, from (3.9), (3.10) and (3.11) it follows that

lim sup an-k
Pk-- PkRk

k= an k=

< eTM klPklRk- < ,
and the theorem is proved.
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A UNIQUENESS THEOREM FOR CONVOLUTION
EQUATIONS IN L’(R") SPACES*

KUANG-HO CHEN "
Abstract. The uniqueness problem for solutions in LP(R"), <= p < or, to the convolution equation

T* u f, f e D(R"), is discussed under the assumption that T is a finite distribution such that the null
set N(T) s R: T(s) Ol of its Fourier transform T is contained in the union of a finite number
of hyperplanes.

1. Introduction. The convolution equation

(1.1) T * u f
is considered on R for a finite distribution T s ’ satisfying the following con-
ditions. Denote by the Fourier transform of T, by
by V(s) the gradient of the function (s) at s, and by N() the real null set of

N(VS) {s R"" Vd(s) 0}.

Whenever N(vS) :/: 3 for an irreducible factor vd of

(A1) V(s) 4:0 on N().

(A2) The set N(vS) consists of a finite number of hyperplanes.
Such a class of finite distributions is denoted by fro.

For the related homogeneous convolution equation

(1.1) T*u =0,

we have the following theorem.
THEOREM 1. For To, u 0 is the only solution satisfying either of the

conditions

(1.2) u e/2(R"), =< p < or;

(1.3) u(x) o(Ixl-") (a > O) as Ixl oe.

The assertion holds also for a system. If T is an m x m matrix with finite
distributions as entries, then (1.1)h has only the trivial solution under condition
(1.2) or (1.3) provided the determinant det T (in the sense of convolution) of T is
nonsingular and belongs to the class (go. In either single equation or system, the
solution must be C(R") if it satisfies the uniqueness condition provided f e C(R").
Those assertions are proved after the proof of Theorem 1 in the next section.

The problem has been studied in K. Chen [2], [3], and [4]. The essential
difference from the paper is that the condition (A2) is replaced by:

(A3) The minimal number of nonzero principal curvatures of N(S) for all
irreduciblefactors of is k.
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Denote the class of finite distributions by (k. Then for k > 0, the equation (1.1)
has a unique continuous solution forfe ’(R") if u satisfies the condition (1.3) with
a >__ n k/2 under the method called symmetrization. In the Appendix, we
prove that if k 0 in (A3), then (A2) is satisfied and Te (o. Therefore the remaining
case k 0 is studied under a different method based on the results of R. P. Boas
and G. P61ya, respectively.

The problem has also been studied by W. Littman [6], [7] under the following
conditions for partial defferential equations with constant coefficients" Condition
(A1) is given for but not for ’s factors and the condition on the number of
nonzero principal curvatures is imposed globally constant not varying on location.

2. Liouville type problem--Proof ofTheorem 1. If a solution u of (1.1)h satisfies
the condition (1.3), the solution u also satisfies the condition (1.2) for some p >= 1.
Therefore we assume from now on that u fulfills the condition (1.2).

Let us recall some required results in the proof.
TI-IORM 2 (R. P. Boas [1). If f(z), z C , is an entire function of minimal

exponential type and f LV(R )for some positive number p, then f O.
THO 3 (M. Plancherel and G. P61ya [8]). For any positive number p and

any entire jhnction F(z) in C",

(2.1) F(z) =- V(zl, .., z,)-- F(xx / iy,..., x, + iy,)

of exponential type 0 < c < + , if F LP(R"), then

(2.2) lF(z),P dx <= { f ,F(x)lP dxt exp {pc([y, + + ly,,), x e R".

For simplification, we show first the following.
LEMMA 4. Let the null space N() of consist of a hyperplane. If u LP(R"),

<= p < , is a solution of (1.1)h, then u O.
Proof By u LP(R"), u and its Fourier transform fi are tempered distributions.

The Fourier transformed form of (1.1)h is

(2.3) 0 on R".

Then supp fi = N(). Since N() is a hyperplane, there is a unit vector o and a
positive constant c such that N() can be represented by

(2.4) s. o c.

First consider c 0 and o (1, 0, ..., 0). Suppose u - 0, that is supp fi is
not empty. Then there is a rectangle

R {s Rn’lsjI <__ bj,j 1,..., n}
with b 0 such that

suppfi Rb = .
Let : be a C(R") function such that 0 __< : __< 1, : on R and supp , = R+
for some e > 0. Then (2.3) yields

T.()=O onR".
With Z as the inverse Fourier transform of:, Z is a tempered distribution and

S.v=0, v=u*z.
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It is known (A. Friedman [5, p. 187]) that the convolution of u Z in the distribu-
tion sense is the one in the function sense. W. H. Young’s inequality implies
v e/Y(R") with the same p as above. Since the support of b is compact, v(x) can be
extended into an entire function v(x + iy)= v(z) of finite exponential type
_<_ b + e; that is,

(2.5) Iv(x + iy)l <= C(1 + Ixl) exp {(b + e)[y}, C > 0, e >__ 0,

with (b + e)lyl (bl + e l)lYll + + (b, + e,)ly,I. Then by Theorem 3,

(2.6) f lv(x + iy)lP dx <- { f lv(x)lP dx} exp {p(b + e)lyl}.

For fixed z’ (z2, ..., z,)e C"- 1, let

Zfz,(xl + iYl) v(Xl + iyl, ).

Treating fz,(X + iyl)as a function of x + @1 with z’ as n- parameters, we see
that with b 0 in (2.5), f,(x + iy 1) is an entire function of minimal exponential
type for each z’e C"-1. Therefore, (2.6) and Fubini’s theorem imply fz, LP(R1)
for almost all z’ e C"- 1. Theorem 2 yields fz, 0 for almost all z’ e C"- 1. That is,
V(Xl + iyl, z’) 0 for almost all z’e C"-1. But since v is an entire function, we
have v 0. Hence, 5 has no support in the finite part of the plane s. co 0. Thus,
u--0o

Next suppose c - 0 and co (1,0,..., 0). Let So co) (c, 0,..., 0),
51(s) 5(s- So), and Ul be the inverse Fourier transform of 51. Then Ul(X)

eiX’Su(x) eiCXlu(x). We have Ul e LP(R") and supp 51 is contained in the hyper-
plane s. co 0. From the proved result of the previous case, U 0 and then
u--0o

Finally suppose c - 0 and co 4: coo (1, 0,..., 0). Let ’R" R" be the
rotation which transforms co to coo. Let

a(s)

and U2(X be the inverse Fourier transform of 52. By the invariance of Lebesgue
measure under rotation in R", we have

Ig2(X U((I)-l(x))
which belongs to LP(R") and satisfies the properties of u 1. Hence, u2 0 and then
u 0. This completes the proof.

Since by a partition of unity for a finite portion on a finite number of parallel
hyperplanes we can use the same arguments as those in the above proof to each
part in the planes, we have the same conclusion as that mentioned in the lemma.
Therefore, for Theorem 1, it suffices to show the following.

LEMMA 5. Let T So * S1 * $2 U. CO with N(o)= , and let N(VSi) be con-
tained in the hyperplane

Pi’s.coi=c i= 1 2

where coi are two distinct unit vectors in R", and c are two positive numbers. If
u LP(R"), 1 <= p < , is a solution of the convolution equation (1.1)h, then u O.
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Proof Since co - (_D2, the two planes intersect at a hyperline L. The Fourier
transformed form

of (1.1)h implies that

T-fi =0

suppfi c N()= P1 U P2.
Suppose u - 0. Then supp u - . There is a finite nonnegative vector b such that

supp fi I"1 Rb - .Let 2e C(R") be a function such that 0 2 1, 2 on supp R, and
supp = R+, e > 0. Then

T.=0 with=2.
Furthermore, let 2j e C(R") such that 0 j 1,j 0, 1, 2; 2o on L R+,
suppo = Uwhichis an e-neighborhood ofL R+;2j 1 on(Pj R+) U
with supports in R+z,j 1,2; and o + + 2 on (P! P2) supp2.
Then

0 + 1 + 2 with

Let v be the inverse Fourier transform of , of and of. Then, again,

vj u * [Z * Zj] e LP(R"), j O, 1,2,

because Z and Zj are rapidly decreasing functions and then , Zj e L(R"). Since
supp j is contained in the hyperplane Pj, Lemma 4 yields vj 0,j 1, 2, for any
e > 0 and any finite nonnegative vector b. Hence we have u vo L(R") with
supp o L P. Again Lemma 4 yields u vo 0. This completes the proof
of Lemma 5 and also of Theorem 1.

For inhomogeneous equations (1.1) with smooth and finite data, we want to
get the solution with the property. We need to restrict the consideration of finite
distributions further;for example, see Theorem 4.5 in K. Chen [3].

DzvIyIIOy. A finite distribution Tis called invertible and its Fourier transfo
T is called slowly decreasing if there exists a positive number e such that for each
point in R" one can find a point q in R" satisfying

I r/I 0 log (1 + I1),

I(t)l ( + I1)-.
Combining the results of Theorem 4.3 in K. Chen [3] and Theorem 1, with

the same argument of Theorem 4.4 in [3], we obtain the following.
COROLLARY 6. Ifu is a continuous solution ofthe convolution equation (1.1) with

TeO2o invertible andf C(R") and if u satisfies either of the uniqueness conditions
(1.2) or (1.3), then u is a C(R")-function.

THEOREM 7. Let T be an m x m matrix with E’ entries such that its convolution
determinant det T is nonsingular, invertible and belongs to fo. If the vector-valued
function u is a continuous solution of(1.1) with f C(R") andfulfills the uniqueness
condition (1.2) or (1.3), then u is a C(R")-function.
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Proof Denote by CT the m x m matrix with ij cofactor of T as ji entries. Then

CT,T= T,CT=(detT)*I,

where I is the m x m identity matrix. Let g CT* f. Then (1.1) yields

(det T) * uj gj, gj C(R"),

j 1,..-, m. Corollary 6 implies the assertion and the proof is complete.

Appendix. As mentioned in the Introduction, the class (k of finite distribu-
tions satisfying assumptions (A1) and (A3) is studied in K. Chen [2], [3], and [4]
by the method of symmetrization with k > 0. Now we want to characterize the
geometry of N(T) with Teo. The following assertion may have been proved.
Since we are unable to find a reference, we give the proof here.

LEMMA A.1. Let f(s), s R", be a C2(R")-function with N(f) :/: and satisfying
assumptions (A1) and (A3) with k O. Then N(f) consists of parallel hyperplanes,
that is, N(f) satisfies (A2).

Proofi Let So be any point of N(f). Since Vf(so) 0, there is a j, 1 __< j __< n,
say j n such that

cf(so)

Hence, by the implicit function theorem, there is a connected neighborhood Uo
of So on which

s (s’, g(s’)) with s’ (sl, s,_ 1) R"-

forms a C2-diffeomorphism with g C2 locally. Without loss of generality, we
choose Uo such that N(f) f-’l Uo is connected. Let

s cg(s’)
sJ= =(0,...,0,1,0,...,0 gj(s’)) withgj(s’)=,

3s c3s
with as the jth entry. Therefore,

632g(s’)
siJ (0,..., 0,gij(s’)) with gij(s’)

csicsj
Let v(s) (Vl(S), v,,(s)) be the normal of N(f) at the point s N(f). Then

v,(s) f,(s)/lVf(s)l 0 on U(f) f"l Uo.
Let (s, v(s)) be the inner product of sij and v(s). Then by definition, the n

principal curvatures of N(f) at s are the n eigenvalues of the (n 1) x (n 1)
matrix (s J, v(s)); that is, they are the n 1 values of/l in the polynomial equation
of degree n 1:

det {(siJ, v(s)) 2(ij} O.

In fact, the equation is

(A.I) det {gii(s’)v,,(s) 26ij} 0.
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Since (A3) with k 0 means that all the principal curvatures are zero, the coeffi-
cients of 2 in (A.1) vanish for h 0, ..., n 2 with s N(f) Uo. In particular,
deriving from the coefficients of 2"- 2 and 2"- 3 by v,(s) 4: O, we have on N(f) f’l Uo,

(A.2) gjj(s’) 0, j 1,..., n- 1,

(A.3) 2gij(s)= gu(s)gjj(s), _< i<j=< n- 1.

Then from the square of (A.2) and by (A.3), we have on N(f) f’l Uo,
2 2gkk(S + 2 0,gij(S

l<=k<=n-1, <=i<j<n,

and hence for <__ i,j <= n 1,

gij(S’) O.

Thus g(s’) is a linear combination of s l, .’., s,_ for all s N(f) Uo. That is,
N(f) fl Uo is contained in a hyperplane for any s N(f) by N(f) f’l Uo connected.

Let Vo be the union of all possible such neighborhoods Uo of some fixed
So N(f) with N(f) f-) Uo connected. Then Vo is an open set. Since g(s’) is a Cz-
function on Vo, each point s in the boundary cVo of Vo is still of the form

s (s’, g(s’)).

Therefore, cVo c Vo and Vo is closed. Hence, N(f) Vo is a whole hyperplane.
By assumption (A1), there are no singular points in N(f). Thus, there is no inter-
section on hyperplanes which consist of N(f). This completes the proof.

Acknowledgment. The author wishes to express his gratitude to Professor
R. P. Boas, because his theorem is a crucial tool in the paper.
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FUNCTIONS WHOSE FOURIER TRANSFORMS DECAY AT
INFINITY: QUALITATIVE CRITERIA FOR AN

ADDITIONAL CASE*

JOHN S. LEWd

Abstract. A previous paper of Bleistein, Handelsman and Lew describes the asymptotic behavior
of

F(co) lim exp (io)t)f(t) dt

for certain functionsfon [0, + oe). It estimates the growth or decay ofFnear + oo when f has a suitable
asymptotic expansion, then establishes the decay in particular of F near + o when f has certain
qualitative properties. This note fills a gap in the preceding work; it gives a qualitative estimate for
F when this transform does not decay near + .

1. Introduction. Let f be a complex-valued function on [0, + ) which is
assumed locally integrable but need not be absolutely integrable, and let F(og) be
its Fourier transform"

(1.1) F(o9) lim exp (io9t)f(t) dt

whenever and wherever this limit exists. In a recent paper, Bleistein, Handelsman
and Lew [11 study the behavior of this transform near + oe for a large class of
functions f. They estimate the growth or decay of F near + o whenever f has a
suitable asymptotic expansion, then establish in general the decay of F near
+0 whenever f has certain qualitative properties. These results extend by
superposition to functions on (-oe, + oe), hence offer a generalization of the
Riemann-Lebesgue lemma. This note fills a gap in the preceding work and
provides a result of qualitative type which covers functions with nondecaying
transforms.

In particular, let

(1.2)
f(t) O on [O, a) witha>=0

exp (iTt)t-(log t)" on [a, + m),

where n is a nonnegative integer, r is a suitable complex number, 7 and v are
arbitrary real numbers. If a =/= 0, and Re (r) > 0 then [1, Lemma 3]

(1.3) V(o9) O(o)- 1) as 09 +
whenever (7, v) is not in (- , 0) (1, + ), and

(1.4)
F(o9) O(o)- + o9k(log o9)") as o9 + ,
k (1 Re(r) 1/2v)/(v 1),
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whenever (,, v) is in (- , 0) (1, 4- ).
However, the estimate (1.4) for the transform F even includes functions f

with transforms which grow near + , that is, functions (1.2) with

(1.5) /<0, < v<2, r+1/2v< 1;

whereas the qualitative criteria of the preceding paper cover only functions f
with transforms which decay near + , such as functions (1.2) with parameters
which violate (1.5). Hence this note provides an appropriate qualitative result
in the previously untreated case where F does not decay as o + .

We shall need a condition at one point in our main theorem which restricts
to some extent the variability of a given function. Hence, before stating that
result, we relate this condition to some stronger and more familiar assumptions.
We recall first [2, p. 269] that f on [0, + ) is called a slowly varying function if,
for all u > 0,

(1.6) lira f(tu)/f(t) 1.
t

In addition, let a be a positive number, and on a, + ) let p be a positive
function. Then p may have the property that

(1.7) lim sup p(tu)/p(t) is bounded on u b for some b > 1,

or the property that

(1.8) p(t + p(t))/p(t) is bounded on t0 < + for some to a.

If p(t) is nondecreasing in then lim sup + p(tu)/p(t) is nondecreasing in u, so
that (1.7) is equivalent to

(1.9) lira sup p(bt)/p(t) < + for some b > 1.

THEOREM 1. Of the following statements, (i) (ii) (iii), where p is a positive
function on [a, + ), and a is a positive number as before"

(i) t-p(t) satisfies (1.6) for some r <
(ii) p satisfies (1.7) and p(t) o(t) near +

(iii) p satisfies (1.8) and p(t) o(t) near + .
Proof. If p satisfies (i) then

(1.10) lim p(tu)/p(u)=u onl u< +
by hypothesis, and p(t) o(t) as required. If p satisfies (ii) then

(1.11) p(t)(b- 1)t onto t< +
for some 0 a, so that + p(t) tu in (1.8) for some u in [1, b].

2. Estimate. If we mentionf(+ ) for a functionfon [a, + ) then we mean

(2.1) f(+ ) lira f(t) (finite or infinite)
t+

and we imply that this limit exists. Our principal result, with this convention,
can be stated as follows.
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THEOREM 2. Let f be a complex-valued locally integrable function on [0, + o),
and let f(t) g(t)exp [-iq(t)] on [a, + c), where a >= O, g has bounded variation
on [a, + oe), and g(+ oe) 0, while q is C2, q’ is positive on [a, + oe), and q’( + )

+ oe. Moreover let q"(t) p(t)-2, where p satisfies (1.8), p(t) o(t) near + ,
p is positive and nondecreasing on [a, + o). Then for large enough co there exists

a unique t(co) such that

(2.2) q’(t(co)) co;

and for any 6 in (0, 1),

(2.3)
F(co) o(1) + p(t(co))O[g(6t(co)) + p(t(oo))/t(co)]

=o[1 +p(t(co))] as co +.

Proof. By a previous result [1, Thm. 2], F(co) is well-defined for large enough
co, and by the Riemann-Lebesgue lemma (e.g., [3, p. 11]),

(2.4) exp (icot)f(t) dt o(1) as co --, + o.

Hence without loss of generality f(t)= 0 on [0, a). By a previous lemma [1,
Lemma 2], g is a linear combination of four functions, each nonnegative and
nonincreasing with limit 0 at + . Hence without loss of generality g itself may
have this form.

Clearly q" is positive so that q’ is increasing, and q’(+ oe)= + oe so that
t(co) is well-defined. Indeed t(co) is increasing and t(+ ) + oe, so that

(2.5) (St(co) <_ t(co)- p(t(co))

for large enough o) since p(t) o(t) by hypothesis. If h(t) cot q(t) then h’(t)
co- q’(t), so that 1/h’ is increasing on (a, t(co)) and -1/h’ is decreasing on

(t(co), + ). Moreover,

(2.6)

t(o)+ p(t(o))

g(t) exp [ih(t)] dt
(o) p(t(o))

<__ 2p(t(co))g(t(co) p(t(co)))

<__ 2p(t(co))g(6t(co)).

If r/denotes a number in (0, 1) which need not be the same at each appearance,
then by the mean value theorem and a lemma of Titchmarsh [1, Lemma 4], [3,
p. 22],

g(t)exp [ih(t)] dt O[g(a)/h’(t(co))]

o[q’(t(co))- q’(t(co))] -(2.7)
O[1/t(co)q"(rlt(co))

O[p(t(co))2/t(co)] as co + o
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and

g(t) exp [ih(t)] dt O[g(&(co))/h’(t(co)- p(t(co)))]

g(&(co))O[q’(t(co))- q’(t(co)- p(t(co)))]

O[g(&(co))/p(t(co))q"(t(co)- r/p(t(co)))]

O[g(&(co))p(t(co))] as oo --+ + oo.

(2.9)

Finally, by the same considerations together with property (1.8),

g(t) [ih(t)] dt O[g(t(co) p(t(co)))/h’(t(co)exp + + p(t((o)))]
(co) + p(t(co))

g(t(oo))O[q’(t(oo)+ p(t(co)))- q’(t(oo))] -1

O[g(t(to))/p(t(co))q"(t(oo)+ p(t(co)))]

O[g(t(oo))p(t(oo) + p(t(to)))Z/p(t(oo))]

O[g(t(to))p(t(co))] as co + oo.

We obtain the desired result by combining (2.6)-(2.9).
For the function (1.2) under the conditions (1.5), we find

g(t) t-r(log t)", t(oo) Ico/?vl 1/(v-1),
(2.10)

q(t) 7tv, p(t) (v(1 v))- 1/2/71 -v/2.

Then the functions of (2.10) satisfy the assumptions of Theorem 2, and

F(co) o(1) + co2-)/2- 1)O[co-r/(- 1)(log co)" + co -/2tv- 1)]
(2.11)

0[co2- -v)/E(v- 1)(log oo)"] as (o --+ av.

Thus the result of Theorem 2 coincides with the direct estimate (1.4).
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OSCILLATIONS OF nth ORDER
DIFFERENTIAL EQUATIONS WITH RETARDED ARGUMENT*

G. A. BOGAR

Abstract. This paper is concerned with giving conditions to guarantee the existence of an oscilla-
tory solution to the equation y(")(t) + (- 1)"+ Xp(t)y(g(t)) 0, where g(t)is continuous, >__ g(t), g(t)
as , and p(t) is a continuous nonnegative function. The conditions given here improve the previous
results obtained for this equation when n > 2.

1. Introduction. In the study of oscillatory solutions of differential equations
with retarded arguments, several authors [23, [43, [6], and [73 have recently
considered equations whose corresponding ordinary equations have all non-
oscillatory solutions.

For example, consider

y"(t) y(t) 0

which is nonoscillatory. On the other hand,

y"(O- y(t- )= o
has an oscillatory solution y(t) cos t.

In 3, we will give conditions that assure that there exist oscillatory solutions
to the equation

(1.1) yt")(t) + (-1)"+ lp(t)y(g(t)) O, n > 2,

where p(t) is a positive continuous function, g(t) continuous, g(t) --+ as --) c,
and g(t) < on [a, c).

Section 2 will be devoted to giving the general asymptotic and oscillatory
behavior of solutions to (1.1). In this section the requirement that the continuous
function g(t) is strictly delay can be relaxed to allow g(t) to be of the form + sin t,
for example.

However, it is still an open question whether there are conditions that assure
the existence of oscillatory solutions to (1.1) with n 2m and g(t) is not delay.

Remark. We mention here that by "solution" we mean a solution on a half-ray
IT, ) to avoid any unintentional claims of extendability.

Remark. A solution y(t) on IT, ) is oscillatory if there exists a zero of y(t) on
every half-ray Is, ), T =< s < c.

2. Properties of solutions. Recently Kamenskii [4] and Ladas, Lakshmikan-
tham and Papodakis [7] have classified solutions of equation (1.1). The two
classifications are equivalent but the notation varies considerably. In order to
minimize difficulties, we will adopt the notation used in [7].

DEFINITION 2.1. Let S denote the set of all solutions of (1.1). For each integer
1, 2 < 21 < n, define

* Received by the editors September 29, 1972, and in revised form March 8, 1973.
f Department of Mathematics, Montana State University, Bozeman, Montana 59715.
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(2.1a)

(2.1b)

(2.1c)

(2.1d)

G. A. BOGAR

S/+ {y(t) S" lim y(i)(t) + for 0, 1,2,..., 21 1},
t---

s? {y(t) s. y(O s? },

SO {y(t)e S" y(t) :A 0 and lim yi)(t) 0 for
t--

1,2,..., n 1, monotonically as },

{y(t) S" y(t) oscillates}.

An elementary fact which will be used throughout the remainder of the paper
will now be stated and numbered for later use.

If y(t) is a positive solution of (1.1) for > tl, then there exists an integer k,
0 <__ k <__ m, such that

(2.2) and

yg(t) > 0, i=0,1,...,2k- 1,

(-1)(i)y(i)(t) > O, i= 2k,..., n,

where n 2m or n 2m + 1, and is sufficiently large, say => 2 > l. If k 0,
then we use only the condition

(-1)iy(i)(t) > O, i-- 1,..., n.

Before stating the main results of this section, it should again be pointed out
that g(t) need not be delay. In particular, if [g(t)]"p(t) < n! then there exists a unique
solution to the initial value problems associated with (1.1) even when g(t) is not
delay. This can be proved using a technique of Ryder [10].

We now prove a group of lemmas which show that if y(t) is a nonoscillatory
solution of (1.1) and certain integral conditions on g(t) and p(t) hold, then y(t)
Sm+ U S, U SO ifn=2mandy(t)SO ifnisodd.

LEMMA 2.1. Assume y(t) is a positive solution of (1.1) for n 2m satisfying (2.2)
with k >_ and

(2.3) [g(t)] 2"- -p(t) dt o for some , 0 < e < 1.

If g’(t) > 0 and > g(t), then k m in (2.2).
Proof Assume __< k < m. Multiplying (1.1) by [g(t)]2(m-k)-’:/y(2k-)(g(t))

gives

[g(t)]2m-k)-’y2m)( 2(m- k)-,: y(g(t))
y(Zk-’)(g(t))

p(t)[g(t)] y(Zk-1)(g(t))

>= Np(t)[g(t)]Zm-1-,: (N > 0)

by Lemma 4 in [3] where 2k plays the role of n in the lemma.
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Next, integrating from > 2 to > t3, where 2 is given in (2.2) and 3 is
such that implies g(t) >= t2, we find that

(2.4) ftt [g(s)]2(m-k)-":y(2m)(s) ds ;t-(2"---i-)() >= N p(s) [g(s)2m- 1-c ds.

Integrating the left-hand side of (2.4) by parts, we have

[g(s)]2(m-k)-ey(2m)(s) ds

Y
< K (’ 2(m k) e] [g(s)] et-k)-- lytem- )(s)g’(s)ds

Since y2-(s) is negative and increasing,

-u- (g(s)) -u- (s).
Hence,

N K
[2(m- k)- e][g(s)]e(m--’:-y- (g(s))g’(s)ds

After 2(m k) such steps, we have

[g(s)](--y(e(s) ds

[e(m- )- ... -;[g(s)]-y(g(s))g’(ss
K +

2, y,2zi

Thus

Now applying Lemma 4 in [3] to the right-hand side, we have

Y(2m)(S)[g(S)]2(l-k)- y(2k-1)(g(S))
ds

=< / + K, [g(s)]-1-g’(s)ds <= g-

K [g(t)]-
+ BN p(s) [g(s)]2"-’- ds <- g

which contradicts (2.3).
In order to prove a similar lemma when g(t) > , > 0, but g’(t) is not

necessarily positive, we need the following lemma.
LEMMA 2.2. If y(t) is a positive solution of (1.1)for n 2m and g(t) >

z a constant, with <= k < m, then

lim
y(g(t))

1.
,oo y(t)
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The proof of the above lemma can be found in [1], so it will not be given here.
LEMMA 2.3. Assume y(t) is a positive solution of (1.1) for n 2m satisfying (2.2)

with k > and

2m- 1-:P(t) dt for some

Then if g(t) > , k m in (2.2).
Prooj Assume __< k < m. Multiplying (1.1) by

have
tZ(m-k)-/(y(Zk-1)(t)), we

t2(m-k)-:y(2m)(t)
y2k- 1)(t P(t)t2(’-k)- yl2-1)(t_

Mp(t)t2,, 1-

by using Lemma 2.2 and Lemma 4 in [3]. We now proceed to integrate by parts
in the same way as in Lemma 2.1 and reach a similar contradiction.

For convenience, we will classify g(t) as follows:
(i) g(t) is in class G if > g(t), g(t) - as and g’(t) > 0;
(ii) g(t) is in class G2 if > g(t) > e, e > 0.
LEMMA 2.4. Assume y(t) is a positive solution of(1.1)for n 2m satisfying (2.2)

and

[-g(t)] 2m- 1-’:p(t) dt for some

Then y S+ whenever g(t) is in G or G2.

Proof From Lemmas 2.1 and 2.2, limt_ y)(t)= , i= O,
hence we need only show that

Since yZm)(t) > 0, then

lim y2m- 1)(t) C.

lim y2m-1)(t
_
m > 0.

We now consider two cases.
Case (i). If > g(t) and g’(t) >__ 0, then by L’Hospital’s rule,

lim
y(g(t)) > M

t- [g(t)] 2m-1

Therefore, for large we have

M
y2")(t) _> p(t)g(t)]2- .

Hence, integrating from T to > T,

y(2m- )(t) y(2m-1)(r - p(s)[g(s)]2m- ds,

,2m- 2,
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and therefore,

y2m-1)(t v as .
Case (ii). If g(t) , then

y(g(t)) > y(t ) > M-M-t2"-I
=2

for large. Thus we arrive at a similar conclusion.
Remark. For g(t) in G2 we can lift the restriction that > g(t) and we have the

same results if

somee, <<tZm- l-:p(t) dt for 0 1.

LEMMA 2.5. Assume y(t) is a positive solution of(1.1) such that for to,

(-1)i)yi)(t) > 0, 0, ..., n,

and

Then y(t) SO for g(t)in G or G2

Proof It follows directly as in [7] that

lim yi)(t) O, 1,..., n 1.

Thus, we must show that limt_ y(t) 0. In order to do this we integrate (1.1)
fromtto T> t"

T

y"- )(T) y"- )(t) (- 1)" p(s)y(g(s)) ds,

1)n + y(n- t(t p(s)y(g(s)) ds.

Hence, for n 2m we have after 2m integrations,

> ’ (u t)"-)-
(- 1)y’(t) .It (n 2)!

p(u)y(g(u)) du,

and therefore,

-y(T) + y(t) >= ftt (u t)"-
p(u)y(g(u)) du.

(n- 1)!

Ify(t) L > 0 as we have

L + y(t) >
(n 1)!

which is a contradiction.

(u t)"- p(u)du ,

A similar argument shows that y(t) 0, as when n is odd.
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Thus, combining the above results we have the following theorem.
THEOREM 2.1. If g(t) is in class G or G2, and

[g(s)]2"-l-P(s) ds for some e,, 0 < e, < 1,

then for n 2m the solutions of equation (1.1)admit the decomposition

s s+ U s2, U so U

Since the previous lemmas held for g(t) >= 0 and g(t) not necessarily a
delay, we have the following decomposition corollary.

COROLLARY 2.1. If g(t) >= O and

g(s)2"- -p(s) ds oo, 0 < e < 1,

then for n 2m the solutions of equation (1.1) admit the decomposition

s s+ U s?. U so U .
The above results show that S+

likewise for S- .
Equation (1.1) becomes

U S+ used in [7] is actually S+ and

y") + p(t)y(g(t))= 0

when n is odd. When g(t) t, the oscillatory properties of solutions were studied
by Mikusinski [8]. During the preparation of the manuscript it was brought to
the author’s attention that Kusano and Onose [11] studied the oscillatory proper-
ties of (1.1), n odd, when g’(t) _>_ 0. In Kusano and Onose’s paper the authors also
corrected the slight mistake found in Mikusinski’s original paper.

Using the results of Lemma 2.2, we are able to extend the results of Kusano
and Onose to the case where g(t) is not necessarily monotone or delay.

THEOREM 2.2. If g(t) is in class G1 or G2 and

[g(t)]"--’:p(t) dt for some e, 0 < < 1,

then solutions of(1.1) with n odd admit the decomposition

S=SU.

Proof Let y(t) S S. Without loss of generality, we assume y(t) > 0 and
y(g(t)) > 0 for > to and there exists k such that condition (2.2) holds with
0 < k < m. The theorem will follow if we can show that k 0.

Since the case g(t)e G is proved by Kusano and Onose, we take g(t)e G2

Assume k >__ and multiply (1.1) by

(t)2(m k) +

yZk- )(g(t)) where n 2m + 1,
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g(t) _>_ e. Now using an argument similar to the one used in Lemmas 2.1 and
2.2, we obtain

g2 + g (s)- 1-,: ds <- s2"- p(s) ds.

Taking the limit as oo leads to a contradiction since the right side tends
to -oeastoo.

COROLLARY 2.2. If g(t) > and

(t)"- oo for some e,-’:p(t) dt 0 1,

then solutions of(1.1) with n odd admit the decomposition

S= SU Vd.

In order to show that the result is sharp in Theorem 2.2, we see that

y(t) +
(t/2)[lnt- In 2- 1

y 0

has a solution y(t)= t[lnt- 11 for n odd, which is not in So U . On the other
hand for large,

ft s,- ds f,s"[lns-ln2- 1]- s(lns-c)
dS

ln[ln(t)- c] c

which approaches c as c.
Remark. Kusano and Onose [11] also studied the equation yZm)(t) + p(t)y(g(t))

for g(t) monotone and differentiable. Using the techniques in the proof of Theorem
2.2, we obtain the following generalization of their results.

THEOREM 2.3. If g(t) is in class G1 or G2 and

[g(t)]z"-l-p(t) dt 0 for some c, 0 < < 1,

then solutions of y2’)(t) + p(t)y(g(t)) 0 with n 2m are in .
In order to complete the decomposition for delay equations, we now state

two theorems given in [2] and [7] respectively.
THEOREM 2.4 [2]. Assume p(t) > 0 and continuous, g(t) is nondecreasing and

continuous with > g(t) and g(t) oo as oo. If there exists a sequence t, c

as n oo with

( g(t.)).-
(2.5)

t.) (n- 1)!
p(r) dr > 1,

then the bounded solutions of(1.1)are oscillatory.
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and
THEOREM 2.5 [7]. Assume that the conditions of Theorem 2.4 hold with g’(t) >__ 0

(2.6) lim sup [g(t) g(s)]"- lp(s) ds > (n 1)!.
t (t)

Then the bounded solutions of(1.1) are oscillatory.
Combining the results of Theorems 2.1 and 2.2 with those of Theorems 2.4

and 2.5 we have the following corollaries.
COROLLARY 2.3. If the conditions in Theorem 2.1 hold along with (2.5) or (2.6),

then

s s+ O s;, O rs
when n 2m.

COROLLARY 2.4. /f the conditions of Theorem 2.2 hold along with (2.5) or (2.6),
then every solution is oscillatory when n 2m + 1.

3. Existence of oscillatory solutions. In this section, we will follow the exposi-
tion and notation given in [7] very closely.

As pointed out in I73, it is known that the retarded equation (1.1), together
with the initial conditions

y(t) #)(t), 0 =< =< to,

(3.1) Y(i)(to) Yi, l, 2,... 2m 2,

y(2m- )(to) A,

where b(t) is continuous on [0, to], and Yi and A are real for 1, 2, 2m 2,
has a unique solution on [to, v]. From now on 4(t) and Yi will remain fixed and A
will be allowed to vary. The unique solution will be denoted by y(t, A). Kamenskii
4] introduced a classification for the unique solutions when n 2 and it was
adopted and modified slightly in [7]. We will use the same notation as in [73.

K+= {A6R.y(t,A)6S+}.
K-= {A6R.y(t,A)6S-}.
K {A R’y(t, A) SO}.

= {A6R’y(t,A)6}.

If S+ (S-) is replaced by S+ (S o), then K + (K-) will be replaced by
K,,,+ (K

Under the hypotheses of Theorem 2.1, we have that

R-- K,.+ K, K /,

and if condition (2.5) or (2.6) holds, then that
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If K2, and K,,+ were open intervals (-oe, C) and (B, De), respectively,
where B > C, then there would exist an oscillatory solution. As pointed out in [7],
the proof given in 4] goes over to n 2m, with only minor modifications.

We thus have the following theorem.
THEOREM 3.1. Under the hypotheses of Theorem 2.3 and condition (2.5) or (2.6),

the retarded differential equation (1.1) with n 2m has at least one oscillatory
solution satisfying the initial conditions (3.1).

Acknowledgment. The author is indebted to Professor D. V. V. Wend,
Montana State University, for his suggestions regarding the preparation of this
paper, and to the referees whose suggested revisions have improved the exposition
of this paper.
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A LINEAR HYPERBOLIC PROBLEM ALL OF WHOSE SOLUTIONS
ARE CONSTANT AFTER FINITE TIME*

KENNETH U COOKEf

Atract. A class of mixed initial boundary problems for a system of two linear hyperbolic differ-
ential equations in normal hyperbolic form is considered in the region 0 =< < , 0 _< x =< 1. The
boundary conditions on x 0 and x are linear and separated but of special form. It is proved that
every continuously differentiable solution, no matter what the initial condition on 0, becomes
identically constant after a finite time which is independent of the initial condition. The result also
holds for solutions in a wider sense. An application of the theorem to electric transmission lines ter-
minated by electric circuits is given.

(1)

1. Statement of theorem. Consider the differential equations

c3u u= 0 O__<t<@, O_<x_<
c3t + 2

3x

U2 #u,
2--- 0 0<t<, 0_<x<l.

0t x
We shall consider the class of mixed problems with initial conditions

(2) u(x, O) f,(x), Uz(X, 0) fz(x), 0 =< x <- 1,

and boundary conditions

ul(O, t) + b(t)u2(O, t)= C1 + C2b(t), > O,
(3)

/’/2(1, t)
a(t)u(1, t) + Ca(t), > O.

The functionsf,fz,a, and b are assumed to be smooth, and C and C2 are con-
stants. Moreover, we suppose that

(4) a(t- 1/2)b(t- 1)= -(t), t>_ 1,

where

0 for t6 [2n 1,2n]
(5) 0(t) (n integer).

2sin2ztt fort6[2n,2n+ 1]

THEOREM 1. Every continuously differentiable solution of an initial boundary
problem (1)---(5) becomes identically constant after a finite time. That is, there exists
a positive number T such that every solution satisfies
(6) u(x,t)- C1, /,/2(x, t) C2, T =< t, 0 =< x =< 1.

The number T does not depend on fl orf2.

* Received by the editors January 16, 1973.
"I" Mathematics Department, Pomona College, Claremont, California 91711. This research was

supported in part by the National Science Foundation under Grant GP-35419X.
The result also holds for a solution in the wider sense defined in 3.
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In other words, backward continuation of a solution of the initial boundary
problem (1), (3) from the constant state ul C1, u2 C2, is not unique; many
initial conditions lead to the same state. For C C2 0, we have a linear
homogeneous problem with the property that all solutions become identically
zero after a finite time (this time being independent of the initial conditions).

In 4, we will interpret this problem as describing an electric transmission
line terminated at its ends by certain electrical circuits. The functions a(t), b(t)
describe the physical parameters of these circuits. From this point of view, the
theorem asserts that these circuits can be chosen so that the voltage and current
on the transmission line reach prescribed constant levels in finite time, no matter
what their initial values were.

The theorem will be proved in 3 by reducing the mixed problem to a pair
of differential-difference equations by the technique in 1], and then using a result
of Winston and Yorke [2]. Actually, there are a large number of examples of
unexpected behavior for delay-differential and functional differential equations,
many of which are listed by Hale in [3]. The relation between these equations and
hyperbolic mixed problems, shown in [1], 4], makes it possible to construct a
similar set of examples for hyperbolic systems.

2. The example of Winston and Yorke. Consider the differential-difference
equation

(7) y’(t) (t)y(t I),

where is defined by (5). Let y(t) be any continuous solution existing on an interval
(to 2N- 1) for an integer N, 2N- >= o + 1. Then y has a continuation to

I2N 1, 2N] given by (since y’(t) O)

y(t) y(2N- 1), 2N- < < 2N.

Then on2N< t<2N+ we have

y’(t) y(ZN 1)(t),

y(t) y(2N)- y(2N 1).J2(u

Therefore

(s) ds

sin 2nt
y(2N- 1) + 2N +

2n ]"
y(2N + 1)=0. Since y’(t) O for 2N + <= <= 2N + 2, it now

follows that y(t) 0 for all => 2N + 1.

3. Reduction of the mixed problem. We now indicate how to reduce the mixed
problem in to the example of Winston and Yorke. We first observe that the
change of variable

al(X, t) Ul(X, /) C1, a2(x t) u2(x, t) C2,

reduces equations (1) and (3) to equations ofthe same form with C and C2 replaced
by zero, and with the same coefficients in the equations. Therefore, it will suffice
to consider (3) with C 0, C2 0, and to show that every solution becomes
identically zero after a finite time.
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Let us consider more carefully what we will mean by a solution. We will not
require differentiability of u and u2 but rather we interpret (1) in the wider sense
of Friedrichs. That is, we require that the integrated form of (1) be satisfied. In the
present case, this means that u must be constant along characteristics of positive
slope, 2t- x const., and that u2 must be constant along characteristics of
negative slope, 2t + x const. Let C- and C- denote the characteristics 2t x
k- and 2t + x k (k 1,2,... ), respectively. We see that the initial

functionsfl and f2 determine ul(x, t) below C and U2(X t) below C]-. We assume
that fl and f2 and hence u l(x, t) and u2(x, t) are continuous. In particular, u 1(1, t)
and u2(0, t) are continuous on 0 =< __< 1/2. The first equation in (3) then determines

U 1(0, t) b(t)u2(O, t), o<t__<1/2.

Since u is constant on characteristics of positive slope, this determines ul(x, t) in
the strip between C and C-. The function ul(x, t) will be continuous in the strip,
but will be discontinuous across C- unless the corner condition

f(O) + b(O)f2(O) 0

is satisfied. Similarly, from the second equation in (3) we find OU2(1, t)/ct for
0 < __< 1/2. Requiring uz(1, 0)= f2(1), we then obtain Uz(1, t) for 0 __< __< 1/2.
From this, Uz(X, t) is found in the strip between C- and C. The derivative
CUz(X, t)/t?t will be continuous in the strip but discontinuous along C- unless the
corner condition

a(0)f(1) + 2f(1)= 0

is satisfied.
We can continue step by step, using (3) and the fact that u and u2 are constant

on characteristics of positive and negative slope, respectively. In this way, we can
establish the existence of unique functions u and u2 which satisfy (2) and the
following conditions"

(i) u l(x, t) is constant on characteristics of positive slope and u2(x, t) is
constant on those of negative slope;

(ii) u l(x, t) is continuous except perhaps across the characteristics C+,
k 1, 2, u2(x, t) is everywhere continuous; cu2(x, t)/ct exists and is continuous
except perhaps across the characteristics C/-, k 1, 2,

(iii) equations (3) are satisfied for all > 0 except at discontinuity points in
{t’t 1/2, 1,... }.

A pair of functions u l, u2 which satisfy these conditions will be called a
solution of (1), (2), (3). Note that any continuously differentiable solution is also
a solution in this wider sense. Because of the special form of (3), a solution becomes
smoother than required by (ii). Indeed, continuity of u2(1, t) for > 0 implies
continuity of U2(0 t) for > 1/2 by (i), and hence, by (3), continuity of u 1(0, t) for
> 1/2. This, in turn, implies continuity of u 1(1, t) and t?u2(1, t)/ct for > 1.

For any solution, it follows from (i) that

(8)

Let

(9)

ul(1, + 1/2) ul(O,t), u2(0, + 1/2) u2(1, t), t>0.

yl(t) u,(1, t), y2(t) U2(0, t), t>0.
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Then

(10) ul(O,t) y(t + 1/2), u2(1, t)= yz(t + 1/2), >= O.

Introducing (9) and (10) into the boundary conditions (3) (with C C2 0),
we obtain

(11)
y(t + 1/2) + b(t)y2(t) O, > O,

a(t)y(t) + y’2(t + 1/2) O, > O.

From these equations we obtain

y’2(t) a(t 1/2)b(t 1)y2(t 1), > 1.

Because of equation (4), it follows that y2(t) is a solution of the Winston-Yorke
equation,

(12) y’z(t) -o(t)y2(t- 1), > 1.

Since y2(t) u2(O, t) is continuous for > 1/2, it follows that there is a number
T, independent of the initial conditions, such that yz(t) 0 for >_ T- 1/2. Then
the first equation in (11) yields y(t) 0 for _> T. From (9) it follows that u(1, t)
and u2(0, t) are zero for >= T. Finally, since u l(x, t) and Uz(X, t) are constant along
characteristics, they are zero for >__ T. More precisely, Ul(X,t)= 0 above the
characteristic of positive slope through the point (1, T) and Uz(X, t) 0 above the
characteristic of negative slope through (0, T- 1/2).

4. Physical interpretation. Mixed problems with boundary conditions of the
form in (3) may arise from problems of wave transmission. For example, the
transmission line equations

(13)
c3v c3i c3i c3v
x L c3--7’ c3x

C

can be transformed into (1) by the change of variable

(14) v ul u2, i= Ul + u2,

when L C 1/2. The boundary conditions in (3) correspond to the conditions

(15) [1 b(t)]v(O, t)+ [1 + b(t)]i(O, t)= 2[C1 + C2b(t)],

(16) tc=[i(l’ t) v(1, t)] 2C,a(t) a(t)[i(1, t) + v(1, t)].

It will now be shown that these boundary conditions can be realized by
appropriate networks at the two ends of the transmission line. For the network in
Fig. 1, Kirchhoff’s laws yield

d
2 -(CVl) "[-R3v 1,

(17) 2 ----(V Vx),

2 i-
R
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R

FIG.

Choose

Rl(t) 2a(t)’
Rz(t) 2a(t)’

(18)

Rs(t)
2a(t)[1 a(t)]’ C(t) 2a(t).

Then from the latter two equations in (17)’we obtain

(19) vl 2a(t)"

Substituting this expression for v and using the first and third equations in (17),
we obtain

d
dt
--(v i)- [1 a(t)](v i)= i- [1 2a(t)]v

or

di dv
dt dt

-a(t)(i + v).

Since this corresponds to (16) for C 0, the circuit in Fig. may be placed at
the end of the transmission line at x 1. The same argument shows that the net-
work in Fig. 2 is a realization of(16) when C : 0. The added element is an ideal
current source.

R

FIG. 2

R

2Cla(t)

(20)

For the network in Fig. 3 we have

v Eo + Roi.
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Ro

FG. 3

Therefore, (15) can be realized by Fig. 3 when

+ b(t) 2(C + C2b(t))
(21) Ro b(t)’ Eo b(t)

From the physical point of view, we prefer C(t) >_ 0, and in view of(18) and (21)
we want to have a(t) nonzero, b(t) : 1. One possible choice is a(t) a, where a is
a constant greater than 2. Then from (4), b(t) is proportional to e(t + 1) and we
have -1 < b(t) <= O. Therefore Ro > 0, R1 < 0, R 2 > 0, R > 0, C > 0. The
negative resistance can be built using active circuit elements. For the transmission
line terminated as in Fig. 2 and Fig. 3, it follows from Theorem that

(22) v(x, t)-- Ca C2, i(x, t)-- C + C2

for 0 =< x =< 1, T __< t. Thus, every initial state ofthe line is controlled to the constant
state in (22) in finite time.

5. Extensions. Arguments of the above sort can be applied to mixed problems
(1), (2), with boundary conditions of the form

au (0, t)
+ b(t)u2(O, t)= C2b(t), >_ O,

(23)
cu (1, t) c3u2(1, t)

a(t)+ =0, >=0,
ct ct

under the condition in (4) on a and b. Indeed, Theorem remains valid for this
case, in the following sense.

THEOREM 2. Let a and b satisfy (4). There exists a positive number T such that
every continuously differentiable solution of(l), (2), (23) satisfies (6)for some constant

C.
Proof The substitution fiz(X, t) Uz(X, t) C2 shows that it suffices to prove

the theorem in the case C2 0. By use of equations (8), (9), (10), we can reduce
the boundary conditions to

y’(t + 1/2) + b(t)y2(t) O, > O,
(24)

a(t)y’t(t) + y’2(t + 1/2) O, > O.

From these equations we obtain

y’(t) a(t 1/2)b(t 1)y2(t 1).
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As before, we deduce that y2(t) 0 for >__ T- 1/2. The first equation in (24) now
yields y’(t) 0 for > T. Hence y(t) C for some constant C for >= T. We
deduce that u(x, t) C and Uz(X, t) 0 for >= T.

It should be possible to obtain similar examples with simpler boundary
conditions if we permit the characteristics (that is, the coefficients in (1)) to be
time-varying. Theorem 2 is valid for solutions in a wider sense, not just continu-
ously differentiable solutions.

Another possibility is the construction of an analogue for partial differential
equations of the examples of pointwise degeneracy for differential delay equations
due to Popov and Zverkin (see [5] and [6]).

Acknowledgment. The author wishes to thank Professor Leonard Weiss for
supplying the network realizations in Figs. and 2.
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DUAL ORTHOGONAL SERIES*

ROBERT B. KELMAN- AND ROBERT P. FEINERMAN

Abstract. The notion of a dual series problem, as exemplified by dual trigonometric series, dual
Bessel series, etc., is generalized to a dual orthogonal series problem in an abstract Hilbert space.
Basic existence and uniqueness theorems are proved for the abstract problem. The essence of the
analytic procedure is to translate the original problem into a problem in E in which setting it is shown,
for a certain class of problems, that Fredholm’s alternative is applicable. We apply these results to
dual orthogonal series associated with potential problems with mixed boundary conditions. The general
theory covers, in an L sense, most dual orthogonal series associated with mixed boundary conditions
of the second and third kind. For such dual orthogonal series there are few restrictions, e.g., the kernel
of the series can be any complete orthonormal sequence of Sturm-Liouville type, the series can be a
single or multiple series, and the potential problem from which the dual orthogonal series is derived
can occur in a bounded or an unbounded domain. Approximations are achieved through the principle
of reduction and are rigorously shown to converge. Earlier numerical experiments have shown this
procedure to be practical. A number ofexamples are given primarily associated with the type of bound-
ary condition occurring in heat transfer theory.

1. Introduction. During the past two decades dual orthogonal series have
been studied intensively. The development of formal solutions to particular
problems has forged far ahead of rigorous theory and general methods because
of the pressing demand for technologically useful results in diverse fields such as
crack theory, heat transfer, design of microwave guides, etc. This has raised many
interesting mathematical questions to which we here respond, in part, with a
rigorous theory for a general class of dual orthogonal series.

Our aim in these studies is construction of a theory covering dual orthogonal
series used in applicationsmand these are dual Sturm-Liouville series, e.g., dual
trigonometric series, dual Bessel series, etc. However, out of necessity we have
chosen an abstract approach: progress has been facilitated by stripping away the
inessentials which accumulate quickly when using special functions. The abstract
approach has in this case the added advantage of providing a general criteriop to
which special cases can be fitted, thereby obviating the need for a new analysis for
each new dual equation as has generally been necessary heretofore. The merit of
this is enhanced by the frequent appearance of new dual orthogonal series resulting
from new physical applications, e.g., [3], [4], [5], [6], [7], [8], [9].

Therefore, basic to our approach is the formulation in 2 of the dual orthog-
onal series problem in an abstract Hilbert space and the solution given to this
problem in 3. These results are applied to dual Sturm-Liouville series in 4,
and some examples are presented in 5.

Received by the editors October 17, 1972.

? Department of Mathematics and Computer Science, Colorado State University, Fort Collins,
Colorado 80521, and Division ofBiometrics, University ofColorado Medical Center, Denver, Colorado
80220.

:]: Department of Mathematics, Herbert H. Lehman College, Bronx, New York 10468.
A summary ofthe field through 1964 can be found in [1 ], the standard reference for dual problems.

Many physical problems leading to dual orthogonal series and dual integral equations are described
in [1], [2]. The reduction of potential problems to problems in dual orthogonal series is cursorily
sketched in 5 of this paper.
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Briefly, from 4 and 5, one sees that our results provide an L2 existence,
uniqueness, and approximation theory for dual Sturm-Liouville equations
associated with potential problems in which the mixed boundary conditions are
of the second and third kind (boundary conditions are defined in the Appendix).
The theory does not apply if one of the mixed conditions is of the first kind. On the
other hand, the boundary conditions associated with the Sturm-Liouville kernel
generating the dual orthogonal series are immaterial--indeed, they can be any
combination of conditions of the first three kinds or conditions appropriate to a
singular Sturm-Liouville problem. We also obtain results for multiple dual
orthogonal equations, such as equation (5.6a-b), which, to our knowledge, has
not been done before.

Approximations to solutions are obtained by using the principle of reduction
so that obtaining an Nth order approximation is equivalent to solving an Nth
order system of linear algebraic equations, viz., (3.10) or (3.13). Numerical experi-
ments for dual trigonometric series based on these equations have been carried
out and show the procedure to be practical. The results have been reported earlier
[7, [8. In fact, we were stimulated to write this paper by a desire for a rigorous
theory for these calculations. In 6 areas for future research are discussed.

Included is a brief appendix with definitions of boundary conditions used in
mixed boundary value problems. Nothing is new or untraditional, but we have
arranged matters in a form suitable for our purposes.

2. Problem formulation. We denote by R a real, separable, abstract Hilbert
space2 and by e2 the Hilbert space of all real, infinite column vectors, (’1, 2,’" ")
such that ,2 < o. The inner product and norm in both R and ve2 are denoted
by (.,.) and I1oll respectively. If T is an operator, then D(T) signifies its domain.
Infinite matrix operators on (2 will be denoted by upper-case script letters, e.g.,

-= (kk,:k,n 1,2, ’’’), with the transformation o , being formally
defined by ok , Y-k,%. One defines D(Y-) as the set of, e e2 such that -, e (2.

Let {qS,:n 1,2,...} be a complete orthonormal sequence in R and {a,}
and {b} sequences of nonnegative constants. The subspaces P and Q of R are
orthogonal complements [10, p. 12. P and Q denote, respectively, the projection
operators from R onto P and Q:

The dual orthogonal series problem is this: Given f R, find p2 such that

(2.1) lim .(a.P. + b.Qdp.)- f O.
No n=l

When for brevity we write

(2.2) .(a.Pck. + b.Qc/).)= f,
n=l

we mean always the relation (2.1). The sequence {b.} is called the kernel of the dual
orthogonal series, and the sequences {a.} and {b.} modifiers.

We follow the usual definitions for Hilbert space. Undefined terms can be found in standard
textbooks on functional analysis, e.g., [103, [11 ].
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Before proceeding we need to recall some preliminary results related to matrix
operators. {4),} generates an isomorphism between R and e2 defined by the
mapping r , where , (r,q,) [10, 19]. {4).} generates an isomorphism
between the algebra of bounded operators Ton R and bounded matrix operators- on e2 defined by the mapping T - where -, (bk, TqS,) [10, 26]. If r -and T- - then Tr .

3. Existence and approximation in R. Our principal goal in this section is to
prove the following theorem.

THEORZM 1. If {a,} and {b,} are sequences of positive constants one of which
is bounded above zero, and if there is a positive constant such that a,/b, as
n , then the dual orthogonal series equation (2.2) has a unique solution 2.
In fact, if s and are diagonal matrices defined by ,, a, and ,, b,, then

(3.1) ’ D(s’) I"1 D(M).

Proof Without loss of generality we assume {an} is bounded above zero.
Therefore, se’-1 is a bounded operator with domain e2. We make the change of
variable

(3.2)

which transforms (2.2) into

bn(3.3) (,(P4, + --Qb,) f.an

Set c, ob,/a, and g Pf + aQf. Then (3.3) is equivalent to the dual orthogonal
equation

(3.4) ,(,(P49, + c,Qck,)= g

in the sense that ,( is a solution to (3.3) if and only if it is a solution to (3.4).
Let and 2 be defined by P and Q ,--, 2 under the mapping given in

2. Then and 2 are projection operators on ,2 such that + J, where
is the identity matrix [-12, p. 16]. We take the inner product of both sides of (3.4)

with qS, leading formally to the equation

(3.5)

where c is the diagonal matrix given by cg,, c,, and , (g, 4,). Since cg is a
bounded operator, (3.5) can be (rigorously) rewritten as

(3.6) ( + (e- )) .
Since cg,, -, 0 as n --, oe, c is completely continuous [10, p. 63]. There-
fore, 2(cg- ) is completely continuous. Consequently, by Fredholm’s alter-
native [11, pp. 163 and 201] either the equation

(3.7) ( + 2(c J)) 0
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has a solution va 0, or (3.6) has a unique solution for each y f2. Let us show
that , 0 is the only solution to (3.7). If satisfies (3.7), then

which implies @ 0 and 2cd 0. Therefore,

(,) ,)= (, ) 0.

If : 0, then (, (d) > 0. Hence, z 0 is the only solution to (3.7), and by
Fredholm’s alternative, (3.6) has a unique solution f. Let us show that ,( satisfies
(3.4). We introduce

h. (,(Pdp, +
i=1

A little algebraic manipulation shows that

hn-hk2<=
i=k+l

2(1 + c/2).

Since {c,} is bounded, {h,} is a strongly convergent sequence. Equation (3.5)
implies that h, --, g weakly. Hence, h, g strongly, and Y is the unique solution
to (3.4) from which it follows that is the unique solution to (2.2). Clearly,

" e D(s’) which shows also that j D(). This completes the proof.
The following extension of Theorem is especially useful when the kernel

{4),} has been generated by boundary conditions of the second or periodic kind.
In such cases we often have a or b equal to zero, corresponding to an eigenvalue
associated with 4) being zero.

TI-IEOREN 2. Let {a,} be a sequence of constants bounded above zero. Let {b,}
be a sequence of nonnegative constants and N a positive integer such that b, > 0 for
n N + 1, N + 2,..., and for some positive constant , a,/b,
Let the subspace spanned by the N-dimensional vectors (1,2, "",

k 1, 2,..., have dimension N. Then the dual orthogonal equation (2.2) has a

unique solution satisfying (3.1,). The theorem remains valid if the roles of a, and
b, and and are interchanged.

Proof Under the above hypothesis we see that the preceding proof breaks
down at the point following (3.8), since it no longer follows that - 0 implies
(,) > 0. Let us assume then that we have carried the preceding proof from
its beginning to (3.8). Then (,) 0 implies, 0 for n N + 1, N + 2,....
Since (3.8) implies 0, we must have

(3.9) .-@kl/Zl + ,22 +"-+ @Nu 0, k 1,2,....

However, the fact that the span of (’kl, k2, kN) is N-dimensional implies
that zi 0, 1, 2, ..., N, is the only solution to the system of equations (3.9).
Therefore, 0 is the only solution to (3.8) so that by Fredholm’s alternative,
(3.6) has a unique solution, and the proof can be completed as in Theorem 1.

To compute approximations we take N x N sections of (3.6). The validity
of doing this is guaranteed by the following theorem which asserts that approxi-
mants so derived converge strongly to y’.
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THEOREM 3. Assume the hypothesis of Theorem or 2. If {a,} is bounded above
zero, then jbr all sufficiently large integers N the reduced jbrm of (3.6), viz.,

N

(3.10) Yk(N) +
n=l

__eb,
an

Y,(N) Yk, k= 1,2,...,N,

possesses a unique solution, (I(N), 2(N), "’", N(N), such that

N

(3.11) lim (,(N) ,)2 0,
N--*

where is the solution to (3.6). Ifii(N a i(N), 1, 2,..., N, then
N

(3.12) lim (’,(N)- in)2 0,
N-o

where is the solution to (2.2). Let h -’Pf + Qf and/, (h, dp,). If {b,} is
bounded above zero,for sufficiently large N the reduced equation

(3.13) k(N) + k a
,=1

Y,(N) k, k 1,2,..., N,

has a unique solution such that if j,(N) b y,(N), n 1, 2,..., N, then j,(N)
satisfies (3.12), where is the unique solution to

and -1.
Proo If {a} is bounded above zero, then, as we saw in the proof ofTheorem 1,

is completely continuous. The validity of (3.11) then follows at once from
the principle of reduction [13, p. 1433. Since

N N

U,(N ft,)z= a/Z(y,(N)_ y,)2,

the relation (3.11) implies (3.12). The argument is similar if {b,} is bounded above
ZCFO.

4. Dual Sturm-Liouville problems. In this section we relate the previous
results to dual Sturm-Liouville problems. The transition from Theorems and 2
to Theorem 4 is elementary. As the reader will see, all we need do is describe
correctly in this concrete setting the appropriate realizations of objects in R.

We employ the sets a, a l, and 2 given in the Appendix. Let r(s) be a non-
negative, measurable function on with the set {s:s ; r(s)= 0} having zero
measure (reference is to Lebesgue measure in (n- 1)-dimensional Euclidean
space). We denote by LE(a) the real Hilbert space of functions g(s) Lebesgue square
integrable on a with respect to the weight function r, and by {A,(s)} an orthonormal
sequence in L(a).
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In the problems below, L(a) is the realization of R and {A,} the realization of
{4),}. The projection operator P is defined by

f g(S), S O" 1’
Pg

O, Sa2

This determines Q, P, and Q in an obvious fashion, viz.,

._.f 0, S e (71,
Qg

g(s), sa2,

while P consists of all g e Li(a) such that g(s) 0 almost everywhere on a2, and
Q consists of all g e L2(a) such that g(s) 0 almost everywhere on a. With these
definitions the straightforward use of Theorems and 2 yields the following
theorem.

THEOREM 4. Let {A.} be a complete orthonormal sequence in L2(a). Let
{tel.}, {:2.}, {2.}, {#.}, and {v.} be sequences of nonnegative constants such that
{/t.} and {v.} are bounded and

lim c1.= m l, lim 2.= 2, lim 2.= oc,

where Cl and 2 are positive constants. Let (at least) one of the three following
assertions be true;O)

(4.1) 1.2. +/x.>0 and tc2.2 + v.>0, n= 1,2,.-.

or (ii)for some positive integer N,

(4.2)
l1n2n

and the vectors "@k l, ’k2,

+ /, > 0,

N2n2 + V > O,

"’", &v), k 1,2, ..., where

, f A(s)A,(s)r(s) ds,

span an N-dimensional space; or (iii)

tcl,2, + p, > 0,
(4.3)

and the vectors (kl, kz, ,u), k 1, 2, where

, f A(s)A,(s)r(s) ds,

span an N-dimensional space.
Then the dual orthogonal series problem given by

(4.4a) Z j,(It, + tcln)n)An(s)= f(s),
n=l

(4.4b) j,(v, + tCz,2,)A,(s)= f(s),
n=l

n=N+ 1,N+2,

n= 1,2,

n= 1,2,

n=N+ 1,N + 2,

SGO’I,

S 0"2,
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has a unique solution e ve2 for each f e L2(r). In fact, ’, O(,/2,)for some

In most applications {A,} will be a normalized Sturm-Liouville sequence,
while 2, will be an increasing function (often the square root) of an eigenvalue
associated with A,. The other sequences of constants are related to the geometry
of Z; and the boundary conditions on r, v,

5. Applications. Five examples illustrate use of the general theory. The first
example, a typical steady temperature problem in an unbounded domain, is
studied in some detail to show precisely the connection between theory and
applications. The second example illustrates the transition from a potential
problem in an unbounded domain to one in a bounded domain. The third example
illustrates a problem in which the modifier component a 0. The fourth example
illustrates a problem in which a is unbounded. The fifth example is a 3-dimensional
potential problem giving rise to a double, dual trigonometric series.

Example 1.

(5.1a) ,,(hl + k /n)Sn(x) f(x), 0 < x < c,
n=l

(5.1b) j,(h12 + kleZ,)S,(x)= f(x), c < x < 1,
n=l

where f6 L2(0, 1), and (h11,kx1), (h12, k12), (h2, k2), and (h4, k4) are constants
satisfying (A.2), kl > 0, k2 > 0, he + h4 > 0, 2, is the nth positive root of

and

(k2k4J[2 h2h4) tan/l ,(h2k4 nt- h4k2)

arc tan (k4n/h4),

S,(x) sin (2,x+ e,){(1 sin (22, + 2e,) sin 2,

We note that this example is associated with the following mixed boundary value
problem [8]. The steady temperature u is sought satisfying

2u (2u
(5.2) OX2 +- y2 0, 0 < x < and y > 0,

U
(5.3a) hlU kw-= f(x), 0 < x < c and y 0,

y

U
(5.3b) h2u-k12-a-=f(x), c<x< and y=O,

(5.5) gradu=O(1), asy.

y>0,
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If we seek a solution by separating variables, we find in the usual fashion,

u(x, y) /,S,(x) e-’"".
n=l

This solution satisfies (at least formally) (5.2), (5.4) and (5.5) independently of the
choice of j. We are led to the dual orthogonal equation (5.1a-b) by choosing
to satisfy the mixed conditions (5.3a-b).

In this example we have:

(0, 1), (71 (0, C), 0"2 (C, 1), L2(a) L2(O, 1),

A, S,, kt, hi1, Vn h12, Kln kll and K2n k12.
From standard Sturm-Liouville theory, vid., e.g., [25, Chap. 3], [26, 3.13], it
follows that 2, > 0, n O(2,), and {S,(x)} is a complete orthonormal sequence
in L2(0, 1). The reader can now verify that the hypothesis of Theorem 4, with (4.1)
applying, is fulfilled. Hence, the dual orthogonal equation (5.1a-b) has a unique
solution j #2 such that j, O(,/n) for some #2.

In computing approximations to j we need explicitly the terms a,, b,, 0, and
3k, appearing in (3.10). They are given by: a, hll + k112,, b, h12 q- k22

k/k2, and -k, =j’)SkS, dx. This last expression can be integrated in
closed form so that the numerical implementation of (3.10) is straightforward. See
[8] for an example in which numerical details have been carried out.

By a proper choice of the boundary conditions, (5.1a-b) includes the classic
kernels {w/ sin nrcx}, {x/- cos (n 1/2)rrx}, and {x/ sin (n 1/2)rrx}. For
example, if k2 0 and k4 0, then (5.1a-b) becomes

/,,(hll + krcn)(x/sinnrcx)= f(x), 0 < x < c,
n=l

2 ’n(hl2 -t- k,2rcn)(x/sinnrcx)= f(x), c < x < 1.
n=l

Example 2. We now seek a solution to the corresponding problem on a
rectangle, i.e., we replace (5.2) and (5.5) by

2u 2u
(X2 t-y2 0, 0<X<I and 0<y<fl,

U
h3u + ];3----- g(x), 0 < x < and y fl,

where g e L2(0, 1), and h3 and k3 are constants satisfying (A.2).
Most analytic methods previously used have been restricted to unbounded

regions, and extending the analysis to bounded regions has been formidable,
cf. [6]. Here we shall see, except for the algebra being more tedious, the analysis
is essentially unchanged from Example 1. We develop a separated variable solution
as in Example and obtain

u(x, y) , j, -sinh 2,y +
h + k32 tanh 2,fi]

cosh

+ G, cosh 2,y} S,(x),
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where

G,
sech 2,fl j" o g(x)S,(x) dx.

h3 + k32, tanh

Using (5.3a-b) we arrive at the dual orthogonal equation

f(x)- G.S.(x), 0 < x < c,
n=l

{2 h h + Xtanh2[
+ 2 S(x)

f(x- Gs(x, c < x < 1.
n=l

Exactly as in Problem 1, one can verify that the hypothesis of Theorem 4, with
(4.1) applying, is satisfied. Therefore, the above dual trigonometric equation has a
unique solution e such that O(/n) for some e .

Example 3. Here we envisage the dual Legendre equation

2(n 1 2n,- G-(cos 0 f(O 0 < 0 < /
n=2 2

(n- +h) P_(cos0) =0, /2<0<,
n=l

where f. sin 0 e L(0, /2), h is positive, and P is a Legendre polynomial. This
corresponds to the following steady temperature problem. Heat is forced into the
upper hemisphere of a thermally homogeneous sphere of radius and leaves
through the lower hemisphere by Newtonian cooling. The governing equations
are

sin0 sin0--o =0, 0<p<

U
f(O), 0 < 0 < reap

and 0 < 0 <

(U

Here K

--+ hu=O, rc/2 < O < rc.

1, l(.2n 1, 2, n 1,/, 0, and v, h. We note that

121 -I- 1 0 and Kln2n + IG > O, n 2, 3,....

Therefore we must apply Theorem 4 using (4.2). Now, 11 1/2, so that the
span of kl},k 1,2,..., has dimension 1. The remaining hypotheses in
Theorem 4 can be verified exactly as in Example 1, so that the above dual Legendre
equation has a unique solution / #2 such that, O(d,/n) for some ( d2.
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Example 4. We choose an example in which a is unbounded, viz., a is the
interval 0 < x < . The kernel is the Laguerre functions {e -x/2L,,(x):n 0, 1,...),
where L, is the Laguerre polynomial of order n as defined by Szeg6 [24, p. 96].
These functions form a complete orthonormal sequence in L2(0, ) [24, p. 104].
Certain dual Laguerre equations have been formally analyzed [14], [15], [16] but
are of a somewhat different type than that given below:

}-’, .(h + kw/n 1)(e-X/L._ (x)) e-X/f(x),
n=l

’(h2 + kzx//n 1)(e-X/2L._ I(X))-- e-X/f(x),
n=l

O<XC,

C<X<

where (hi, k 1) and (h 2, k2) satisfy (A.2) and h + h2 is positive and e-x/Zf L2(0,
Pursuing arguments used in the first three examples, one can readily verify that the
above dual Laguerre equation has a unique solution 2 such that
for some e 2.

Example 5. This example displays a multiple dual orthogonal series. The steady
temperature is sought in a semi-infinite rectangular parallelepiped with zero
temperature on the side walls and mixed boundary conditions of second and third
type along the base. The governing equations are

2u 62/g (2 u
cOx2 t-y2+--- O, O<x,y<l and z>O,

u=O
O<x< 1,andy=Oory= 1,andz>O,

x=Oorx= 1,andO<y< 1, andz>O,

U
hlu k- f(x, y),

OU
h2u k2-z f(x, y),

0<x<c, 0<y<d, z=0,

c<x<l, 0<y<l, or0<x<c,

d<y< 1,andz=0,

where (h, kl) and (h2, k2) satisfy (A.2) and k and k2 are positive. We are led to the
following double, dual trigonometric series by seeking a solution through
separating variables:

(5.6a)

(5.6b)

2 2 Cmn[hl -F klrc(m2 + n2)1/2](2 sin mrtx sin tory)
n=l m=l

f(x,y), 0 < x < c and 0 < y < d,

c,,,,,[h2 + kzrt(m2 + n2)1/2](2 sin mzrx sin ny)
n=l m=l

=f(x,y), c<x< and 0<y< 1, or

0<x<c and d<y< 1.
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Let p(m, n) be the rectangular mapping from pairs of positive integers onto the
positive integers. Specifically,

m + (n 1)2 m < n
p(m,n)=

m2 n + 1, m > n.

We define 2p and Ap(x, y) by

2p{,,,,) rc(m2 + n2) /2 and Ap{m,,)(x, y) 2 sin mrtx sin tory.

Thus 2p oe as p oe, and {Ap(x, y)} is a complete orthonormal sequence in
the Hilbert space of functions Lebesgue square integrable on 0 __< x, y =< 1. We
can now formally rewrite (5.6a-b) as

(5.7a) dp(hl -I- k l,p)Ap(x, y) f(x,y), 0 < x < c and 0 < y < d,
p=l

(5.7b) p(h2 nt- k2/p)Ap(x, y)= f(x,y), c < x < and 0 < y < 1, or
p=l

0<x <c and d<y< 1.

By applying Theorem 4 we see that (5.7a-b) has a unique solution ’ such that
2 2pctp/p < 00. Hence, the double dual trigonometric equation (5.6a-b) has a unique

solution {c,,,} such that

Cm,(m + )<o
n=l m=l

for each f Lebesgue square integrable on 0 <__ x, y <= 1.

6. Discussion. In terms of the mixed boundary value problems of mathe-
matical physics the reader will have noted that our theory covers with reasonably
complete generality dual orthogonal series associated with mixed boundary
conditions of the second and third kind, but does not apply if one of the mixed
conditions is of the first kind. Contrariwise, with a few exceptions, the only dual
orthogonal series which have been analyzed earlier [1] have been those associated
with potential problems in unbounded domains and in which the mixed conditions
are of the first and second kind.

What is the reason for this difference? Roughly speaking, we believe it to be
as follows. Solutions to potential problems in which the mixed conditions are of
the second and third kind are more regular in their behavior at the boundary
than those in which there is a mixed condition of the first kind [173, [18], [19].
This characteristic is reflected when one translates the original potential problem,
as we have done, into e2 in the following way: When the mixed boundary con-
ditions are of the second and third kind, the key matrix, o, in (3.6) is com-
pletely continuous, whereas if one of the mixed conditions is of the first kind, one
cannot construct cg as we have done (see discussion following (6.2a-b) below).
On the other hand, when (i) the kernel {A,} is associated with boundary conditions
of the first and second kind, (ii) the mixed conditions are also of the first and second
kind, and (iii) the domain is unbounded, then the formulas tend to be of a neat and
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precise type, e.g., (6.1a-b), and with such tidy formulas the employment of special
functions has a greater chance of producing useful results.

In making a Hilbert space approach to problems in which one of the mixed
conditions is of the first kind, there may be difficulties of a more intrinsic nature.
To see this, we consider an important example due to Tranter 20] (the original
analysis being subsequently simplified [22], [23], cf. [21]):

(6. la) 2
,=in- 1/2

cos(n- 1/2)x 1, 0<x<Tr/2,

(6.1b) cos (n 1/2)x O, /2 < x <

Tranter has shown formally that a solution to this problem is given by

4 P_ (0)
n= 1,2,....

F(1/4

Using Laplace’s asymptotic estimate for P,(0) [24, p. 188 we see that

4x/-( 1)("-)/2

,(, F2(1/4)(n- 1)1/2 + O(n-), n 1,3,...,

0, n=2,4,..-.

Since ,( ,2, the Hilbert space approach, used here, of translating the original
problem into an ,2 problem may prove troublesome. A similar phenomenon is
shown in a dual Legendre series studied by Collins [1, p. 174; 27], cf. [21].

Shepherd, in an early and prescient study [283, avoided this difficulty by
integrating that part ofa dual trigonometric equation associated with the boundary
condition of the second kind and was able to obtain an explicit and rigorous
solution. Specifically, he studied the dual orthogonal equation

(6.2a) ,( ,/2_2+ , cos(n- 1)x =cosmx, O<x <re
n=2

(6.2b) = , 2
sin (n -l)x -sin rex, rc/2 < x <

where (6.2a) has resulted from an integration.
Finally, we note that the ratio b/a associated with (6.1a-b) tends to infinity

as n o..This is the technical reason for our being unable to apply Theorems
and 2 to dual orthogonal series associated with potential problems with a mixed
condition of the first kind.

Thus, future research is naturally directed along two lines: first, to establish
rigorously the conditions under which various closed form" solutions to specific
equations are valid in order to understand the inherent limitations of a theory
encompassing dual orthogonal series associated with potential problems in which
one of the mixed conditions is of the first kind, and, second, to construct a theory
for such series.
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Appendix. Let a be an open, connected set on the surface of an n-dimensional
region Z in which u satisfies a second order partial differential equation, and let u
satisfy on a the relation

(A.1) h(s)u + k(s)-g- f(s), s a,

where n denotes outward normal. The condition (A.1) is called constant if h(s) and
k(s) are constant, and homogeneous iff =_ 0. In the constant case we usually impose
the restrictions

(A.2) h>0, k>=0, and h+k>0.

It is called a boundary condition of the first kind if k -= 0, of the second kind if
h - 0, and of the third kind if h(s) > 0 and k(s) > 0, for almost all s a. It is called a
constant mixed condition (often shortened to mixed condition) if the following
holds (i) er is the union of two disjoint, open, connected sets (say 1 and 0"2) and
the points in f"l (Y2 which are interior points of 1 U O2 (here is the closure of
a, etc.); (ii) on a and 0"2, U satisfies the constant boundary conditions

(A.3) hiu + ki-n f(s), s a (i 1,2),

and

(A.4) klh2 =/= k2h

Condition (A.4) is a nontriviality condition. If it is false, the mixed boundary con-
dition reduces to a constant boundary condition. Other names for mixed boundary
conditions are broken or discontinuous boundary conditions. Sometimes in the
literature one sees a boundary condition of the third kind referred to as a mixed
boundary condition. That is a malapropism.

In solving potential problems with mixed boundary conditions by the method
of separation of variables the following situation obtains. An orthogonal set of
coordinates is used. A solution for Laplace’s equation is sought in Z whose
surface is the union of the closure of disjoint, open, connected sets, say a, :, v, ...,
such that on each of these sets one of the orthogonal coordinates is constant.
u satisfies a constant, homogeneous, boundary condition on each of the subsurfaces
:, <... (though constant on each subsurface, the condition can be different on
different subsurfaces), while on er, u satisfies the mixed condition (A.3). A separated
variable solution in the form of an infinite series is sought which satisfies the differ-
ential equation in 2; and the boundary conditions on q:, v,.... Each term in the
series is multiplied by an unknown coefficient. The coefficients are chosen to
satisfy (A.3), and this gives rise to a dual orthogonal series problem. When we
speak of the dual orthogonal series being associated with mixed conditions, we
refer only to boundary conditions on r and not on r, <.... Each term in the
series solution contains a function, say A,(s), usually called the eigenfunction,
such that {A,} is a complete orthonormal set in the Hilbert space of all functions
Lebesgue square integrable on a with respect to an appropriate weight function.
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When we speak of the boundary conditions associated with {A,}, we refer only to
those boundary conditions on z, , that enter into the Sturm-Liouville problem
determining {A,}.
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THE SZEGO RECURSION RELATION AND
INVERSES OF POSITIVE DEFINITE TOEPLITZ MATRICES*

JAMES H. JUSTICE"

Abstract. Those matrices which are inverses of positive definite Toeplitz matrices are character-
ized. Further, those sequences of polynomials which are Szeg6 polynomials (orthonormal with respect
to a suitable measure on the unit circle) are characterized and a recursion relation is given which yields
the corresponding Toeplitz matrix.

1. Introduction. The problem of characterizing classes of orthogonal poly-
nomials by the recursion relations which they satisfy was first considered by
J. Favard [4] in 1935. The same problem for the polynomials orthogonal with
respect to a suitable weight function on the unit circle introduced by G. Szeg6 was
solved by F. V. Atkinson [3].

In this paper we find that we are able to utilize the results of Szeg6, Atkinson,
and Aronszajn 2] to completely characterize those matrices which are inverses of
positive definite Toeplitz matrices and to identify the Toeplitz matrix associated
with a given sequence of Szeg6 polynomials and to give a useful recursion relation
which enables us to calculate Szeg6 polynomials with ease.

2. Development. Let a(O) be a nondecreasing function of bounded variation
(nonconstant) on the interval [0, 2n). We may define a class of polynomials {p.(z)}
satisfying

(1)

(2)

(3)

deg p.(z) n,

ff’ eiO)
2n pk(Z)j(Z) da(O) kj (where z

p,, > 0, where p,, is the leading coefficient of p,(z).

We suppose that a has an infinite set of points of increase if the sequence
{p,(z)} is to be infinite. These polynomials were first studied by G. Szeg6 and ex-
cellent expositions of their theory may be found in 5], 6] and 91.

The polynomials satisfying (1), (2) and (3) satisfy the recursion relation

(4)

or equivalently,

(4’)

and the condition

p,,zp.(z) p,+ 1,n+ lPn+ 1(Z) Pn+ 1,0Pn*+ I(Z),

P.,,P,,+ 1(Z) P.+ 1,n+ IzPn(z) Pn+ 1,0Pn*(z)

n+l

(5) P,+ 1,n+ Z IPk,ol 2’
k=0
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where

p(z) pz
and

j=0

p’(z) zk(1/z) [9, p. 293].

In 1935, J. Favard [4] first considered the problem ofdetermining orthogonality
properties which follow from a given recursion relation satisfied by a sequence of
real polynomials. More recently, Atkinson [3, Chap. 7] showed that the relations
(4’) and (5) satisfied by a sequence of polynomials {p,(z)} satisfying (1) and (3)
implies the existence of a nondecreasing function a(0) of bounded variation on
[0, 2rt) for which equation (2) becomes valid.

Let us begin with a sequence of polynomials {p,(z)} satisfying (1), (3), (4) and
(5) and let a(O) be the function for which (2) is valid. We define the moments of r to
be the sequence {qk} given by

eida(O) <k<o

We may define an inner product on the space of polynomials of degree n or less by

(p(z), q(z)) p(z)O(z)

where p, q are polynomials of degree less than or equal to n. Identifying a poly-
nomial, p(z), with its sequence ofcoefficients (p0, pl, ,p,)wherep(z)= " oPZ,
it is easily verified that the above inner product is equivalent to (p(z), q(z))

(/3, 0), where/3, g/are the sequences of coefficients of p, q respectively, the inner
product is the usual one, and (I) is the Toeplitz matrix given by (I) (qg_j). It is
easy to verify directly that (I) is positive definite since it is simply the Gram matrix
of the linearly independent set 1, ei, ezi, ein on [0, 2g) with respect to the
inner product (.,.) defined earlier.

DEFINITION. We shall refer to the inner product given by (/3, 0) as the
inner product between p and q and we shall not distinguish in an inner product
between a polynomial and its sequence of coefficients.

We are now in a position to characterize those matrices which are inverses of
positive definite Toeplitz matrices.

3. Characterization of the inverse matrices.
PROPOSITION 1. An (n + 1) (n + 1) matrix S is the inverse of a positive definite

Toeplitz matrix ifand only ifS PP*, where P is upper-triangular and the polynomials
formedfrom the columns ofp satisfy the relations (3), (4), (5).

Proof. First suppose that S is the inverse ofthe positive definite Toeplitz matrix,
(I). Then if we orthonormalize the sequence 1, z, z2, z" with respect to the
(I) inner product we obtain polynomials pk(z), 0 <= k < n, satisfying (1), (3), (4) and
(5). Let us define a function

S,(w,z) (w)p(z)= s,iz,
k=0 k=0j=0

where the last term defines the constants s,J. We form the conjugate of the matrix



THE SZEG RECURSION RELATION 505

of coefficients"

T (Sl)

SO0 SO SOn
SIO

The matrix, T, may be shown to be the inverse of the matrix [7, Proposition] and
so we conclude T S. Further, if we write pk(z) ". o Pkjzj then it is easy to

j=

verify from the definition of S that s,j ’=0 Pt/tj, where we define pj 0 if
j < k. Writing this in matrix form, we have

Po0 Pl0 P,o

0 Pll

0 0 P22 Pn2

0 0 PnO

0

0

Pnn

The polynomials formed from the columns of P are the orthogonal polynomials
{p(z)} and so satisfy (1), (3), (4), (5).

Conversely, suppose that S is an (n + 1) x (n + 1) matrix of the form PP*,
where the polynomials p(z) (formed from the kth column of P) satisfy (3), (4), (5)
for 0 < k =< n. Then there is a bounded step function a(0) defined on [0, 2rt) for
which (2) is valid for 0 =< k __< n [3, pp. 175-176]. Defining

fo’ eik da(O)o _/t

we see that the matrix (qg_j), 0 <= k, j _<__ n, is a positive definite Toeplitz
matrix and the polynomials Po, p l(z), "., p,(z) are orthogonal with respect to the

inner product. As before, it follows that matrix S PP* is the inverse of the
positive definite Toeplitz matrix, , which was to be shown.

COROLLARY 1.1. An n x n matrix S is positive definite if and only if S PP*,
where P is upper triangular and pt > 0 for 0 <= k <= n 1.

Proof If S is positive definite, we need only take for the columns of P the
coefficients of the orthonormal set {pk(z)} of polynomials of degree k corresponding
to the inner product defined by the inverse, , of S. The proof that S PP* is
identical to that given in [7, Proposition]. The converse is clear.

4. Characterization of the Szegti polynomials. We now consider the problem
of generating the moments of the distribution function and thereby the positive
definite Toeplitz matrix which defines the inner product with respect to which a
sequence of polynomials {p(z)} satisfying (1), (3), (4), (5) is orthonormal.

PROPOSITION 2. Let the sequence ofpolynomials {pk(z)} satisfy conditions(l), (3),
(4), (5). The m ments {q} of the corresponding distribution function may be calcu-
lated recursively by"

qgo 1/po,
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qO.+l (1/p.+ 1,.+ 1) qgkP.+ 1,k,

and
o

The polynomials Po, P l(z), , p,(z) are orthonormal with respect to the inner product
defined by

q9 (qg_j), 0 k,j n.

Proof. Let S, PP* be the (n + 1) x (n + 1) matrix generated as in the proof
of Proposition 1, and let O, (_.i), 0 k, j n. Since , S , and the last
column of S, satisfies

n+s,. p.+ ,p.+ ,.+ ,
it follows that the dot product between the zeroth row vector of . and the last
column of S. is zero, i.e.,

n+n+ 0 SO n+ 1Sn+
k=0 k=0

or

.+ /p.+ 1,.+ ) p.+ ,.
k=0

Further,

(Po,Po) qoPo, so qoo 1/po.

The last assertion is clear from our previous discussion.
The following recursion relation characterizes and allows us to easily calculate

Szeg6 polynomials.
PROPOSITION 3.
(A) Let Poo > 0 and define po(z) Poo.
(B) If p.(z) has been calculated, let the scalar 2. be chosen so that

We then generate p.+ l(z) by the recursion relation

(C) p.+ l(z) (1 [2.[2p.2.) 1/2(zp.(z)

where p*(z) z"p.(1/z).
The polynomials p.(z) generated in this way satisfy (1), (3), (4’) (and so (4)), and

(5).
Conversely, if the sequence ofpolynomials {p,(z)} satisfies the relations (1), (3),

(4), (5), then it satisfies (A), (B), (C), where 2. =o qo+ p,k and the q) are
generated as in Proposition 2 (or correspond to a given positive definite Toeplitz
matrix or nondecreasing bounded distribution function on [0, 2re)).

Proof Let the sequence of polynomials {p,(z)} be generated by (A), (B), (C).
Then it is clear that deg p.(z) nandp.. > 0sincepo0 > 0and(1 -12.1Zp.2.) 1/2 > 0
(proceed by induction). Thus, we need only verify conditions (4’) and (5).

Equating the coefficients of z"- in (C) we obtain

(6) Pn+ 1,n+ p..(1 12.12p..)2 -1/2

and so

2 12,,i 2 2 2 2P + 1,. + P..P. + 1,n + Pnn
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from which we conclude

2 2I,nlZPnZn P.,,/Pn+

Equating constant terms in (C) gives p.+ 1,o -2.P.2.( -]2n]ZPnZn) 1/2 which
yields

(7) Pnn,n(1 Inl2p2nn)- 1/2 Pn+ 1,0/Pnn"
Using these relations, (C) becomes

(8) p.+ l(z) (p.+ 1,.+ 1/p..)zp.(z) (p.+ 1,o/p,,.)p*(z)

which is (4’).
By equating coefficients of z and z"+ in (C), we obtain

P.+ 1,o (1 12.12 2 1/2(p..)

p.+ ,,.+, (1 -1.12p,.)

which yields the equality

p.. + It).+ ,,ol p.+
This implies, in particular, that

Po + Iplol 2 p21

and (5) follows by induction.
Conversely, let the polynomials {p.(z)} satisfy (1), (3), (4), (5). Then we may

write
n+l

(9) zp.(z) 72pj(z).
j=O

Taking the inner product on both sides with pk(z) ( is given by Proposition 2),
we obtain

(zp.(z), p(z)) ,.
But also the left-hand side is

(zp.(z), pIz)) .Io)

provided 0 =< k < n, where

"n q)k + Pnk
k=O

If k n + 1, (zp.(z), p.+ l(z)) p../p.+ 1,.+ 1. We may now write (9)in the form

zp,,(z) 2. p,(O)pu(z) + (p,,./p.+ ,,,+ 1)P,,+ l(z).
k=0

We observe, now, that

p,(O)pu(z)=
k=O

[9, p. 290, 11.3.5]
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and so we have obtained

(10)

with 2. as above.
Let us define

zp.(z) p..2.p*. + (p../p. + 1,n +l)Pn +I(Z)

q.+ l(Z) zp.(z)

where q. + l(Z) const, p. + (z) and clearly

(11) p.+ l(z) q.+ l(z)/llq.+

Calculating the O-norm of q.+

Ilqn+ 2 (q.+ 1, (I)q.+ 1) (q.+ 1, ((PnnZn+l ’t- ’n(Z))) (*q.+ 1, P..z"+ 1)

(since p.+ is orthogonal to all polynomials of degree less than n + and r. is a
polynomial of degree n or less). We may easily verify that

Oq.+l O(zp.(z) p..2.p*(z))=

Combining this result with (11) gives the desired equality.
This result combined with our previous work clearly yields a simple algorithm

for inverting positive definite Toeplitz matrices [7].

Acknowledgment. The author expresses his thanks to Dr. Sven Treitel for
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EQUICONVERGENCE THEOREMS FOR SERIES WHOSE TERMS
SATISFY A DIFFERENCE EQUATION*

JET WIMPS

Abstract. We discuss the error of expansions of functions in series of function {p,(z)} which are
defined by a generating function. If p.(z) satisfies a linear difference equation of a certain kind, then
the error of the expansion may be simply related to the error of a much simpler Taylor series. Some
of our formulas are of practical value in summing expansions in p,(z) with given coefficients, and we

give several applications to expansions in Pollaczek polynomials P,(x’a, b).

1. Introduction. In this paper we are concerned with the convergence properties
of expansions in functions {p,(z)} which are defined by a generating function

n=O

It is found that if p,(z) satisfies a linear recursion relationship of a rather general
kind, the error of an 6xpansion in these functions can be simply related to the error
of a much simpler expansion, that is, a Taylor series with related coefficients.
In the course of our analysis, formulas are given which are of practical value in
"summing" the p,(z) series when the sum of the related Taylor series is known,
and we present applications of our results to expansions in the so-called Pollaczek
polynomials P,(z; a, b). Also, certain neat statements can be made about the
convergence of the p,(z) series when the related function is an entire function of
exponential order.

2. Formulas. Let

n=0

for (z, w) belonging to some region of C x C. In particular, we assume z e Z c C
and for each fixed z Z, (1) has a nonzero radius of convergence. Also let

(2) f(z) ,,(f)p,,(z)
n=0

converge absolutely. We define

(3) (z) a,,’n(flz",
n=0

a, > 0.

(In general {a,} is a sequence which will insure that (3) is analytic in some neigh-
borhood of the origin.) Then

(4) fc c(t)
ak Ck(f dr,
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where b is analytic on and within C, a simple closed contour encircling the origin.
Let

q,(z) p,,(z)
(5) K*(z, t) -[ z.., t"

q,(z)
0 rn

If we assume that

(6) lim Iq,(z)t /" ((z) < o,

then (5) will converge if It] > ’(z), z fixed.
We then can write

(7)

E,[f(z)] dp(t)K*, (z, t)dt,

n-1

E,[f(z)] f(z) , k(f)pk(Z),
k=O

qk(Z)
K*, (z, t) - tkk=n

provided that on C, b is analytic and It[ > ((z).
For n 0 this becomes

(8) f(z) qb(t)K*(z, t)dt.

Most practical interest attaches to the generating function (1) when p,(z)
satisfies a recursion relationship

(9) Av(n)p,+v(z) O, n O, 1,2,...,

where not all the Av are zero. Often the A(n) are rational functions of n, for example,
if p,(z) is one of the classical orthogonal polynomials. When this happens is made
clear by the following theorem.

THEOREM 1. p,(z) satisfies (9) with Av(n) a rational function of n if and only if
K satisfies the differential equation

(10) -w K(z, w)B(w) 0,

where the B are polynomials in w not all of which are zero.
The proof of this theorem is just a matter of series manipulations. Since it

depends on properties of generating functions so well described by other writers
(see [2, vol. 3 3]) we omit it. For instance, to show (10) implies (9), one would write

63r
OWrK= 2 p.+r(z)(n 4- 1)rwn,

n--0

substitute in (10), and rearrange. Note that Av, By in general will depend on z.

For a discussion of the theory of (1), (2), (3), see [1].
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Now, with the exception of certain logarithmic cases, the consideration of
which introduces only mechanical, not conceptual, difficulties into our analysis,
the work of Birkhoff and Trjitzinsky [4], I5] shows that if p, satisfies (9), then we
can express it as a linear combination

(11) p,(z) Vh(n), r’ <= r,
h=l

where the Vh(n) are functions of z which have the following asymptotic representa-
tions"

Vh(n eQh(n)sh(n), n- ,
(12) Qh(n) lZO,hrl In n + #l,hn nt- fl2,hrl

(p-1)/p d- nt- p,hrl 1/O,

Sh(ll nOh[o, + X,hn- 1/p d- "],

where p is an integer >__ l, O.h 4 0 and/O.h is an integral multiple of lip. (12) is a
natural generalization of a Poincar6 type asymptotic expansion. For the properties
of such expansions, see the cited references.

We now assume that a, can also be chosen so that

(13) q,(z) Wh(n),
h=l

where a representation like (12) holds for each Wh(n) but/0,h 0, 1 =< h r’.
In [6], it is shown that K*,(z, t) can be written as a linear combination of

functions Uh(n, t),

(14) K*.(z, t) Uh(n t),
h=l

where each Uh has the asymptotic expansion

eQh(n)
Uh(n t) --s(n, t), n --. ,

(15)
s(n, t) n[flo, + fil,hn- lip + "].

The leading constants in the latter series may be found by the method of undeter-
mined coefficients explained in the above reference. We have, for example,

(Z l,h Wh122,h(p 1)o,h (p > 1)(16) fl,h
W p(t Wh) 2

01 ,h WhOhOO,h
(p )

t- W (t- Wh)2

where w e"’, 0 and where Oh, Oj,h, Qh, j,h are the parameters corresponding
to the decomposition (12).

Now from the development in [5] the flj,h are seen to be continuous functions
(in fact, analytic) if v Wh. An easy argument using Theorem 7.13 of Rudin [7]
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shows the asymptotic representation (15) holds uniformly on all compact sets
not containing Wh. Note also that wh is strictly within C, since by convergence
of (5) and (15),

x/. maxh iWh]
(17) lim < C.

Thus the representation (15) holds uniformly on C.
Substituting (14) in (7) gives

h=l

(19) Yh(n) eOht")n[7o + 71,hn- lip +’’’],h

Since the 7j,h above depend on n, (19) must be interpreted as

(20)

e-t")n- Yh(n) 7j,hn
-j/p O(Tr+l,hn -tr+ 1)/P),

j=0

no, r 0,1,2,....

We have

(21)

(22)

=whOho,h (p-- 1).

Since b is analytic on and within C we have

(23)

Also,

(24)

We find that

(25)

nR.[dp, ] ( dp(t) dt
,+ 2rci t"(t (Z)2"

O,h
R.[dp Wh]

W

(26)
(0 1,h n,)
w R,[d?, Wh] + -h R._ ,[d?’, Wh].
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THEOREM 2. Let (t)K, (z, t), where dp, K*, are given by (3) and (5), be analytic
in some annulus A {tlr < Itl < r2}. Let q,(z) have the decomposition (13), where

(27) Wh(n

lao, O, sa, Qa as in (12). Then E,[f(z)] has the asymptotic representation (18),
(19) with leading coefficients 70,a, 71,h related to the error of the Taylor series for
dp(t) by (25), (26).

Note r is the singularity of largest modulus of K,*, r2 the singularity of smallest
modulus of q. If r < r2 then a path C can be determined so the analysis above
holds. Also, the fact that (1) has a nonzero radius of convergence is not essential
to the analysis, only that the series for K,* converge. Thus the p, may be generated
by a "formal" power series.

Let C be a circle of radius R. Then

(28)
R.EqS, 0 < mck(R)/en_ 1(e Il),

0n

where M(R) is the maximum of Ib(t)l on C. It follows that there exist constants

A such that

eRe Qh(n)rlRe
(29) Yh(n)[ < l--i- iV-hl)lOO,h[M4,(R) + p n > no,

and this can be a useful upper bound in (18). It is interesting to see what happens
when q5 is entire. Let

(30) M(/) O(e+),
Then the function

g,(R) eR’+/R
occurs in (27). This function attains a minimum at

1/(a+e)

and Stirling’s formula shows that

Cn- /2

(32) g.o)
v(n/( + ))

for all e, > O.

[1 -t- O(n- 1)1.

We have shown the following result.
THEOREM 3. Let dp(t) be an entire function of order a and let the hypotheses of

Theorem 2 hold. Then for every e, > O,

Oh[1,1ReOh-1/2 eReQh(n)], l’l .
@ h=l

The order terms in the sum depend on e.

3. Applientions. As an example of the application of some of the previous
formulas, we will consider the generating function for the Pollaczek polynomials,
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P,(z; a, b), [1, vol. 2, p. 218]. We will take a, _= 1.

(34) K(z, w)

where

w z + ix//1 z2

iv1/(35) w2 z z2,
W1

Here we mean

A -(az +b)/v/1 -z2,

x//1 z2 11 z211/2 e(i/2)(41 +42-r),

arg (z 1), 052 arg (z + 1),
(36)

a, b, 2 real.

(39)

We have

(38) qb(z)= 1-

Vl(n)

p,(z) P,(z a, b) Vl(n) + Vz(n),

(1 W1/W2) -2-iA [ C1 C2 1F(2 iA)
w,zn- -iA + + +

n -V2(n)
(1- W2/wl)-z+iA [did2 1F(2 + iA)

w,ln +ia + + +
n -

Darboux’s method may be applied to (34) to obtain an asymptotic representa-
tion for p,(z).

We get r’ 2,

0 b2 < 2g.

(37)

This reveals the remarkable fact that the powers of n in the algebraic portion of the
asymptotic expansion of the Pollaczek polynomials depend on z, viz., 01 2
-iA, 02 2 + iA. For none of the classical orthogonal polynomials is this
the case. (The Gegenbauer polynomials result when a--b 0 so for these
polynomials, 01 02 2 1.)

For these Pollaczek polynomials we further have p 1,/o,1 =/o,2 0,

ettl,h W2 e#2,h W1

and 0o,h may be read off (37).
K as a function of w has branch cuts at w and w2 We assume a branch cut

is established between these two points to make K single-valued. Now consider

171 > max (Iw11, Iw21).

K*(z,t)

o1 -2 + iA, o2 -2- iA,
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SO

(40) f(z) -i _) A + iA1 t/Y)u dt

and C is a circle on which

max (Iw,I, Iw21) < Itl < I1,

a branch cut having been made from 7 to t3eiarg Y.
Making the change of variable WlU-+-(1- u)w2 ---t in the integral and

expanding 2’- 1, (1 t/T)u gives

(41)

(w21_ 1)1_2; 1-f(z) - m,,=O m!n!w2(7 W2)

"(W2 w1)m+n fC’ U’+m+"(U 1) du,

where C’ is a simple closed curve around [0, 1] in the clockwise direction. But this
is a known integral for the beta function I1, vol. 1, p. 15]. We thus have obtained
the expansion

_)"F(1-2+iA)F(1-2-iA)(W2 1) 1-2;t 1
F(2- 22)rc

sin [rt(1 2- iA)]

1w21 w2x)(42) .F1 1-2+iA,-/,l-22,2-22;l_,w1,
)(_).-.Z PX.(z; a,b

n=0 n!

The function F1 is Appell’s hypergeometric function [2, vol. 1, p. 224 (6)].
If instead we start with the function

(43) b(z) e

a similar analysis yields the expansion

(44) f(z) (I)2(/], iA, 2 + iA, 1, w2, w) ,=o n!P"(z ,’a, b).

Now for fixed,

(t)"
(45)

so

(46) 7O,h
OO,h
n
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and so

(47) E,,[f(z)] Yl(n) + Y2(n),

Yl(n)
(w2)"

Fl
2- 1-ia(x0 + + n z

?11 ,1

g(l (wn_ /o + + n --’ .n! ,2
F/

Roughly speaking, this means that E,f(z)] behaves like "P,(z; a, b)/n! as n .
Since in this case 5a,(f) can be estimated asymptotically by Stirling’s formula, the
theory in [3] or a straightforward majorization argument based on the estimates
(37) could be used to obtain an asymptotic formula for E,[.f(z)l. However, (f)
will not in general be so tractable.

Similar formulas pertaining to the expansion (42) can also be readily deduced.
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ASYMPTOTIC ANALYSIS OF NONLINEAR DIFFUSION
AND RELATED MULTIDIMENSIONAL INTEGRALS*

CHARLES G. LANGEf

Abstract. In many important physical systems involving both diffusion and nonlinearity it often
occurs that initially diffusion is the dominant mechanism. The question then arises as to whether or
not linearization provides a uniformly valid first approximation for large times. A detailed examination
of several model equations, both deterministic and stochastic, reveals that often the nonlinearity has
a cumulative effect on a long time scale which must eventually be included in the first approximation.
In particular, it is proved that linearization is not uniformly valid for Burgers’ model of turbulence.
A major part of the analysis involves constructing asymptotic expansions for an interesting class of
multidimensional integrals.

1. Introduction and general discussion. The linear phenomenon of diffusive
decay has its mathematical origins in the theory of heat conduction. Indeed, the
mathematical description of the diffusion process is usually presented in terms of
solutions of the classical heat equation. However, many important physical systems
involve the combined effects of nonlinearity and diffusion which greatly increases
the mathematical complexity. As a result our understanding of such problems is
rather meager. In 1] the reader will find an excellent account of the rich variety of
phenomena that can occur due to the interplay between diffusion and simple
nonlinearities.

Confronted with the difficult task of constructing solutions for problems
involving nonlinearity and diffusion, many authors have resorted to a study of
various limiting situations. Perhaps the most commonly made assumption is that
the diffusion is the controlling mechanism, or, equivalently, that the nonlinearity
is "weak." This assumption is usually based on either the "smallness" of the
initial data or certain plausibility arguments which essentially contend that dissipa-
tion will eventually force the nonlinear terms to be negligible. Regardless of the
validity of such an assumption, its advantages are apparent. A perturbation
approach becomes feasible in which the leading term in the perturbation expansion
represents a linear diffusion process. Higher order terms represent corrections due
to the nonlinearity in the system. We shall refer to .this approximation of the solu-
tion as a regular perturbation expansion (RPE).

Of course, if the RPE is uniformly valid (see (3.12) for a necessary condition),
then in a sense the problem is trivial mathematically. Moreover, one is unlikely
to gain much of an understanding of the fully nonlinear case. However, it turns out
that for many important physical systems the RPE is not uniformly valid. This is
often very difficult to discern and as a result many authors have erroneously asserted
the uniform validity of the RPE in special cases. The purpose of the present work
is to examine in detail several simple model equations, both random and determin-
istic, in the hope of elucidating the conditions under which one might expect
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nonuniformities to arise in the general case. Several of the models are physically
important and have been treated incorrectly in recent works.

In an earlier paper [2], a singular perturbation technique was devised for
constructing formal uniformly valid asymptotic solutions in situations where the
RPE is nonuniform. The method itself was motivated by a study of several simple
exact solutions. In each case considered the RPE was expressed in terms of Fourier
integrals. Examination of the behavior of the RPE was based on the assumed
equivalence of ordering in Fourier space. However, a rigorous establishment of the
possible regions of validity of the RPE necessitates an asymptotic evaluation of the
Fourier integrals themselves.

In 2 we construct asymptotic expansions for several integrals which occur
frequently in nonlinear diffusion problems. A typical integral is given by

(1.1) f(x, x2 y2
dx dy,

where f is a real-valued function and is a large, positive parameter. The task of
constructing expansions, for + , for (1.1) and related integrals is facilitated by
the use of Cauchy principal values.

In 3 we consider the Cauchy problem for certain deterministic differential
equations. A detailed study of the exact solution of a model equation illustrates the
effect of higher dimensions in reducing the importance of weak nonlinear terms in
diffusion problems. In addition, we conclude from this study that estimating the
significance of neglected nonlinear terms by using only the solution to the linear
problem does not in general provide a sufficient test of the uniform validity of the
RPE. Accordingly, results such as those discussed in [3], which deals with the
problem of small disturbances in a dissipative gas, must be interpreted with some
care.

The second part of 3 involves a study of a class of problems involving quad-
ratic nonlinearities. It is shown that no apparent nonuniformities arise in the
associated RPE except in certain special cases. One such case corresponds to a
physical process involving mass-diffusion and absorption due to nonlinear chemi-
cal reaction. We establish that certain assertions made in [4] regarding the uniform
validity of the RPE for second order reactions are incorrect. The technique dis-
cussed in 2] provides a means of obtaining a uniformly valid solution for this case.

Although the main emphasis of this paper is on a study of nonlinear diffusion
problems, 4 is devoted to a brief examination of the long time effect of small
variable coefficient terms on the diffusion operator. We consider the Cauchy
problem for the deterministic case and following the treatment in 3 establish
conditions under which one might expect the RPE to be nonuniform.

In 5 and 6 we consider the Cauchy problem for two stochastic model equa-
tions. Section 5 is devoted to a detailed study of the so-called final period of decay
problem for Burgers’ model of turbulence. In 5] it is argued that the RPE (or
equivalently linearization) is uniformly valid during this time regime. We present a
rigorous proof that this is not the case. In 6 we examine a limiting case of the
passive scalar problem which has served as a convenient model for testing closure
schemes designed for the problem of homogeneous turbulence. We establish that a
RPE based on the smallness of the velocity field is not uniformly valid. Moreover,
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the results of the analysis bring out the doubtful validity of cumulant discard
approximations.

Aside from their importance as regards the problem of homogeneous tur-
bulence the two equations studied in {}{} 5 and 6 are representative of those arising
in many physical situations. The reader interested in other examples of statistical
initial value problems involving weak nonlinearities may wish to refer to [6].

The Appendix contains a brief discussion of several integrals which appear in
the main body of the paper.

2. Asymptotic analysis of the basic integrals. The integrals which we shall
consider are of the form

(2.1) fRN g(x)h(x, t) dx,

where x denotes an N-dimensional vector in the real N-dimensional Euclidean
space RN, is a real parameter and g and h are (with a few exceptions) real-valued
functions. The function h will in general involve exponential behavior reflecting
the fact that the integrals arise in a study of diffusion processes. Our main concern
will be to determine asymptotic approximations of these integrals for large values
of the parameter t.

The approach that we shall follow relies on the use of straightforward generali-
zations of Watson’s lemma and on the properties of Cauchy principal value in-
tegrals. For our purposes it proves convenient to use the following form ofWatson’s
lemma.

WATSON’S LEMMA. Let g(x) be a real-valued function which is L I[O, ), i.e.,

(2.2) Ig(x)l dx < c,

and which has the expansion

(2.3) g(x) y a.x"/- ,
n=l

forO <= x < 6, 6 > Oandkapositiveinteger. ThenthefunctionI(t) e-"’g(x) dx,
>= O, has the asymptotic expansion

(2.4t -(0 aF -/ for .
n=l

For a proof of this classical result the reader may wish to refer to [7].
As Hardy has shown in detailed investigations [8], one can operate with

Cauchy principal values largely as with ordinary integrals. We shall make repeated
use of the following formula for parametric differentiation of principal values"

(2.5)
dx
P dy P
y x y-x

+ g(x,y) dy,

which holds, for example, if g is CI(R2) and

-x + g(x, y) dy<.



520 CHARLES G. LANGE

A second property involves interchanging the order of integration for iterated
principal value integrals. Here we must use the Poincar6-Bertrand formula [9];
namely,

1 1 1 1 1p1(2.6) Px Pr+ x
+ Pr- Px x + y

cz6 x f y + P,-where the above notation is a symbolism for

P P dy + P
y "+- X

(2.7)
2g(O, O) + P --P g(x, ).

f dxg(Xp ’Y)
y+x

A sufficient condition for the validity of (2.7) is that g is L I(R2) and uniformly
Lipschitz continuous on R2.

We are now in a position to construct asymptotic expansions for several
important integrals. We shall begin by briefly considering two elementary one-
dimensional integrals. The first one is associated with the Fourier transform
representation of the solution to the unperturbed diffusion equation;namely,

(2.8) 11(0 f g(x) exp (- x2t ix)t 1/2) dx,

where 2 is a function of the positive parameter t. Assuming that g is analytic at
x 0 and LI(R 1) it readily follows from a direct modification of the procedure
leading to Watson’s lemma that (for ---, with 2 =< O(1))

(2.9) 11 e de,
o m !tm/2

where

g(m)(o
dx _J x=0

Equation (2.8) can be generalized to an N-dimensional integral, in which case a
result similar to (2.9) holds in terms of radial derivatives of g(x) evaluated at the
origin with the leading term (assuming g(0) : 0) being O(1/tN/2).

The second integral is

(2.10) Iz(t) g(x)A(-x2) dx,

where

(2.11) A() _= (eCt- 1)/.

For simplicity we shall assume that g is analytic at x 0 and L110, ). It proves
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convenient to rewrite (2.10) as

I2(t) g(0) A(- x2) dx + g’(O) x e

(2.12) +
g(x)- g(0) g’(0)x e

X2
dx

( g(x) g(O) g’(O)x e-)o X2

A( x2) dx

e x2t dx.

The factor e has been included to insure the existence ofthe third (t-independent)
integral on the right-hand side of (2.12). It follows from (2.4) that

(2.13)

g’(0) g(x)- g(O)- g’(O)x e
I2(t) x//g(O)t 1/2 + log (1 + t) + x2

g(m)(0)((m- 3)/2)!
2 2m !t(m )/2

Upon expanding log (1 + t) as

log(1 + t) logt +
(--1)m+l

certain terms in (2.13) cancel leaving

g’(0) g(x) g(0) g’(0)x e-
I2(t) x/g(0)t 1/2 + -- log + X2

g(m)(o)(1/2m-- )!

2 2m !t(m- 1)/

(2.14)

dx

dx

where D denotes the domain [0, 1] R in the (2, x)-plane. For simplicity we shall
assume that g is C(R) and that g and its derivatives to all orders are LI(R1).
In this case the double integral is equivalent to the iterated integrals. An additional
restriction on g will be made at an appropriate point in the analysis.

I3(t) z) g(x)exp E(22 1)x2t] d2 dx,(2.15)

We shall now examine three double integrals. The first one arises in a study of
the passive scalar problem (see 6). It is given by

f (f(x) e-2)/x dx 0).

As we shall find, the occurrence of the log term in (2.14) has significance for
diffusion problems in R2. The O(1) term in (2.14) is also of some interest. In par-
ticular we note that it requires global information about g. Moreover, the choice of
the function e -x2 is essential (in the sense that any equivalent function f must
satisfy
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It seems clear that the origin and the line 2 1 play an important role in the
asymptotic evaluation of this integral because of the vanishing of the argument of
the exponential factor. Of course it is easy to find the limiting behavior of 14, but
we are interested in obtaining the entire expansion. Although by no means obvious,
by making use of the identity

fo e y2t

(2.16) 2xx e- x-t ex;at d2 P dy,
o y-x

we can transform (2.15) to a more tractable form. The proof of (2.16) is given in the
Appendix, equation (A.3). Utilizing (2.16) the integral in (2.15) becomes

1 1 1
(2.17) I3(t) 2x/tPxPyx yg(X)e -r2t.

In order to take advantage of the exponential factor we must interchange the order
of integration. This can be effected by using (2.7) which leads to

rtZg(0) 1 e -2’ g(x)1 e -y2t g(x) Py Px(2.18) I3(t) 2x/Pr Y P"x y 2xt 2xt y x

The value of the last integral in (2.18) is zero because the integrand is an odd func-
tion of y. If g is such that the function

pf g(x)
dx

is analytic at y 0, then the first integral on the right-hand side can be expanded
as in the case of the one-dimensional integrals. This leads us to the resulting
asymptotic expansion

(2.19) 13(0
7Z3/2g(0)
2tl/2

1 (m 1/2)!
+ =o 2(2m + 1)Itm. f 1 dera+ lg(x)

P -d-xg, dx.
mX

The form of the expansion in (2.19) is rather surprising. While the value of g
at the origin determines the dominant contribution, the form of the higher order
terms depends upon global information about g. This situation should be contrasted
with (2.9). It is clear that the presence of the critical curve 2 1 is responsible for
this phenomenon.

Although the use of principal values proved convenient in the determination
of(2.19) this expansion, as well as (2.14), can also be obtained by a method involving
the use of Mellin transforms [10]. (This fact was kindly pointed out to the author by
J. S. Lew.) However, for the following integrals the use of principal values is both
natural and crucial. The only other method by which the author has managed to
obtain expansions for these integrals involves lengthy calculations with generalized
Fourier transforms.
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A study of diffusion equations involving variable coefficients in 4 depends
on the long time behavior of the following double integral"

14(0 fR2 g(X, y)A(x2 y2) e-,,2t dx dy

(2.20) f fo e-y2, e-X2t
g(x, y)

X2 y2
dx dy.

Rather than give a detailed description of conditions on g we shall simply assume
for the moment that g is L I(R2) and uniformly Lipschitz continuous on R2. It
would appear from the form of the integrand in (2.20) that the x- and y-axes are
critical curves; for along these curves the argument of one or the other of the
exponentials vanishes. In fact, we shall show that the asymptotic behavior of 14 is
affected only by the nature of g near the x- and y-axes. It should be noted that along
the axes the t-dependent factor in (2.20) resembles that in the integrand of (2.10).

Expressing (X2- y2)-I as (2x)-lI(x- Y)- + (x + y)-], we can rewrite
(2.20) as

x--y
1 /g(x,y) e-

x+y

(2.21)
--x2t

Px 2x PY x-y
1

g(x, y),
x+y

since each of the integrals on the right exists separately. As we did for 13 we use (2.7)
to interchange the order of integration in the first integral so that

(2.22)

e -y2t

14(0 n2g(0,0)+Pr
2y Px y

g(x, y) + g(-x, y)]

e -x2t 1
+ P 2x P’y x

[g(x, y) + g(x,-y)].

A term of the form P(1/x)Pr(1/y)g(x, y) e -’ does not appear because of cancella-
tions due to the terms (x y)-1 and (x + y)-1. If g is such that the function
Px(x y)-l[g(x, y) + g(-x, y)] is analytic at y 0 and the function Pr(y x)-1
[g(x, y)+ g(x,-y)] is analytic at x 0, then the asymptotic expansion of 14

is given by

1 (m- 1/2)’ 1 63 )2m+l14(On2g(O,O) +=o(2m+ 1)2tm( xP +
(2.23)

1
[g(x, y) + g(- x, y)]y o + Py

Y

[g(x, y) + g(x, Y)]x o}.
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The last double integral which we shall consider arises in a study of diffusion
problems involving quadratic nonlinearities in {} 3.

(2.24) Is(t) ;2 g(x, y)A(x2 y2) exp (-cx2t + iAxt 1/2) dx dy,

where c and A are real constants with c > 1. As with I we can express I5 as

15(0 -pxeXp (--CX2t -JI- iAxt 1/2)
2x Pr x [g(x, y) + g(x, y)]

1
(2.25) + Px-xPx x---y[g(x y) + g(x, -y)]

exp [-y2t + (1 c)x2t + iAxt/2].

The first integral can be handled as above; however, the second one requires
more study. We shall assume that g is analytic at the origin and L(R2). Because of
the exponential decay as x2 + y2 oo only the neighborhood of the origin makes
a relevant contribution to the integral. Hence, disregarding an error term which is
exponentially small for large t, the second integral in (2.25) becomes

o c3"+"g(0’0)[I+(-1)"]PxPY 1
xmY

m=0 X’’-n m!n! x----y
(2.26)

exp [-y2t + (1 c)xZt + iAxtl/2].

On setting x’= xx/C/ and y’--yx/, (2.26)can be expressed (upon dropping
primes) as

(m + 2,g(0 O)
(2.27) Z o -c- --y2-,/ rn’(2n)!t" + 2,,/2 Sm,2,(c 1, 1, A, 0),

0

where we have introduced

(2.28)
1 1 xmy exp [--ax2 by2 + iAx + iBy],Jm,.(a, b, A, B) =- PxxPx x Y

which is well-defined for a and b positive, A and B real. Since Jm,n can be expressed
as

63m+"Jo,o(a,b,A,B(2.29) Jm,n(a, b, A, B) +n A c?B"

(2.30)

we need only reduce Jo,o to an ordinary integral. This can be accomplished by
applying (A.4) which yields

Jo,o(a, b, A, B) P dx d

exp(-ax2 + iAx + iBx bx2 + bx22)

iBexp(-ax2 + iAx + iBx iBx
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The first part of this integral can be simplified by interchanging the order of inte-
gration, integrating with respect to x and making the change of variables

w/(a + b)/b sin 0. The second part reduces to an ordinary double integral upon
applying (A.4). This leaves us with

Jo,o(a, b, A, B) c exp sec 0 dO
o 4(a + b)

(.3 + ( +

exp
b (A + B- B) @

Provided a and b are positive, we can differentiate Jo,o an arbitrary number of
times with respect to a, b, A and B. There is no diculty in taking A or B to be zero.

Finally, if the function P( y)-[g(, y) + g(,-y)] is analytic at 0,
then the asymptotic expansion of (2.2) is given by

m=0

( + m(cO/e, + [(x, + g(x, o
m=l

+ e d,

where J, is defined by (2.28), (2.29) and (2.31).
We conclude this section by considering one triple integral which arises in the

study of equations with variable coecients

(2.33) I(t) g(x, y, z)E(x ya x z) e-x dx dy dz,

where

(2.34) E(r/; )
A()- A()

For the moment the only restriction that we place on g is that it be LI(R3) and
uniformly Lipschitz continuous on R3. Setting (z2 y2)- (2y)- l[(y z)-
+ (y + z)-1], splitting (2.33) into two integrals and applying formula (2.7) we
obtain

(2.35)

i6(t 2 g(x, 0, 0)A(- x2) dx + yPPyA(x2 y2) e-2t

1
Pzz-y
g(x, y, z) + g(x, y, z) g(x, y, z y) g(x, y, y z)

2y
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where yz denotes a cyclic summation on y and z. The factors involving g(x, y, z y)
and g(x, y, y z) have been added to make the integrand well-behaved as y 0;
because of the oddness they contribute nothing to the integral. Now we shall
assume that g is such that the function (x, y), given by

(2.36)

O(x, y) =-Pz-y
g(x, y, z) + g(x, y, z) g(x, y, z y) g(x, y, y z)

2y

satisfies the conditions which make (2.23) valid (with , in place of g in (2.23)).
Further, we shall assume that g(x, 0, 0) is LI(R1) and analytic at x 0. Thus, we
can use the results of (2.14) and (2.23) to deduce that

I6(t) 2r5/zg(0, 0, 0)t 1/2 -F rcZP f g(x, O, O)
x2-

g(O, O, O)
dx

1 ag(O, y, 0)+ r2yP

(m 1/2)!
(2m + 1)!t" +1/2m--0

EO(x,y) + O(x,-y)]x=o + Lx +

[(x,y)+ (-x,y)],=0},
where is defined in (2.36). Thus, in order to obtain the coefficients for a particular
g we are faced with calculating 2-fold iterated Cauchy principal value integrals.
The contributions to (2.37) are associated with the critical nature of the axes and the
x, y- and x, z-planes.

The integrals which we have examined play an important role in the sequel.
They were chosen to illustrate the techniques necessary for an asymptotic evalua-
tion as well as the unusual form which the resulting asymptotic expansions can
take. The reader will note that ohen we placed conditions on the function g which
were much too restrictive; however, our main interest was in obtaining the form
of the asymptotic expansions rather than in determining the weakest conditions
under which they are valid.

3. The Cauchy problem for nonlinear diffusion. In this section we consider
the Cauchy problem for a class of partial differential equations involving "weak
nonlinearities." In particular, we investigate in some detail the influence of quad-
ratic nonlinearity on the diffusion operator. To be specific, consider the equation

(3.1) Lu =-- c3t
Veu ef(u), x= (xl,...,xt)e R, >0,
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where f is a nonlinear term involving the real-valued function u and its spatial
derivatives,

U (2
V2 2 --21’--

and e > 0 is a small parameter. Further, u is required to satisfy the initial condition

(3.2) u(x, 0; e) h(x), x R.
The parameter e is taken to be a measure of the nonlinearity (at least for

suitably small values of t). As we shall see, this translates into certain restrictions on
the moments of h. Associated with (3.1)-(3.2) is the so-called regular perturbation
expansion (RPE) given by

(3.3) uj(x, t)d,

where the first two terms satisfy

(3.4) Luo O, Uo(X, O) h(x),

(3.5) Lul f(Uo), HI(X 0)-- 0.

The higher order terms in (3.3) are determined by iterating in (3.1) upon the lower
order terms subject to the initial conditions

(3.6) uj(x, O) O, x e Rv, j >= 1.

From the perspective of one faced with having to construct approximate
solutions for a particular case of (3.1)-(3.2) the RPE has a natural appeal. The
nonlinear problem is replaced by a sequence oftractable linear problems. Moreover,
a study of simple examples provides some assurance that under fairly general
conditions this linearization process has an initial region of validity 0 <= <= T(e).
To one willing to accept the RPE as an approximate solution the determination
of T(e) becomes of crucial importance; for times larger than T(e) the essential part
of the nonlinear effects must be incorporated in the basic approximation. Un-
fortunately it appears to be quite difficult to establish a rule which permits a direct
determination of T(e) for a particular case of (3.1)-(3.2). However, the behavior of
the RPE itself can be of some help for if nonuniformities arise in the RPE on a time
scale (e) then clearly we must have T __< O(). Again appeal to simple examples for
which exact solutions are available suggests that for many problems T and T are
the same.

In this section we shall briefly consider special cases of (3.1)-(3.2) in order to
illustrate the effect on T of the form of the nonlinearity and the dimension of the
x-space. There are several equivalent ways of representing the terms in the RPE. In
each case one is confronted with the difficult task of estimating the behavior of
these terms for various ranges ofx and t. Fortunately this task becomes much easier
when the initial data is such that we are permitted to work with ordinary Fourier
transforms; e.g., when h is LI(RN). For the most part we shall restrict our attention
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to initial data that satisfy this condition. The Fourier transforms of u and h are
defined by

(3.7)
1 fR u(x, t; ) eik’’’ dx,At A(kt, t; e) (2rc)N ,,

1 fR h(x) eik’’dx(3.8) H H(kl)=
(2)u

with the corresponding relations

(3.9) u(x, t; ;)= f A e -ikl’x dkt, H(x)= H e -ik’’x dx.

Associated with the RPE for u(x, t;e) in physical space is a RPE for A in
Fourier space (the expansion obtained by transforming (3.3) term by term).
Although it proves convenient to perform much of the analysis in Fourier space,
it is important to note that a Fourier space expansion which is uniform for k R
and e [0, ) does not necessarily lead (upon term-by-term integration) to a
physical space expansion which is uniform for x e R and e [0, ). This is illus-
trated by the uniform Fourier space expansion (e 0)

(3.10) P e -p2k2/4t k R > 0
p=l

which is the transform of

P
(3.11) (gt)/2 e -xt/p x e R > 0

Comparing the ratios of successive terms in the latter expansion we find that it is
not uniform in any region R1 x [0, ) where xt 1/2 > O(1).

Before considering the first example we simply note that if the RPE is to
represent a uniformly valid asymptotic expansion of a bounded solution of (3.1)
and (3.2) then it is necessary, but not sufficient, that

(3.12) u(x, t; e) Ui(X t)e O(em+ ), m O, 1,
i=0

In this condition, the "O" symbol is for e 0 and it implies estimates that are
independent of x for x Ru and of for 0.

The following example is especially useful for illustrating the effect of higher
dimensions and the "degree of the nonlinearity" when f has the form u. Consider
the equation

(3.13) Lu= -eu(x,t;e)[u(O,t;e)] p, x6R, >0,

with the initial condition

(3.14) u(x,0;e) h(x), xeR, heLI(RU),
and where p is any real number. We shall deal only with nonnegative solutions so
that there is no ambiguity in the meaning of the right-hand side of (3.13). As the
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reader may verify, the exact solution of this problem can be readily expressed in
terms of Fourier integrals as

H exp!- k12t ik x)
u(x, t; e)

{1 / e/.[-5o iR-:I/-ZICi dr} /p dkl’

where H is defined in (3.8). When e 0, (3.15) reduces to the solution of the un-
perturbed diffusion equation. The modification introduced when e. > 0 is entirely
determined by the multiplicative factor

(3.16) + p H c -Ik’’lzt dk., dt

It is easily shown that the RPE results from expanding (3.16) in a binomial series.
We shall use the fact that
(since h e LI(RN)) to assess the long time behavior of (3.16). Rather than attempt a
detailed study of (3.16) we shall restrict our attention to those values of p and N
which correspond to problems of physical interest. Finally, we note that for
e < 0 this example serves as a good model for studying the problem of the blowing
up of solutions (cf. [11]).

(i) One dimension with p 1. In this case (3.16) reduces to

(3.17) +

where A(y) is defined in (2.11). With the assumed conditions on H,, it follows that
for --, c,

+ e H,, A(- k2m)dkm
(3.18)

=1+ e[2x/tHo + Hm-- H
k dkm + o(1)

where

(3.19) Ho H(O) - h(x) dx.

With stronger conditions on h we could apply the results of(2.14). In any event it is
clear from (3.18) that the RPE represents a uniformly valid asymptotic expansion if
and only if the initial data is such that H0 0. If Ho 4: 0, the RPE becomes dis-
ordered when Hoet 1/2 O(1); or, assuming e to represent a scaling of Ho such that
Ho O(1), the RPE becomes disordered when O(1/32). As we shall see, such a
result is characteristic of quadratic nonlinearities in one dimension.

(ii) Two dimensions with p 1. For ease of presentation we shall assume that
h(xl, x2) h(x2 + x22). The results are qualitatively the same for general h. For
this case we have from (3.16)

(3.20)

+ 2roe H(y)A(- y2)y dy 1 + 2re H(0) log

+
H(y) H(O)e

Y
dy + o(1)], t--,
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where

(3.21) H(0) h(r)r dr.

The reader should consult (2.14) for the general expansion. Thus, the RPE becomes
disordered when

H(0)e log O(1).

The effect of the nonlinearity is weaker for two dimensions than for one dimension.
This is to be anticipated on physical grounds. Nevertheless it is clear that when
H(0) - 0, one must eventually account for the nonlinear term.

An important conclusion to be drawn from this result concerns the reliability
of estimating the significance of neglected nonlinear terms by using only the solu-
tion to the linear problem. For example, it can readily be shown that by setting
e 0 in (3.15) we have the estimates (for

for x + x O(t). From this one could conclude that linearization is self-con-
sistent (for 0 < e << 1). However, the exact solution shows that the nonlinear term
has a cumulative effect represented by the log term and, hence, that linearization
does not lead to a uniformly valid first approximation. Results such as those stated
in [3 must be qualified with this example in mind.

(iii) Three and higher dimensions with p 1. It is not dicult to show that the
integral in (3.16) is O(1) for , N 3. Thus, we conclude that for three and
higher dimensions the RPE represents a uniformly valid asymptotic solution to
(3.13).

(iv) One dimension with p a positive integer greater than or equal to 2. In this
case (3.16) becomes

+ ep Hm,H... Hmpa(- k, k)

(3.23)
lip

dk dkm,,

The asymptotic behavior of the integral in (3.23) can be obtained by transforming
to p-dimensional spherical coordinates. It is easily verified that (3.23) becomes
{1 + O(elogt))-l/Zwhenp 2and{1 + O(etl-p/2)}-/Pforp >= 3. The conclusion
we draw from this is that cubic nonlinearities cause the RPE to become disordered
when O(e/); whereas, no nonuniformities arise for higher degree nonlineari-
ties.

The preceding example is very useful for illustrating the importance of weak
nonlinear terms in diffusion problems. Other examples for which exact solutions
can be deduced are studied in [2]. We turn now to an investigation of an important
class of problems involving quadratic nonlinearities. For simplicity, we shall
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restrict our attention to a one-dimensional version of (3.1); namely,

(3.24)
cu 2U
c3t X2 eNu2, x R1, > O,

with u(x,O;e)= h(x)6L(R1). The equivalent Fourier space representation of
(3.24) is given by

(3.25) 3Al f+ 61A e KmnAmAn 6l dkmn

with A H at 0. The function gmn K(km, kn) is related to the operator N
(and can be chosen to be symmetric in its arguments), 6(k) is the Dirac delta func-
tion and 6 k{. Further, the following abbreviated notations will be used"

l12""Ir,mm2""ms=( kla

(3.26) dkmm2...mr dkmp
p=l

=1 B=I

and the limits of all integrations are taken to be from to + .
Construction of the RPE for A is straightforward; upon setting

(3.27) A a e -"’t, a erar,
r=O

we obtain the first few terms as

(3.28) aol Hi,

(3.29)

(3.30)

all f KrnnHmHnA(at,mn) (l,mn dkmn,

a2l 2 f KmnKpqHnHpHqE(rYl,npq O’l,m. (l,mn (m,pq dkmnpq,

where A(x) and E(x;y) are defined in (2.11) and (2.34). As pointed out earlier, in
order to ascertain the behavior of the corresponding RPE for u we must transform
the RPE for At back to physical space. A close examination of the general form of
the higher order terms in (3.27) indicates that we need only consider the first two
terms of the expansion to check for obvious nonuniformities. Of course the fact
that nonuniformities do not occur does not prove that the RPE is a uniform asymp-
totic expansion of the solution. In order to make our task easier we shall assume
that the initial data, represented by h(x), is of exponential type at infinity, as well
as LI(R1), so that we can make use of (2.9) and (2.32) to obtain (for

(3.31) Uo(X, t)
e-;t2/4 H(m)(o)Z Itm/2 + e d,

m=O m.
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(3.32)

m,n 0

m+ 2ng(0 0) Jm,2n(1, 1, N///, O)
cqy ?z2" m !(2n)!t(m + 2n)/2

e 1 c c+ Pz + [g(y z)+g(y -Z)]y o2m !(2t)m/2 -z
[-+-i()/2)]m-le d,

where

( sz)(3.33) 2=
x

<O(1) g(y z)= K H ,.. IHtl/2

and J,,,z, is defined by (2.28)-(2.31). The choice of scaling of x with respect to
given in (3.33) is the natural one for linear diffusion.

In order to compare u0 with u first assume that Hova 0, in which case

Uo O(1/tl/Z).From(3.32)itfollowsthatu O(1)ifK(0, 0) 4= 0andu =< O(1/t /2)
if K(0, 0) 0. On the other hand, if Ho O, Uo <= O(1/t) and the behavior of u
depends upon the form of K and H. We shall examine two special cases in detail.

(3.34) Nu2 -u2.

This case is important in chemical reaction processes. In a recent work [4],
Bentwich studied (3.34) for initial data satisfying

(3.35) h(x) c + H e-iklx dkt

(3.36) h(x) H e -ik’x dkl,

where in (3.35) c denotes a positive constant and Ho 0, and in (3.36) Ho 0.
For (3.35) he finds that the RPE becomes disordered when t= O(1/e,). He then
employs a singular perturbation procedure, first used in [2], to formally obtain a
uniform asymptotic expansion for the solution. However, for (3.36) he erroneously
concludes that the RPE is uniformly valid. Indeed, the present results show that
when H0 4-0 (K -1) the leading terms in the expressions for Uo, u and u2
yield

Ho e-z2/4 + etH exp [-(22/4)sec2 0 dO + eZtl/28rc3/2H30

(3.37)

fj rt/6 exp [--(22/4)(1 sec2 0)]
dO dd.

o x//1 sec2 0

It can be shown that the leading term in Um, m O, is O(t(m+ 1)/2). Thus, the RPE
becomes disordered when O(1/;2). A technique for constructing an expansion
for u(x, t; ) valid for this range of is discussed in [2].
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IfH0 0, then Uo <- O(1/t). We have the possibility ofu O(1/tl/2)if

(3.38) Pz zz H H 4= O,

again leading to a nonuniformity.
(ii)

(3.39) Nu2 uux.
Many nonlinear dissipative systems reduce to Burgers’ equation for appropri-

ate limiting situations. For this case, K(y,z)= (y + z)/2. Thus, if H0 0, it
appears that the RPE for Burgers’ equation, assuming h LI(R 1), is uniformly valid.
Indeed, the asymptotic solution which corresponds to propagation of a pulse [12]
is

For e small (3.40) may be expanded in powers of e and the solution is readily shown
to agree (at least for the first few terms) with the long time behavior of the RPE.

If H0 0, the largest that Ul can be is O(1/t). Depending upon the behavior
of H at the origin the RPE may or may not be uniform. Each case must be investi-
gated individually.

We conclude this section with a few general remarks. The effect of higher
dimensions for equations of the form (3.1) is much the same as for the simple
example in (3.13). In the special case when f(u) -u2, N 3, H(0) - 0, the RPE
becomes disordered when eHo log O(1). In higher dimensions, no apparent
nonuniformities arise. Finally, if f(u) -um, m a positive integer greater than or
equal to 3, and N 1, the RPE is uniformly valid except when m 3, in which
case the disorder arises when eH log O(1).

4. Diffusion equations with variable coefficients. The long time effect of small
variable coefficient terms on the diffusion operator is of physical as well as mathe-
matical interest. Here we briefly consider a special class of such problems repre-
sented by the equation

U
(4.1) Lu V2u eMuf x Rz, > O,

t

where Muf denotes a general variable coefficient term, linear in u and its spatial
derivatives and linear in a known time-independent function f and its spatial
derivatives. For example, Muf V. (fVu), corresponding to diffusion in a medium
with variable diffusivity given by 1 ef(x). As in the case ofthe nonlinear problems,
e > 0 is a small parameter. The smallness of the parameter does not imply that f
is small pointwise, but rather that certain global properties off are not too large.
We are interested in investigating the ordinary initial value problem, so we require
that u satisfy

(4.2) u(x, O;e) h(x), x e RN.
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The essential features of the analysis are brought out by a study of the one-
dimensional problem. If we assume that f and h are both LI(R1), the first three
terms of the RPE are given by

f H exp(--art ikt2t ’/2) dk +e. f gmnHmFnA((Tl,m)

exp (-air ikl)tl/e) 6l,,.. dkm.
(4.3)

+ 2 j K,,,KpqHpFnFqE(a,p; al,m) exp (-air ikl)t 1/2)

(l,mn (m,pq dktmpq,
where we have adopted the notation of 3. The function F F(kt) denotes the
transform of f and K,,, K(k,,, k,) is related to the operator M. Asymptotic
expansions describing the long time behavior of the second and third integrals in
(4.3) are obtained by a slight modification of(2.23) and (2.37) respectively. We shall
not write out these expressions. If we assume that Ho =/= 0, the leading terms are
given by

Ho e- -/ + 2ercK(O, O)HoFo e-cO/ dO

(4.4) - g.2tl/27z2K2(O, O)HoF
e -i)y

y2
e dy.

An apparent nonuniformity exists if both K(0, 0) and F(0) are different from zero, in
which case the RPE becomes disordered when

e,t’/ZF(O) O(1).

In particular, it would appear that a perturbation of the diffusivity of the form
ef(x), corresponding to Muf (c3/c3x)[f(c?u/Ox)] and Kin, km(k + k,), does

not influence the solution (of the e 0 problem) to leading order (in e). For the
only case in which it appears that nonuniformities arise, namely, Muf uf, a
singular perturbation solution of the form

(4.5)

where

(4.6)

A, Ho e -’’ + Fo G(s) exp [a(s g2t)] ds,
,0

G(s) Ho + 273/2F0 e’:v: e d{
nFosl/2

has been suggested in [2] for >= O(1/e).
If, on the other hand, Ho 0 in (4.3), the situation becomes more complicated

and nonuniformities may appear depending upon the behavior of certain integrals
anvolvlng H, F and K. We shall not go into details but simply note that the asymp-
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totic evaluation of the relevant integrals can be carried out in any particular case
by using the results in 2.

Consideration of (4.1) in higher dimensions leads to conclusions paralleling
those in 3. For example, if Muf uf, it can be shown that the RPE becomes
disordered when e2 log tF(O)H(O)= O(1) in two dimensions and that it is uni-
formly valid in three and higher dimensions.

5. Final period of decay for Burgers’ model of turbulence. The Burgers’ model
of turbulence is a one-dimensional version of three-dimensional, real turbulence.
Its basic dynamical equation is the Burgers’ equation, which for convenience we
shall write in the form

(5.1)
c3u t2U U
l tX2 2eU-x x R1, > O

The parameter e is related to the Reynolds number. In (5.1) it is understood that
u(x, e) is a stationary random function of position, which has known initial mean
value properties.

Associated with the problem of homogeneous turbulence is the so-called final
period of decay (see [13]), referring to that time regime for which dissipation has
forced the nonlinear terms to be weak. It is generally assumed that the neglect of
the nonlinear terms during the final period of decay provides a uniformly valid
first approximation as --, oo. Whether or not this assumption is justified remains
an open question. Other authors have made the same assumption in studies of
the Burgers’ model of turbulence (e.g., see [5]). However, as we shall show, in
general, linearization is invalid for the Burgers’ model of turbulence.

The parameter e can be taken as a measure of the nonlinearity, where we
assume that 0 < e << 1. Alternately one may suppose that the initial conditions
are such that this is the case. The procedure which we shall follow involves con-
structing the RPE for the cumulants and then assessing the asymptotic behavior
of the various terms. The system of equations governing the time evolution of the
cumulants forms an infinite set of coupled integro-differential equations. The
reader less familiar with this subject may wish to refer to [13], [14]. The equations
for the hierarchy are (using the notation of 3)

(5.2)

t [ f [’}(4-) dk %_2ikQI,e)QI,2,)]-- O’ll’l"Ql3l ’)’-- ’ll’l" ik ,ml’l"

(5.4)

[)(4) I f ,"(5.)+ all’l"l"’ l’l" ell’l"l’" ikl mt’l"l’"

+ 2ikl,l,,,,, QI3,I!,QI,2,,)},
d
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F
t’)(n) ll likl J Q(nml+,. 1) dkml(n 1)

c3t + tgll l(n 1) tf, ll’...l(n 2) l(n 1)

(5.6) + terms involving products of the form Q(,-r)Q(r+ 1t,

r= 1,2,...,n-2J.
Here the QI’])...In-) Q(")(k, kl,,..., kl,-), t;e) are the Fourier space cumulants
which are related to the physical space cumulants R(")(r,r’,..., ?’-:),t; e) by
(n 1)-dimensional transforms, that is,

(5.7)

R(")(r, r’, r"- 2), ,) Q(")(k kl, kl(,- 2), )

exp ikr ikl(.- 2)?"- 2)]dkll /(n--2).

For example, R(2)(r, t;e) is the two-point correlation function and Q(2)(kl, t;t;) is
the energy spectrum. The @t , notation is used to imply cyclic summation over
l, l’,..., ") and the variable kl,,-l in the equation for Ql"..).lO,-2)is defined by
kl + + kl(,-l) O.

The RPE for the Fourier space cumulants can be expressed as

j=0

where the j subscript denotes the perturbation ordering. The initial values of the
Q(") will be denoted by H("), these being assumed independent of e. It is a perfectly
straightforward matter to determine the terms in (5.8). For our purposes we need
only the following expressions"

(5.9) Q]I l(n--) Hl,)...l(,,-z)e -a’l’’’’’(’-l), k + + kl(,, ,)= 0 rl > 2

(5.11)

f (3) 1 2rltQ(121 ll’ ikl H,,l,A(al,m(l-,,)) dkm e

[ l-l(4)l,,m(O’l,m(l m))dkQ]3ll ll’l" ik "ml’

-F 2iklgl,2)gl,2,)A((7l,l,l,,)] e -al’’’’,
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(5.12)

(5.13)

(5.14)

I f (5)51ll’l"/’)(4) It’t"l’" ikt Hml’l"r"A(Crl,m(l-m)) dkm

+ 2ikll,l-l,,,{gl3,1),,gl,3,,l A((Tl,l,,,(l+l,,,))}l e -a’t’t’’’’’’t,
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It is relatively easy to verify that the expansion for Q("), n >__ 2, becomes disordered
as --, oo, in every domain in the (n 1)-dimensional Fourier space. In particular,
provided that each H(") is nonzero at the origin, the expansion for Q("), n >= 3,
becomes disordered in a neighborhood ofthe origin of radius O(e) when O(1/ca).
A close examination of the Q(") indicates that the latter region is the most crucial
insofar as the effect that it has on the RPE for the corresponding physical space
cumulants. In fact, our assertion in [2] that the RPE for the physical space cumulants
are nonuniform was based on examination of this region. Here, using the analysis
of 2, we establish the validity of this assertion rigorously.

The RPE for the physical space cumulants have the form

(5.16) R(")(r, r’, r(n-z), t; e) ,JR}n)(r, r’, r(n-z), t), n >= 2.
j=0

In order to ascertain the asymptotic behavior of the various terms in (5.16) we
need to specify the smoothness of the initial conditions. Although it would be
sufficient simply to require that the initial data is L 1, at certain points in the
analysis we shall make further implicit, but obvious, assumptions in order to bring
out more of the structure. Assuming that each H(") is nonzero at the origin we can
establish the asymptotic behavior of the zeroth order term in (5.16) by means of
(5.7)-(5.9), the dominated convergence theorem and a little algebra:

H(’)(O,O,..., O)

(5.17) ,-2exp{I(1-n) (r(J))2+2
j=0 O<_j<k<_n-2

for

r r’ r(n 2)

< o()tl/2,/71/2, /71/2

rO)rtk)l /4nt }
n>=2,

(5.18)

R(o2)(r, t)
d2H(2)(0)

dk2

since H(2) is an even function.

e-r2/8t f4t3/2

r/t/2 <= 0(1),

Next we shall examine the long time behavior of the first nonlinear correction
term R]"), n >__ 2. From (5.10) and (2.32) it follows that

(5.19) RI2) 0 Hk/ 1/2],,,,.t --+ O0

The coefficient k in (5.10) is responsible for the lit/2 decay. Thus Ro2) and R]2
have the same decay rate and to this order the RPE for R{2) appears to be uniform.

2X//t 1/2

2

e d{,

If H") is zero at the origin for some n, then (5.17) will be replaced by Ro")
o(1/t(, 1)/2) for that value of n. In particular, if HZ)(kt) is analytic at the origin

and H(2)(0) 0, then it follows from (2.8) that
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Consider next the expression for R]3). From (5.11) we have that

R3)(r, r, t) ll’l" ikl ’’m,’t"

(5.20)

,re(l-m)) dk,, +

exp [--7ll,l,,t ikl2t 1/2 ikt,2’t /2] dklr,

where

r r’
Z= and kt+kt, +kt,,=O(5.21) 2

t/2 tl/2

It is easily verified that the term involving Ht4) leads to a contribution of at most
O(Hoo/t). The dominant contribution comes from the last term. Although we
could exhibit the complete expansion by modifying the analysis leading to (2.32)
we shall content ourselves with just the leading term, which is

gH(2)(0)]2
-2expR3’(r, r’, t) tx/2 w/3 sw/1 +: s 8(3 s) 8(1 ; s)

(5.22)

/],’2 /2 ]-2’exp -8(3-s)-8(1+s)

(2+2’)expl (2-2’)2

+ -8(1 + s) 8(3 s)
ds

From (5.17) we have that R03)= 0(1/0. Comparing this result with (5.22)
we see that the RPE for R3) becomes disordered when O(1/2) provided that
r2 + r’2 O(t). No apparent disorder arises when r2 + r’2 O(1). Although this
result is sufficient to establish mathematically that, in general, linearization is
invalid for the Burgers’ model of turbulence, physically it may not be important
if the correlation lengths associated with the initial values for the physical space
cumulants are O(1). It turns out that the other first order terms R"), n >= 4, exhibit
the same behavior as that discussed for R]3).

In order to establish that the RPE for the R") become disordered near the
origin we must next consider the long time behavior of the second order terms R2").
First let us examine the expression for R22) given by (5.7) and (5.14)"

(5.23) 9b /4(4),m..nl,(l_m)E(ffl,m(l_m)(m_n) Gl,m(l-m))] dkmn

2, 2’ <= O(1), t-.
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It can be shown that the terms involving H4) in (5.25) lead to a contribution
of the form O(H(o4)oo/t1/2). The terms involving H2) are potentially more important,
so we shall discuss them in more detail. The two integrals which we must examine
are of the form

xZg(x y)
exp {Ix2 y2 (x y)2]t} 2

(5.24)
exp [- 2xZt i2xt 1/] dx dy

and

[il exp(-2y2t) exp {[x2 y2 (x y)2t} 11x(x y)g(x y)
2y2 x2 y2 (x y)2

X2 @ y2 (X
(5.25) exp (- 2xet i2xt /2) dx dy.

In the Appendix, (A.8) and (A.13), we outline a procedure for evaluating these
integrals in terms of the results of ff 2. Sparing the reader the details we find that the
asymptotic behavior of the terms involving H(2) in (5.23) is given by

22/8 (22/8)sec2H2)2 -e + 2 e dO

d2[f /6

+ 2 3 (1 4 sin2 0)e -(2/8)e2 dO
o

(5.26) 2 (1 2 sin2 O) e-/dO
0

H (0) [d2U 2)(O)/dk2
+

.2/8 7
e + J2,o(3, 1, -x/2, 0) J2,o(1,1, -2,0)

d4
+ xJo,2(3, 1, x/2,0) + 4d-Z

rr/4

(1 2 sin 2 0) e -(22/8)sec20 dO

(1 4 sin2 0) e -(22/8)sec2 dO .nt- 0
0

< O(1)tl/2

In particular,

(5.27) R22)(0, t) c
9x/3- 12-rc
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Suppose that Ho :/: 0; then R02)= O(Hto2)/t ’/2) and R22)= O([H02)]2), for
r <= 0(tl/2). Hence, the RPE for R(2) becomes disordered when

(5.28) t= 0
[H02]2

On the other hand, suppose that Ho2 0 but that dH2/dk2 O. Then from (5.18)
and (5.26) we have that R2>= O(1/t3/2) and Rf= 0(1/t3/2), so that it would
appear in this case that the RPE for R2> is well-behaved to this order. In the same
manner, it can be shown that the terms involving H(3H(2 in (5.15) lead to an
O(1/t /2) contribution for R(r, r’, t) for r2 + r’2 N O(t). Similar nonuniformities
arise for the other cumulants.

Having established that linearization is invalid for the Burgers’ model of
turbulence when H2 0, we shall briefly discuss the implications of the perturba-
tion analysis. It appears that the RPE are useful only for0 N < O(1/e2). However,
as is common in perturbation problems, the form of the nonuniformity suggests
how one should go about rescaling the dependent and independent variables so as
to obtain expansions that are valid for O(1/e2). As one might suspect from the
behavior of the expansion for R(2, a second rescaling becomes necessary when

O(1/c4), which in turn necessitates the introduction of a third set of expansions.
The interested reader may wish to refer to [2] for details. We simply note here that
the final set of moment equations (valid for O(I/e4)) are (5.2)5.6) with e set
equal to one. In other words, we are faced with solving the fully nonlinear set of
equations. However, there is one simplification. The initial conditions depend only
onH2), which suggests that the physical space cumulants have a universal structure
(apart from multiplication by powers of H2)).

We conclude this section with a few brief remarks on the final period of decay
for Burgers’ model of turbulence in higher dimensions. The counterpart of (5.1)
is

(5.29) ui
t V2ui 2e(u.V)ui, x R, >0, i= 1, N,

for the N-dimensional vector u. The equations for the hierarchy of cumulants
resemble (5.2)-(5.6) with far more subscripts. We shall restrict our remarks to the
case where the Fourier space cumulants are smooth functions near the origin.
Then terms like the last one in (5.11) cause the RPE for the third order cumulants
to become disordered when O(1/e2) provided the spatial separations, measured
by the independent variables (see (5.21)), are sufficiently large. This result holds
independently of the number of spatial dimensions. Similar results hold for the
higher order cumulants. However, the counterpart of (5.23) does not lead to non-
uniformities in higher dimensions. Mathematically, this is because the effect of
higher dimensions is to bring in additional factors of kl and km (in (5.23)) which
weakens the contribution near the origin. Physically, this is because the diffusion
mechanism is stronger in higher dimensions, which reduces the cumulative effect
of the nonlinearity.

Whether or not the RPE are uniformly valid when the cumulants are not
smooth near the origin is a more difficult question to answer. Of course, in this
case it is more meaningful to consider the final period of decay for homogeneous
turbulence. The author is presently studying this problem.
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6. Diffusion ofa passive scalar in a random velocity field. The closure difficulties
inherent in a statistical study of turbulence are notorious. Various models such as
the Burgers’ model of turbulence have received extensive study for the purpose of
testing closure schemes. One such model which has attracted much attention is
the diffusion of a passive scalar in a random velocity field [15]. For a passive
scalar in an incompressible fluid with uniform properties, the concentration (x, t)
satisfies the equation

(6.1) ,/3t - U" Vl// NV21//, X R3, > 0,

where u (u, u, u3) is the velocity field and x is the molecular diffusivity. (Since
V. u 0, the convection term in (6.1) could just as well be written as V. (flu).)

Given the velocity field u, (6.1) is a linear partial differential equation with
random coecients. However, upon multiplying (6.1) by various powers of
and averaging we are confronted with a closure problem quite similar to that of
turbulent dynamics. This occurs because (6.1) is nonlinear in stochastic quantities,
although it is linear in the concentration variable.

In order to circumvent the closure problem many authors have resorted to
cumulant discard approximations tantamount to assuming that u and ff are to a
certain degree statistically independent. Our purpose in this section is to examine
the validity of such approximations by considering the limiting situation in which
the convection term in (6.1) is small in comparison with the diffusion term. The
advantage of this limiting situation is that formally the hierarchy of equations for
the correlation tensors are uncoupled to leading order. However, as we shall show,
the associated RPE for the correlation tensors are not uniformly valid.

In order to make our presentation simpler to follow we shall consider a one-
dimensional version of (6.1). To be specific, we shall examine the one-dimensional
equation

(6.2) t x2 e(u)’ x R1 > 0

where 0 < << 1. We shall assume that u and ff are stationary random functions
of position both having zero means. It will also be convenient to assume that u is
independent of time in each realization, although our conclusions can be shown to
hold in the case where u itself satisfies a diffusion equation to leading order.
We shall not assume that u is a Gaussian process nor that u and ff are statistically
independent.

As and u are stationary random functions of x, the physical space moments
involving products of ff alone or of u alone depend only on the relative geometry.
It is consistent to require the mixed moments involving products of and u to
satisfy the same condition. The physical space cumulants are defined by

n=’"(r, r’,..., r=+"-2}, t) (if(x, t)(x + r, t)... (x + rm-2, t)

u(x + r-l)u(x + rm) u(x + rm+"-2))
(6.3)

afl V.

((x + r, t)... u(x + r’)>...,
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where the superscripts m and n denote the number of ff’s and u’s, respectively,
occurring in the first moment on the right of (6.3). The summation contains all the
necessary combinations ofproducts ofmoments, involving if(x, t), ff(x + r, t), ...,
U(X -I- r(m+n-2)), to ensure that the cumulant Rm’n tends to zero as the relative
separations tend to infinity. For example,

R2’(r, t)= ((x, t)(x + r, t)), R’2(r) (u(x)u(x + r)),

(6.4)

Rl’2(r, r’, t) (O(x, t)u(x + r)u(x + r’)),

R2’2(r, r’, r", t) (el(x, t)C/(x + r, t)u(x + r’)u(x + r"))

(/(x, t)tp(x + r, t)) (u(x + r’)u(x + r"))

(9(x, t)u(x + r’))(O(x + r, t)u(x + r"))

(O(x, t)u(x + r"))(O(x + r, t)u(x + r’)).

In order that we may express the RPE in terms of Fourier integrals we shall
make the physically reasonable stipulation that initially each cumulant be
integrable. The related Fourier space cumulants are defined by

(6.5)

Rm’"(r, r’, ?,,+,-2), t) J Ql,’n...l,,,+,-2) exp (--kl,r ikl,,r’

)t.(rn + 2)k< )6ll l( -,) dku l(m 1),

where we have employed the notation of 2. The initial values of the Qm,, will be
denoted by

(6.6) """ /tZll’...l,+ 2) H ’.../(re+n-2), 0.

The hierarchy of equations for the time evolution of the cumulants is found
in the usual manner by first multiplying (6.2) by various powers of ff and u and
then taking ensemble averages. Because the equation for the general cumulant
R"," can only involve other cumulants of the form Rp’s, 0 p < m, it is appropriate
to group the equations for the cumulants according to their first superscript.
For our purposes it will suffice to list only the following equations (for the Fourier
space cumulants)

(6.7)
c3Q’1 fc?t + alQ’l eikl Q’12’ dkm’ kl + k, O,

(6.8)

(6.9)

(6.10)
__

2alQ2 , e,it,k f Q2m’ll’ dkm, k q- kt, O,
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(6.11)

(6.12)

k + kl, + kl,, 0,_
(7ll,Qll,I,, f,ill,klf 2 dkm

__
Q/2,, 0 Q/O,/3Qrn’l’l"l

-t- Ol’2 + t,,l,,,[Q{,(_ 2 1, l+ l")l"Q[’’1 + Q),i,, Q- ,,,-]l’ -l")Q’’’2
)

(6.13)
c3Q/3/; {f Qdl,,, dk+ at,,,Ql; i,t,,k 1

The way in which we have grouped the above equations brings out the fact
that the hierarchy of equations, while badly coupled, is actually a linear system.
The RPE for the cumulants has the form

(6.14) Q:n... l, 2, zjll l( 2),

j=O

where the j subscript denotes the perturbation ordering. Recognizing the special
way in which the hierarchy of equations is coupled, we shall first examine the
equations of evolution for the Q1’", n >__ 1. Substituting (6.14) into (6.7)-(6.9) we
find that

(6.15) 1,n Hl[l,n -a,t k,) ’...l( ) l

(6.16)

(6.17)

(6.18)

(6.19)
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pl’l"(l p

_+_ Hl:2 f g0 2k (l’--m)E(O; tTl,m) dkm

(6.20) .ql_ l,l,,H,, 2 f kmHl;2+m)l,,E((Tl,(l tTi,m) dkm

l,l,,H,,,2kl, f 1,2Hml’ E(al,l,, a,m) dk,

f 1,1 t)E(a,(, "al,) dk,+ H,3 k,.Hr ,,,),

In order to assess the long time behavior of the RPE for the physical space
cumulants we must transform the above expressions back to physical space by
means of (6.5). Examination of (6.15) indicates that the effect of diffusion on
QOilIn l(--, is restricted to the variable k. Consequently it is easy to show that
R’n= O(t-1/2), n >__ 1, provided

f Hi’...-,exp(-kl’r kl(my(n-1))(l’...l()dkl’...l(m =fi O.(6.21)

Next we consider the first order terms in (6.14). From (6.16) and (2.23) it
follows that RI ’1 is at most 0(t-1/2). Thus, to this point, no nonuniformity is
evident in the RPE for R1’1. The situation turns out to be the same for the other
cumulants R 1’", n >_ 1. It can be verified that the contribution from the term
involving Hl’n+ in the expression for Q1’ is at most O(t-1/2). Further, all terms
involving products of lower order cumulants, such as the last term in (6.17),
lead to contributions of at most O(t-1/2). The reader should note that a careless
application of the ideas developed in [2] regarding the equivalence of ordering in
Fourier space on the basis Ofkltl/2 O(1) might cause one toconclude erroneously
that terms such as the last one in (6.17) lead to an O(1) contribution.

To establish that the RPE for the R1’, n >__ 1, are nonuniform we must
consider the long time behavior of the second order terms. For the most part we
shall restrict our discussion to R’1 as the other expressions R’", n _> 1, lead to
similar conclusions. Applying the results of (2.37) we find that the term involving
H1’3 in (6.19) accounts for an O(t-1/2) contribution. It is the remaining terms in
(6.19) which are responsible for the potential nonuniformity. In the Appendix,
(A.16) and (A.19), we outline a procedure for evaluating these terms. As part of the
analysis we are required to determine the long time behavior of the integral in
(2.15). The end result is that the second term on the right-hand side of (6.19) leads
to an O(t-1/2) contribution at most; whereas, the last term makes an O(1) contri-
bution to R1’1. Consequently, it appears that the RPE for R1’1 becomes disordered
when 0(1/).
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As indicated at the beginning of this section our primary reason for studying
the perturbation problem is to investigate the validity ofcumulant discard approxi-
mations. The fact that the RPE for the cumulants are nonuniform, while nontrivial
to prove, is in itselfnot surprising. However, the manner in which the nonuniformity
arises is instructive. For example, all of the terms in (6.20) with the exception of the
one involving H’’ and the one involving Hl’, 2 yield O(1) contributions to R’2.
This suggests that these terms must be retained casting serious doubt on a closure
scheme which neglects any of them. Consideration of the other second order terms

R’" results in the same conclusion. Thus, it does not appear that closure schemes
based on cumulant discard approximations are mathematically justifiable even
for the perturbation problem.

One might hope to gain more insight into the passive scalar problem by further
pursuing the small parameter limit. However, the author has been unable to devise
a simple singular perturbation procedure for removing the nonuniformity in the
RPE for the R’". The matching technique employed in [2] does not seem to be
appropriate for this problem because of additional complexity associated with the
space variables. Essentially there are two length scales present" one is related to the
diffusion process and the parameter e (namely, x O(1/e2)) and the other to the
velocity field. Both scales are important for large times (t __> O(1/e)).

We conclude this section with a few brief remarks concerning the nature of the
RPE for the other cumulants R"’", m >= 2, n >__ 0. It turns out that the behavior of
these expansions, although more complicated, is qualitatively the same as that for
the cumulants R x’". There is, however, one important difference. Certain of the
expansions become disordered on the time scale O(1/e2). For example,
consider

(6.22)
+ n[’],,n,’A(al,,,,) e -’’’’, kl + k,, + kr, O.

It is easy to show that R’ O(1/t) and from (6.22) that R’ O(1/t/2). The
latter behavior is due to the forcing terms involving H2’ and H1’1 in (6.22).
A more thorough study shows that as in the case for the R’" the time scale

O(1/e4) is the important one for accounting for the coupling of the hierarchy of
equations.

Appendix. We consider here several integrals referred to in the main body
of the paper. The first one is

(A.1) K(a, A, x) P ( exp (-ay2 + iAY)dy, a > O, A and x real.
d_

Our aim is to reduce K1 to an ordinary integral. This can be accomplished by first
examining the special case when A 0. Differentiating both sides of (A.1) with
respect to x and applying (2.5) we obtain

(A.2)
K(a, 0, x) 2,/ 2axK(a, 0 x)

Ox a
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This equation can readily be integrated yielding

(A.3) K(a, 0, x) 2x e- x e"’" dr/,

where we have made use of the condition K (a, 0, 0) 0. The desired result follows
upon differentiating both sides of (A.1) with respect to A and solving the resulting
differential equation for K subject to (A.3). This leads to

K x(a, A, x) eiAx 2x/x e- e"" drl
(A.4)

-i A exp
4a iAxri dl

It also proves convenient to express the following principal value integral as
an ordinary iterated integral:

1 1
(A.5) K2(a c, A) aPx-Py--A(ax2 ay2) exp (-cxat + iAx),

x y-x

where c >__ a _>_ 0, A real. This integral can be handled in the same manner as K1.
Differentiate both sides of (A.5) with respect to a and use K2(0, c, A) 0. After
some simplification we obtain

f fsin 1(A.6) K2(a c, A) -2a d exp

with the special case

(A.7) Kz(a, C, 0) --ra 2 sin-

The following two integrals arose in the study of Burgers’ model of turbulence
in 5. We shall manipulate them into a form convenient for obtaining asymptotic
expansions.

(A.8)

K3(2, t) x2g(x, y)[A(x2 y2 (x y)2)]2

exp (-2x2t, i2xt 1/2) dx dy,

where > 0, 2 real. We need only assume that g is La(R2). First make the change
of variables x xfx’, y (x’ + y’)/x/. Upon dropping primes, (A.8) becomes

K3(/],, t) 4x2g
2y2)_ A(x2 y2).-]
X2 y2

(A.9) exp (-4xZt ix//2xt 1/2) dx dy.

Upon setting (x2 y2)-1 (2x)-l[(x y)-1 + (x + y)-1] we can rewrite (A.9)
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as

K3(, t) Px4x exp (-4x2t i2x//xt/2)ph(x, y)[A(x2 - y2) A(2x2 2y2)]

(A.10)
+ Px4x exp (-4x2t i)xtl/2)[g(x/x x//x) g(x//x, 0)]

1py [A(x2 y2)_ A(2x2 2y2)],
y--x

where

h(x, y)=
g(x/x’ (x + y)/x/) + g(x/x, (x y)/x/) g(w/x, w/x) g(x/x, O)

(A.1 l)

The function h will be smooth if g is smooth It is now an easy matter to establish
the asymptotic behavior of Ka for --. o. The integral involving h can be handled
using (2.23). If g is analytic at the origin, we can expand g in the last integral and
integrate term by term. Consequently the last integral in (A.10) has the asymptotic
expansion

d 1 1
4 2 x[g(v/x, x/x) g(x/x 0)Jx=O

0 m tm/2 i) + 2

(A.12) din+2
d2 + 2 [K2(1,4, 2 K2(2,4, 2

where K2 is given in (A.6).
Next we examine

y)A(_2y2)_ A(x2 y2 (x- y)2)
K4(2 t) x(x y)g(x

X2 _+_ y2 (X y)2
(A.13)

exp (- 2x2t ilxt 1/2) dx dy.

With a little algebra we can rewrite (A.13) as

f ;_ 0)[K4(R t) h(x, y) h(x, 2y2,e- exp(--2x2t i2xtl/2)dxdy
2Y2

h(x, y)A(x2 y2 (x y)2) exp (- 2X2t ixt 1/2) dx dy

(A.14) + 2x h(x, 0) exp (- 2x2t i/xt 1/2) dx

+ 1/2Pxg(X, 0) exp (-2xet i2xtl/2P, y(y x)

VA(_2y2)_ A(x2 y2 (X y)2)-],
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where
g(x, y) g(x, o)

h(x, y) (y x), y O,
2y

(A.15)
x g(x, y)]h(x,0)
2 fly- y=o

The asymptotic behavior of K4 for --+ c can be determined from (A.14) by a
straightforward application of previous results.

The last two integrals which we shall examine are associated with the passive
scalar problem.

f f A(x2 y2)
Ks(2, t, c) xyg(x, y) 2 y2

(A.16)
.exp (-cx2t i2xt /2) dx d,

where c _> 1. A convenient form for obtaining an asymptotic evaluation for
oo is given by

f[ f_o [.g(x,y) g(x, -y) g(x,x) + g(x, -x)]YK(2 c) - x y

A(x2 y2) exp (-cx2t i.xt 1/2) dx dy
(A.17) + 1/2Px exp (-cx2t i2xtl/2)[g(x, x) g(x, -x)]

Y A(x2 y2)

+ Px exp (--CX2t i2xtl/2)Py [g(x, y) g(x,

The right-hand side of (A.17)consists of three terms. The first can be handled
by (2.23) or (2.32) depending upon whether c or c > 1, respectively. In either
case, the contribution is at most O(t- 1/2). If g is sufficiently smooth and g(0, y) is
an even function of y, then the third term in (A.17) is also at most O(t-1/2). Such
is the case with the passive scalar problem. Finally, the second term can be expressed
as

(A.18)

x/t dx dr/[g(x, x) g(x, x)] [1 + x2t(q 2 1)]

exp (X2t(//2 C) i)xtl/2).

If c > 1, then (A.18) can be evaluated very simply. However, if c 1, we are con-
fronted with a more difficult problem requiring (2.19) for its resolution. Again,
in either case, (A. 18) is at most O(t- 1/2).

The last integral is

(A.19)

K6(J t, c)= xyg(x, y)
A(X2 --(x- y)2)_ A(X2 y2

y2 (x y)2

exp (--cxet i)xt 1/2) dx dy,
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where c __> 1. We can rewrite (A.19) as

fOO f [ g(x, x + y) g(x, x/2)
g(x, x + y)- g(x y)+ xK6(/ t, c)=

2y + x

xg(X, y) g(x, x/2)A(x2 y2)exp(_cx2 i2xtl/2)dxdy(A.20)
2y- x

+ dx dr/g(x, x/2) exp (- cxet i),xt 1/2)

[exp [xt(3 + r/)/4] exp

The first term on the right-hand side of(A.20) is at most O(t- /). The last term can
be evaluated in a straightforward manner if c > 1 however, if c 1 we must use
(2.19). In either case we find that the last term is O(1) provided g(0, 0) : 0.
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ON SUMMATION OF SERIES OF HYPERBOLIC FUNCTIONS*

CHIH-BING LING’f

Abstract. This paper presents a method of summation of four series of hyperbolic functions. The
method is based partly on partial fraction decompositions of hyperbolic functions and partly on values
of the Weierstrass elliptic function at half-periods. The series are summed in closed form in terms of
two special coefficients when the parameter involved in the series takes on the special values 1, x/)- or

/4-.

1. Introduction. The purpose of this paper is to present a method of sum-
mation of the following four series of hyperbolic functions"

()

I2s(C y sinh2S nrcc

iii2s(c) . sinhZS (2n 1)rcc/2’

IIzs(C) Z cosh2S ngc

IV2s(c) .=a cosh2* (2n 1)rcc/2’

where s _>_ 1 and c 1, x/ or 1/x/. The investigation is motivated by an attempt
to separate the series from the following summations"

+
15

+
15 rt)sinh-2 mr 2 sinh’ mr 2 sinh6 n 126’n=l

(2) .a= cosh2 (2n 1)r/2
15

2 cosh4 (2n 1)z/2 2 cosh6 (2n 1)r/2
0,

n=l Cosh2 (2n 1)rc/2 2 cosh’ (2n 1)rcc/2

1

=1 sinh- nnc 2 sinh’ nn 60

These summations were previously obtained by the author in evaluation of the
Weierstrass elliptic function at half-periods [1]-[3]" the parameter c was equal to

x/ or 1/x/.
The summations of I2(1 and IV2(1 in particular were proposed by Shafer

and solved independently by Livingston and Rayleigh [4]. The former’s method
is based on Cauchy’s residue theorem while the latter’s is based on the lemniscate
function. Later, Kiyek and Schmidt [5] extended the summations to the preceding
four series when s >= and c 1. Their method is based on partial fraction
decomposition of the Weierstrass zeta function. In this paper, a method of sum-
mation will be presented, which is based partly on partial fraction decompositions
of hyperbolic functions and partly on values of the Weierstrass elliptic function at
half-periods. This method results in a substantial reduction of computation as

compared with Kiyek and Schmidt’s method. The resulting summations are
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expressed in closed form in terms ofa special coefficient a4 when c 1 and in terms
of a second special coefficient 0"6 when c x/- or 1/x/-. These two coefficients
will be defined in the following section.

2. The coefficients 0"4 and 0"6. Define a coefficient 0"’s, for s >= 2, by the double
series

(3)
,,m---oo (2moo + 2nco’)2s’

where the prime on the summation sign denotes the omission of simultaneous zeros
of m and n from the double summation. In this paper, we are concerned only with
the case 209 1. When there is a need to emphasize the period 2co’, the coefficient
is written as 0"s(2Co’). The coefficients 0"4 and 0"6 are now defined as

(4) r 0",(i), 0"6 0-(eni/3).
By symmetry, they are both real. Their values are given in the Appendix.

3. Summation of the series when s 1. From the following partial fraction
decompositions of hyperbolic functions [6, p. 36],

1 1
rtcothrcx=-+2x m2 2,

X m=l --X
(5)

t tanh rtx 8x
(2m 1)2 -t- 4x2’

m=l

we find by differentiation,

(6)
sinh2 rex g2x2

cosh2 gx

2 m2 X2

g2 (m2 nt X2)2,m=l

8 (2m 1)2 4X2

2 /’ )2 2
m=l {(2m 1 + 4x2}

Put in turn x nc and (2n 1)c/2 in each expression and sum up from n to

" this gives

m2 rt2c22 ,
(m2+n2c2)2’I2(c) $2

=1 =1

(7)

8 (2m 1)2 4n2c2

II2(c) .=1 =1 {(2m 1)2 + 4n2c2i2’
4 8 4m2 (2n 1)2c2

v./-" {4m2 +(2n- 1)2c2} 2’I112(c)=U2--5
=1m=1

8 v v (2m- 1)2- (2n- 1)2c2
IV2(c) -.1 ml {(2m 1)z -t-(2n 1)2c2} 2’



HYPERBOLIC FUNCTIONS 553

where S2 and U2 are the case s 1 of the following series,

1 (2g)2ssz nZ -(2s) lBzl s >= 1,

(8)

__
l(2n- 1)2= 21-)U2s E S2s s >= 1,

=1

in which Bzs are the Bernoulli numbers. When s 1, B2 1/6 so that $2 =/1;2/6
and U2 n2/8. Note that the order of summation of the preceding four series is
not interchangeable.

To proceed further, denote

-/] m2 n2C2
(9) tz(ci)-2 1-

1
$2 +4

(m2 / n2c2)2.n=l m=l

It is noted that the definition oftr in (3) does not extend to the case s 1. Consider
a Weierstrass elliptic function of double periods 2o9 1 and 209’= ci. We find
from the double series definition of the function [7, p. 355] that at the half-periods,
1/2, ci/2 and (1 + ci)/2, respectively,

el(ci)=8U2-a’(ci)+ 16
(2m- 1)2-4n2c2

,=1 =1 {(2m 1)2 -+- 4----} 2’

8 4m2 (2n 1)2(72(10) e2(ci) --U2 a’(ci) + 16,Z {4m2 + (2n 1)22} 2’
m--1

16,V1
(2m 1)2-(2n- 1)2c2

e3(ci) +
m=X {(2m- 1)2 + (2n- 1)2c2} 2"

Consequently, the desired series are

I2(c)
6 2n2 a’(ci),

(11)

1
II2(c - + -2{el(ci) + a(ci)},

1
III2(c 2/r2 {e2(ci + o’(ci)},

IV2(c 2{e3(ci)+ a(ci)},

which hold for any c in general, save purely imaginary values. The preceding three
functions at half-periods are the three roots of the cubic equation

(12) W3 15a,(ci)W- 351(ci) 0.

They are real and distinct if c is real; furthermore,

(13) el(ci > e3(ci > e2(ci).

When c 1, the two coefficients are

(14) a,(i) a4, a’(i) O.
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When c x/-, we consider 2o9’ 2ei/3 1 + ix/-J. It can be shown [7, p. 379] that

(15) a(ix/ -(35a6)e/3 o-(ix/ a
ff6"

Again, when c 1/, we consider 2’ 2e/6/ + i/. It can similarly
be shown that

(16) (i/) (356)2/3, a(i/) --6"
Hence, the three roots of the cubic equation are found as shown in Table 1, where

TABLE

e(ci)
e2(ci)
e3(ci)

x/- 1/x/-

u (2x/- + 1)v/4 3(2x/- 1)v/4
-u -(2x/3- 1)v/4 -3(2x/3 + 1)v/4
0 v/2 3v/2

(17) u (15a4) 1/2, v (35a6) 1/3.

To evaluate cry, consider a Weierstrass zeta function of double periods
2co and 2co’ ci. From the double series definition of the function [7, p. 354],
we find at the half-period 1/2,

(18) ’(1/2[ci) (ci).
Again from the definition, we find for any period 2’ in general,

(19) (2’) 2(14’) + e2(4’).
Consequently, when 2’ ei/3,

(20) ((le’i/3) 2(611 + i)+ e2(1 + i)
2(1i) + e3(i),

and when 2’ eni/6/,
(]e’/6/) 2(11 + i/) + e2(1 + i/)

(21) 2(1i/ + e3(i/)"
Hence, with the aid of the values

(22) (i) , (le’/3) , ((e’/6/) ,
we find

(23)
a’(ci) rc rc/x/ + v/4 rcx/- 3v/4

With the values in Table 1 and (23), the series in (11) are readily evaluated.
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The results are given in Table 2. For convenience, we write

(24) a

TABLE 2

Values of the series in (1) for

I2(c)

II2(c)

III2(c)

IV2(c)

6 2r

a a 3v

6 67t 8r 6 2r 8rt

u- + }-- + 2rt--5

u-- + 27--5

2r

a a+ a 3(a- 1)+ +---- + +
2 4:g

v
4/1:2

a a- a 3(a+ 1)
+ +

6:n: 2 4

a v a 3v
--+

6r 8 2r 8

4. Summation of the series when s >__ 2. Write (6) in the form

(25)

g2 {sinh2 rex x2 +
(m 4- ix)2 (m- ix)2

r2

=4
(2m-. 1 +2ix)2 +(2m- 1-2ix)2cosh2 xx

Differentiate both sides (2s 2) times, put in turn x nc and (2n 1)c/2 in the
resulting expressions and then sum up from 1 to oe. Using the notation

(26)

d2S- 2 2
(2s 1) dx2s- 2 sinh2 xx

1 d2S 2 2
(2s 1)! dx2s-2 cosh2/zx

7
2s A2s’2k

k=l six’
2s i (--1)k+l

k=l

A2s,2k
cosh2k x’

one obtains for s __> 2,

(m- nci)2sJ

22s, { (-1)
1)kA2,,2kII2k(C) - 2nci)2,k=l =1 m=l (2m 1 +

(2m- 2nci)2J
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(27)

Z {2mAzs’ZkIIIzk(c) &c)2s U2s - -k’-I + (2n- 1)ci}2

(- 1) ]{2m (2n 1)ci}2

22s
(-- l)kA2s,2kIV2k() -- E E {2mk=l n=l m=l 1 + (2n- 1)ci}z

(-1) ]{2m- 1-(2n- 1)ci}2

Note that the order of summation of the double series is now interchangeable.
Define an elliptic function of double periods 20)= 1 and 20)’= ci as a

derivative of the Weierstrass elliptic function of the same double periods in the
form

(28)

1 d2S 2

W2s(zlci) (2s 1)! dz2- 2 W2(z[ci)

" (z- m- nci)2’gt,m

We find at half-periods,

W2(1/2[ci) 22+lUzs + Z 2
n=l m=l

22s +

2m- 1 + 2nci)2

22s +

(2m- 1 2nci)2;’

(29) s22S+1W2s(1/2Cilci 1) g2s "3r- Y= m=lE {2m
22s +

+ (2n 1)ci} 2s

22s +

{2m 1)ci} 2s

Wz(1/2 + 1/2cilci)--
=1 ,,,=,Z {2m

22s +

1 + (2n- 1)ci}2

22s +

{2m- 1 --(r- 1)ci} 2s

Further, from (3), we find that when 20) 1 and 20)’ ci,

(30) a(ci) 2 1+ ,c: j’S2s + +
m + nci)2 (m --f- rtci)2s
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It follows therefore, since A2s,2 1, that

I2s(c)
(- 1)s
2r2 {a’,(ci)- 2S2,} A2,.2,I2,(c),

k=l

1 228 s-1

II(c) wz(lc0 2 (-1)+,II(c),
k=l

(31) ,_
III(c) (" 1) wz(cglcO IIIz(c)228 k=l

s-11
w:( + cg[ci)- (-1)+,IV(c),IV2(c)

k=

SO that the desired series can be evaluated recurrently from the series for s 1
and the values of a and W2 at half-periods.

Note that ifa in (3) is defined instead by (30), its validity can be extended to
s 1 so as to include a in (9). Note also that the functions W2 at half-periods
and a are connected by

(32) W2([ci) + W2(ci[ci) + 2( + cilci) 22- 1)(ci).

a satisfies the following recurrence relation"

(33) (s- 3)(28 + 1)E2 E,E2_, + E6E2s_ 6 + + E2_,E,,

where

(34) E2 (28 1)a’(ci), s >= 2,

so that a can be expressed in terms of the initial coefficients a. and a. Hence,
it can be expressed in terms of a, when c 1 and in terms of 06 when c fi or

Furthermore, the function W4 at half-periods is given by

(35) W4 W 5a(ci),

where W2 is the Weierstrass elliptic function at half-periods. The subsequent
functions Wz at half-periods satisfy the following recurrence relation"

(36) (s 1)(2s- 3)F2 FzF2_2 + F,F2_, + + Fz-zF2, s 3,

where

(37) F2 (28 1)W2s, s _>_ 1,

so that the functions W2 at half-periods can be expressed in terms of W2 at half-
periods and the value of a. Hence, they can be expressed in terms of tr, when
c 1 and in terms of a6 when c or 1//.

Finally, to evaluate Azs,zk, we differentiate both sides of either equation in
(26) twice and equate the coefficients. The following recurrence relation is
obtained, for s >= 1 and 1 __< k _< s"

1
(38) Azs+ 2,2k 2s(2s + 1) {(2k 1)(2k 2)A28,2k_ 2 + 4kZAzs,2k}
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TABLE 3

Values of the series in (1) for 2 and 3

I2s(C)

II2s(c)

III2(c

IV2(c)

2s=4

11

11 U

90
+ +

3Oft4

11 a v--- + nn + + 327

a v 9v
+

3 4 324

U

3x4

a a+l 2+av2- + +---U- + -8
a a- 9(2- a)vz- + + 5?- + 8

U u

3rt 3rt 3rt4

9(2 + a)v

u

3 6x4

a /)2

a

12n 32n4

9v

4 32

2s=6,

191

191 4 u

1890 157t 30//:

4a v /)2 llv

1890 45n

191 4a

1890 15n

15rt 32n4 22407t

V 9V 297V

5n 32n4 2240rt

4

15rt

4u u u
+ - + + --44 2(a + 1)v

-+ 3- +
15n

3(5a + 8)/)3
160x

4a 2(a- 1)v
-} + + 52

9(2 a) 81(54 8)
.+. /.)2 + U3

84 160

4 4u t/2 /,/3
+

15n 15n 3n4 5n

4a 2(a- 1)v
15X

2-a
___/)2 .+.

3(5a 8)
160x

40 2(a + 1)v
5x

9(2 + a)
v +

8x4
81(5a + 8)

1607t

4a

45n

4a
+

15t

4 u

15n 6n4

3/)

15x 324 320z

9V 81V

5 32x4 320x

In particular, for s _> 1,

(39) A2s,2 1.

The values of the series for s 2 and s 3 thus found are given in Table 3 in
terms of u and v defined in (17), and a defined in (24). For convenience of reference,
the first few values of a, and Wz at half-periods, as well as those of Azs,zk, are
shown in Tables 4 and 5, respectively.

We note that in the case c 1, the sums of the series for s 1 and s 2 are
given by Kiyek and Schmidt in terms of the gamma function. When the gamma
function is converted into 44 by the relation given in the Appendix, they are in
agreement with the present results. In addition, the results also confirm the
relations in (2).
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TABLE 4

Values of as(ci and W2s at half-periods when 2o9 and 2o9’ ci

(1) Forc 1,
a’(i)/u

2 1/15
3 0
4 1/525
5 0
6 2/53625

(2) For c

as(ai)/v

2 1/16
3 11/1120
4 3/1792
5 1/3584
6 683/14,350,336

(3) For c 1/x/J,

2 9/16
3 297/1120
4 243/1792
5 -243/3584
6 497,907/14,350,336

W2,(1/2 i)/u

2/3
2/5
8/35
2/15

64/825

Wzs(1/2 ai)/v

(2 + a)/4
3(5a + 8)/’80

3(16 + 9a)/224
(149a + 256)/1792

3(1280 + 737a)/39424

9(2 a)/4
81 (5a 8)/80

243(16 9a)/224
243(149a- 256)/1792

2187(1280- 737a)/39424

Wz,(1/2ili)/u

2/3
-2/5
8/35
-2/15
64/825

Wz,(1/2ai ai)/v

(2 a)/4
3(5a 8)/80

3( 16 9a)/224
-(149a- 256)/1792
3(1280 737a)/39424

9(2 + a)/4
81 (5a + 8)/80

243(16 + 9a)/224
-243(149a + 256)/1792
2187(1280 + 737a)/39424

Wz(1/2 + -i i)/u

-1/3
0

1/35
0

-2/825

W2s(1/2 + 1/2ai ai)/v

-1/16
3/160

-3/1792
-1/3584
15/157,696

-9/16
-81/160
-243/1792
243/3584

10935/157,696

TABLE 5

Values of A Es,Ek

12
10
8
6
4
2

2k 2k 2k 2k 2k 10 2k 12

4/155,925 62/4725 256/945
2/2835 17/189 7/9
4/315 2/5 4/3
2/15
2/3

19/15 2
5/3

Appendix. Values of a4 and 0-6 The two coefficients a4 and 0-6 are related to
elliptic integrals by

4 (1/4) 64x/- K6 sin
rc)315-i’(A.1) a4 -iK sin 0"6

where K(k) is the complete elliptic integral of the first kind in Legendre’s form
with modulus k. These elliptic integrals are in turn related to the gamma function
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[8, pp. 524-526] by

(A.2) K sin 4ri/F(l./4),
Hence, we have

1 a(A.3) rr, 960rtz F (1/4),

K(sin 2) rc/2 C(1/6)
3 3/4 2F(2/3)"

2re3 I-’6(1/6)
0"6 25515 1-’6(2/3)

The two coefficients are also related to one of the Jacobian theta functions.
It is well known that when 2o0 1, the three Weierstrass elliptic functions at half-
periods [9, p. 393] are

3 ,,,3 + 0,), e2(2o0’) --w2 + 0),

(A.4) g2
e3(2o0’) -(024 044),

where 02,03 and 0, are three Jacobian theta functions defined by

02 2qX/4 q,,,,+ x), 03 1 + 2 q,,2,
n=0 n=l

(A.5)
0,=1+2 y’. (-1)"q"2.

n=l

In these expressions, the value of q corresponding to 2o0’ ci is

(a.6) q e-c.
The three Jacobian theta functions are connected by

(a.7) 0 0 + 0.
When c 1, q e -. The three functions in (A.4) are

2 2
--(03 + 044) (15rr,0 x/2 ---(20 044) -(15r,0/2

3
(A.8) 2

3
(0 20,)= 0.

Consequently, we find

(A.9) 0 20,
and

(A.10) a4
z4 t8
60,3

Again, when c x//-, q e -’/. The three functions are now

72 2v/- 72 2v/- 1+ 1(35r6)x/3 ---(2043 044)--(0 + 044)
4 3 4

(A.11) 72 (Q4
-,,,3- 20)= --1/2(350"6)1/3

(350"6) 1/3
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We find

2
(A.12) 0.- 4

and

6
(A.13) 0"6 105/-02"x/

It is thus seen that the two cofficients are related to the Jacobian theta function

03 by (A.10) and (A.13). On account of rapid convergence of the series representing
this function, the relations (A.10) and (A.13) are suitable for computation of the
two coefficients to high precision. Using a 224S value of n taken from Shanks and
Wrench [10] and a 224S value of e from Lehmer [11], the values found in Table 6
rounded to 221S are obtained.

TABLE 6

a4 3.15121 20021 53897 53821 76899 42248 68855 66455 19354 51485
24384 70540 35738 42598 37682 74612 16108 69439 55074 50822
34067 97840 76434 94604 88644 39664 38519 91157 48984 67849
99631 69871 53948 35729 19980 22725 78430 90624 47216 07569
29979 87305 05866 80605

if6 5.86303 16934 23401 59797 02134 43837 82343 75153 76204 12955
75122 82731 11230 49523 95831 56859 89351 55366 27614 95871
40705 48300 13181 76095 79616 29185 72528 01856 60542 90818
19106 35839 48652 82224 01194 34321 49029 07968 05036 80277
40339 78330 80895 80170

The computation was carried out on an IBM 370 computer by using a multi-
precision arithmetic package prepared by Dr. T. C. Ting. This package can extend
the computation to 224S. A check on the author’s previous 101S values [12]
reveals no discrepancy. It is noted that two different relations with Jacobian theta
functions were used in the previous computation. The present series of 03 converges
more rapidly since the values of q used are both smaller.
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AN APPROXIMATION OF HARMONIC FUNCTIONS IN E3

BY POTENTIALS OF UNIT CHARGES*

D. T. PIELE"

Abstract. Harmonic functions defined on bounded, open, connected and complement connected
regions D in E are uniformly approximated by sums of point charge potentials each of unit charge
and positioned on 8D.

MAIN THEOREM. For every harmonic Junction f in D, there exist a sequence of constants C. and
a family of finite sequences {Yn,1, Yn,2,’", Y.,.} (n n ) of points on D such that

uniformly on every compact subset of D. Certain restrictions are placed on 8D.

1. Introduction. Let D be a bounded, open, connected region in E3 with
connected complement. A family offinite sequences {Y,1, Y,2, "’", Y,} (n n - )of points on D is called an asymptotically neutralfamily relative to D if there exist
constants C, such that

uniformly on every compact subset of D.
In this paper we assume that the boundary 8D contains an asymptotically

neutralfamily relative to D, and we show how any harmonic function in D can be
approximated uniformly by sums of point charge potentials, each of unit charge
and positioned on 8/).

MAIN THEOREM. For every harmonic function f in D, there exist a sequence of
constants C. and a family offinite sequences {y.,1, Y.,2, y,.}(n ns ) of
points on 3D such that

uniformly on every compact subset of D.
Sufficient conditions for the existence of asymptotically neutralfamilies on D

are given by the author in [3. Specifically, if 8D is a Lyapunov surface with a local
parametric representation having H61der continuous third partial derivatives, then
D contains an asymptotically neutral family.

Results of this type in E have been proved by J. Korevaar requiring no
restrictions on the boundary [2]. Similar methods are used in this paper with
nontrivial modifications to prove the main theorem in Ea.

Z Notations. We restrict our consideration to E, the points of which are
denoted by x, y. The Euclidean distance between x and y is denoted by IIx YlI.
Integrals over 2-dimensional surfaces are denoted by (.) do-, d being the surface
element. Integrals over 3-dimensional regions are denoted by (.) dx.

* Received by the editors September 6, 1972, and in revised form November 16, 1972.
College of Science and Society, The University of Wisconsin-Parkside, Kenosha, Wisconsin

53140.
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A Lyapunov surface in E3 is a closed, bounded 2-dimensional surface S
satisfying the following conditions"

(i) At each point of the surface there exists a well-defined tangent plane, and
hence a well-defined normal.

(ii) There exist constants A and 2, 0 < 2 __< 1, such that if 0 is the angle between
the normals at any two points x and y of S, then 0 satisfies a H61der condition
0 <= Zllx Yll .

(iii) There is a constant d such that for all points y of S, the portion of the
surface inside a sphere of radius d about y intersects lines parallel to the normal at
y in at most one point.

From condition (i) we can construct, at each point y of a Lyapunov surface, a
rectangular coordinate system (, r/, ) with the -axis along the normal to the surface
at y. From condition (iii), the subregion of S contained in a Lyapunov sphere about
y can be represented by a function (, r/) over a region A in the (, r/)-plane.

Lyapunov regions are regions bounded by Lyapunov surfaces. For interesting
properties of Lyapunov regions see Gunter [1].

Let f(, r/), defined in a region A E2, be bounded and possess bounded,
continuous derivatives up to order k,

c3,,cr/;..: < A,

271 -- 27172 27, 27 0, 1, 2, ..., k, such that the derivatives of order k are 2-H61der
continuous with the same constant A (see 1]). The class ofsuch functions is denoted
by Hk (A, 2).

The surface S belongs to the class L,(A, 2), if (, r/) e H,(A, 2), where A and 2
are independent of the choice of y on S. Note that Lyapunov surfaces belong to the
class LI(A, 2).

Let/t be a function defined on S. If (, r/, ) are the coordinates of a point y of
S, we may define/ on a region A in the (, r/)-plane by putting/(, r/) =/((, r/))
=/4Y). A function/ defined on S belongs to the class H,(A, 2) if/2(, r/)e H,(A, 2)
on A where A and 2 are independent of the choice of y.

3. Preliminaries. It is well known that if U is harmonic in a bounded region D
or in an unbounded region D with the added condition that U is harmonic at
infinity (U --, 0 as R ---, oe), then U can be expressed as the sum of a single and
double layer potential

(3.1) C(x)-
IIx- yll ON U-- Ilx yll

da(y),

where S is the boundary of D, and c3/ON denotes the derivative in the direction of
the outward normal. Furthermore, if U is harmonic in a region including D and its
boundary S we can solve an exterior Dirichlet problem relative to S and find a
function V, harmonic in the complement of the closure of the domain D,/c, which
assumes the same boundary values as U,

limV(z)= U(x), x S, z Oc.
Z-’*
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Applying Green’s identity to the functions V(y) and 1/llx- YlI, with
x e S, y e Dc, we have

fs { 8V(y)
V(y)

__
IIx yll c3N Ix -IIxYI/V- IIx Yll

da(y)

dy=O.

Since U Von S, one may replace Vby U in (3.2) and substitute

IIx yll ON
da(y) for U(Y)--6- Ilx yl

da(y)

in (3.1) to arrive at the single layer representation of U,

1 fs 1 8(U- V)
(3.3) U(x) IIx yl ON

da(y).

Next we examine the expression 8(U V)/SN. The first part, 8U/SN, is certainly
continuous on S since U is by assumption harmonic in a region containing D and
its boundary S. For S sufficiently smooth, 8V/SN will also be continuous on S, in
fact much more holds. Explicitly, if S Lk(B, 2) and U H(k, A, 2) on S then c3 V/SN
is in the class H(k 2, cA, 2’), [1, p. 101]. We arrive at the representation for U,

(3.4) U(x)
Ix Yll

g(y) da(y)’

where g(y) is a continuous function on S.
The integral in (3.4) can now be represented as a limit of Riemann sums, where

the convergence is uniform on compact subsets K of the domain D:

(3.5) U(x) lim " lnk
k=l X Ynk

Ynk G S

Finally, for completeness, we state the following important result which plays
a supporting role in 4.

THEOREM (Harnack). Suppose , is harmonic in a region D, and the sequence
{f,}=l converges uniformly to a limit function f on every compact subset of D.
Thenf is harmonic in D. Moreover, the partial derivatives off, converge uniformly to
the corresponding partial derivatives off on every compact subset of D.

4. Density of an asymptotically neutral family. Our analysis in 5 of functions
which can be approximated by sums of unit charge potentials requires that we first
investigate the density ofan asymptotically neutralfamily. We begin with the follow-
ing lemma.

LEMMA 1. An asymptotically neutralfamily (A.N.F.) relative to D is dense in the
boundary 8D.

Proof. Assume not. Let N be an open neighborhood on 8D which contains no
points of the A.N.F. For convenience, with no loss in generality, translate and
rotate the region D so that the xx-axis passes through the neighborhood N on the
surface c3D and the origin of g3 is in D. Let D c3D\N. The complement of 8D,
denoted by 8Dc, consists of a bounded and an unbounded component. In contrast
8D is an open set with only one component.
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The A.N.F. {y,, Yn2, y,,,,}(n ni ) on c3D satisfies

(4.1)
k=l[x--Y,kl[

+ C,--0 asn=ns

uniformly on every compact subset of D. Taking partial derivatives with respect to

x in (4.1) and applying Harnack’s theorem, we find that

(4.2) 0 asn=nj
k=l Lg

uniformly on the compact subsets of D.
Let

(X Ylnk)
F.(x)

The family {F,} is uniformly bounded on every compact subset of c3Dc. By (4.2) the
sequence {F,}2__ converges to zero uniformly on the compact subsets of D. Thus,
{F,}, must converge to zero uniformly on the compact subsets of the extended
region ODC(a uniformly bounded sequence of harmonic functions is a normal
family and c3D is connected and contains D). Now pick x]’ > 0, where(x]’, 0, 0) e c3D.
For large values of

(x y,.k) 1

IlX*--Ynkl[ 3 Ilx*-ynkll 2 ilx* 1,2.

Thus, F,,(x*) - 1/[[xJ[ 2 for all n. This contradicts the convergence of F, to zero on
compact subsets of cD. The contradiction completes the proof.

5. Main theorem proof. Let f be harmonic in D. It will suffice to give the
proof for a fixed compact subset K of D. Since K is a finite distance from cD, we
can construct a surface S in the region between c3D and K which surrounds K and
is sufficiently smooth, i.e., S Lk(B, 2), k >= 3. We first examine the class offunctions,
denoted by A(K), which contains all finite sums of potentials formed from unit
charges located on OD or uniform limits, modulo constants, of such finite sums.
Thus,

=1 Ilx y,ull
+ C,,xeK,y,eD

U {g" there exists f,, as above, such that L g uniformly on K}.

Clearly, constants and single unit charge potentials, l/[Ix- Y[I, belong to

A(K). Our first nontrivial observation is that -1 YI[ belongs to A(K).
To prove this let {y,, Yn2, "’’, Ynn}(n --rlj ) be our A.N.F. on c3D.

Lemma 1 shows that this family is dense in c3D. We now select a sequence {Y,k,)
(n n - ) such that

Ynk,, Y as y/-- y/j
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The A.N.F. satisfies,
= IIx y.ll

/
IIx y..ll

/ C. 0 as n nj ,
where ’ denotes the sum with the term for which k k, deleted. Hence,,

IIx Y,II + C, ---,
IIx Yll

as n nj ,
uniformly on every compact subset of D. This puts l/[Ix Yll in our class A(K).

If r is any tangential direction at y cD, we next show that for any real scalar 2,

}Ix yll
belongs to A(K).

Let y’ y along an arc on D associated with the tangential direction r. Then

2(1/llx Y’II 1/llx yll) A5.1)
Ily’-yll ar lix-

as y’ y, uniformly on K. Consider

(5.2)
[2/ y’ Yll]2(1/llx Y’II- 1/llx- YI[)
2/llY’- Yll IlY’- Yll

where [-] denotes the integral part. Let

Then, (5.2) can be written in the form

(5,3) IIx- y’ll
/

But n/llx Y’I[ and -n/llx yl] are in A(K), hence, expression (5.2) is an element
of A(K). Now

[2/llY’
1 as y’ y,

2/11/- Yll

hence, expression (5.2) converges to 2(O/&)(1/llx YlI). We conclude that

& IIx yll e A(K).

After these preliminaries, we complete the proof of the theorem. Let H(D)[K
denote the class of all harmonic functions on D restricted to K. Let Ao(K) denote
the closed subspace of H(D)IK spanned by 1 and the functions (c3/c3"c)(1/llx YII),
y OD. Clearly,

(5.4) Ao(K) A(K) H(D)IK.

Our theorem will be proved if we can show that equality holds in (5.4).
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Applying the Hahn-Banach theorem and the Riesz representation theorem to
the closed subspace Ao(K) c H(D)IK, we see that in order to show Ao(K) H(D)iK,
it is sufficient to demonstrate that any measure d/ which is orthogonal to Ao(K)
over K is also orthogonal to H(D)IK. Let d/ be a measure on K such that

(5.5) d(x) O,
IIx yll

d(x) 0
K

for all y on S, and all tangential directions z at y.
We now introduce the potential

(5.6) V(z)
Ix zl-- dl(x).

The function V(z) is harmonic off K, including infinity, and vanishes at infinity.
Also, by (5.5),

0- g(y) O Ilx
d,(x) o

for all y on S and all tangential directions r at y. Hence, V is constant on S. However,
a function which is harmonic at infinity with mass zero cannot have an extremum
at infinity [4]. Thus V(z) 0 throughout the unbounded component ofthe comple-
ment of K. In other words, dlt(x) _1_ 1/{[x zl[ (over K) for all z in a neighborhood
of S and further out. Thus by (3.5), d/ is orthogonal to all harmonic functions
(over K). That is, Ao(K) H(D)IK.

Aeknowlelgment. The author is grateful to Professor Jacob Korevaar for
bringing this problem to his attention, and for his valuable assistance in simpli-
fying the proof of the main theorem.
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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
x’(t) a(t)f(x(t r(t)))*

JOHN R. HADDOCK?

Abstract. In this paper sufficient conditions are given for all bounded solutions of x’(t)
-a(t)f(x(t r(t))) to tend to zero as . Also, conditions are given which insure the existence

of nontrivial bounded solutions.

1. Introduction. We consider the one-dimensional delay-differential equation

(1) x’(t) -a(t)f(x(t r(t))),

where a, r’[O, v R, f" R - R, a(t) > O, q >= r(t) > 0 for some q >= O, xf(x) > 0
for x 4:0 and a(t), r(t) and f(x) are continuous.

The purpose of this paper is first of all to give conditions on a(t), r(t) and
f(x) which insure that all bounded solutions of(l) tend to zero as and then
to give conditions which guarantee that (1) has bounded solutions.

Let C denote the set of continuous functions th’[-q, O] R, where q is the
bound given on r(t), and let [[[1 SUPse[_q,o][(s)[ for 4 e C. Further, for b > O,
let C {4e C’11411 <_-b}. If x(. is continuous on the interval .It- q, t], we
denote by xt the function in C for which xt(s)= x(t + s) for s e I-q, 0]. Then
equation (1) is a special case of the one-dimensional delay-differential equation

(2) x’(t) F(t, x,( )),

where F’[0, ) C R. We say x(. x(., to, b) is a solution of (2) through
(to, ) on the interval [to, T) ifx’[to q, T) R is continuous and continuously
differentiable on (to, T) and satisfies (2) on [to, T) with X,o

A solution x(. of (2) on [to, T), 0 __< to < T __< , is said to be noncontinuable
either if T , or if T < and for every positive e, x(. cannot be extended as
a solution of (2) to [to, T + e).

We need the following basic results for delay-differential equations.
THEOREM 1. Let F’[0, x C R be continuous.

(i) For each to >= 0 and dp C, there exist T > to and a solution x(. of (2)
on [to, T) such that Xto dp.

(ii) If IF] is bounded on [to, T] Cb for each to, T and b >= 0 and if x(. is
a noncontinuable solution of (2) on [to, T), T < , then lim supt_r_]x(t)]

(iii) Any solution on [to, T) can be extended to an interval on which it is non-
continuable.

For equation (1) we have F(t, ok)= -a(t)f(dp(-r(t))) and the properties of
Theorem 1 hold.

2. On solutions tending to zero. We are now ready to give our main result
for this paper.

* Received by the editors September l, 1972, and in final revised form June l, 1973.
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THEOREM 2. Suppose fa(t) dt and either b(t)r(t) - 0 as - or a(t) - 0
as , where b(t) supsto.tla(s). Then all bounded solutions of(l) tend to zero
as t- .

Proof. By Theorem any bounded solution of (1) can be extended to an
interval of the form [to, ). Suppose x(t) is a bounded solution which eventually
has constant sign, say x(t) > 0 for large t. Then x’(t)= -a(t)f(x(t- r(t))) < 0
and it follows that lim, x(t) c exists. If c > 0, then there exists t* to such
that f(x(t- r(t))) d > 0 for t* and some d > 0. Thus x’(t) -a(t)d for

t* which implies x(t) x(t*) df.a(s)ds - as . This contradicts
that x(t) is bounded and, therefore, c 0. A similar argument holds if x(t) is
eventually negative. Hence, if x(t) is a bounded solution which does not tend to
zero, it must be oscillatory. Then there exist e > 0 and sequences {t}, {t}
such that, for each n, either x(t) O, x(t) e, x’(t) 0 and 0 < x(t) < e if
t,< t< t < t.+ or x(t,)=O, x(t)= -e, x’(t)O and 0>x(t)> -e if
t < < tff < t. . As a similar argument holds for both cases, we assume the
former. Integrating x’(t) from t to tff, we obtain

t

(3) e Ix(t.*)- x(t.)l _-< a(s)lf(x(s- r(s)))[ ds <= M a(s) ds,

where M is a bound on If(x(. ))[. Suppose b(t)r(t) - 0 as - . Now b(t) is con-
tinuous and monotone increasing and, from (3), we have

b(s)ds <- Mb(t*)(t* t,)

or

(4) t* >_ e/Mb(t*).

* * elM. ThenLet n be chosen sufficiently large such that b(tn)r(t) <

r(t*) < e/Mb(t*) <= t* t,

which implie t < t* r(t*) <= t*. Thus, x(t* r(t*)) > 0 and we have x’(t*)
-a(t*)f(x(t* r(t*))) < 0. This contradicts x’(t*) >= O. Now, suppose a(t) 0

as - . From (3) and the mean value theorem for integrals, we have

<= M a(s)ds Ma()(t* t,)
or

t* tn >= e./Ma(),

where t < < t*. Since a(t)- O, it follows that a() 0 as n- c. Then n
can be chosen sufficiently large such that t*- t > q. It follows that t, < t*

r(t*) __< t* and we obtain a contradiction as before. This completes the proof.
From Theorem 2 it follows that if a(t) is bounded with fa(t)dt c and if

r(t) - 0, then all bounded solutions of (1) tend to zero as
Before discussing conditions which will guarantee the existence of bounded

solutions of (1), we wish to relate Theorem 2 to a recent result of Ladas [10,
Thm. 4.1(b)]. In Theorem 2 f(x(t r(t))) can be replaced by f(x(t), x(t r(t))),
where f satisfies the condition" if x and y have the same sign, then f(x, y) has that
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sign. With this condition and the requirement that t"-la(t)dt or, Ladas
considered the equation

(5) x(n)(t) + a(t)f(x(t), x(g(t)))= O,

where g(t) =< for >= O, g(t) o as o, a(t) > 0 and a, f and g are con-
tinuous. Among his results, he proved that for odd n, each bounded solution of
(5) is either oscillatory or tends to zero. For n 1 and g(t) r(t), Theorem 2
provides simple conditions for which the bounded oscillatory solutions also tend
to zero. For other possible forms of the argument off, we refer to [13].

The remainder of this paper is primarily concerned with obtaining various
new results for the equation

(6) x’(t) -a(t)xr(t- r(t)),

where / > 0 is the quotient of odd integers. In [14] Yorke points out that for
a(t) const., r(t) q > 0 and -, (6) has a nontrivial orbitally asymptotically
stable periodic solution. However, from Theorem 2 we see that if, for instance,
a(t) is bounded and either a(t) --, 0 or r(t) --. O, then there is no value of /for which
(6) can have a nontrivial periodic solution. In [14] Yorke has also proved a sig-
nificant stability theorem which can be applied to (6) for />= 1. We now combine
Yorke’s theorem with Theorem 2 to obtain an additional stability result for (6).
For stability definitions we refer to [14] and [7, p. 473.

THEOREM 3. Suppose, in (6), 7 _-> and a(t) <_ for some > O.
(i) If 0 <= eq <= 3/2, then the zero solution of (6) is uniformly stable.

(ii) If 0 < zq < 3/2 and a(t) >= o for some o > O, then the zero solution of
(6) is uniformly asymptotically stable.

(iii) If 0 <= eq <= 3/2, a(t) dt oe and either a(t)
then the zero solution of (6) is asymptotically stable.

Proof. (i) and (ii) follow immediately as they are special cases of Yorke’s
result [14, Thm. 1.1]. We apply (i) and Theorem 2 to show that (iii) holds. By (i)
if 0 _<_ eq <= 3/2, then a solution with sufficiently small initial condition must be
bounded. But, by Theorem 2, such a solution tends to zero as t--, oe and this
completes the proof.

Although the uniform asymptotic stability conclusion in (ii) is stronger than
the conclusion in (iii), it is required in (ii) that a(t) be bounded strictly away from
zero. This condition is unnecessary in order to conclude asymptotic stability.
Also, by considering the equation x’=-x/(t + 1), where a(t)= 1/(t + 1),
r(t) =_ 0 and 7 1, we see that uniform asymptotic stability cannot be obtained
under the conditions given in (iii).

If 7- 1, then (6) is a linear homogeneous equation and it is well known
that all solutions are bounded if the zero solution is stable [9, p. 973. Thus, for
the linear case, Theorem 3 provides conditions for which all solutions tend to
zero. The author has been unable to find any results in the literature along these
lines which include the nonlinear case ?, - 1, and Theorem 4 below is the only
type of result we have obtained in that direction. The following simple lemma
will be useful.

LEMMA 1. If X(t) is a noncontinuable solution of (1) on [to, T) with T < o,
then r(T) O.
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Proof. If x(t) is noncontinuable on [to, T) with T < , then x(t)is un-
bounded on this interval. Suppose r(T) > 0. Then there exists t* [to, T) such
that to q <= r(t) < t* for all [to, T), Since x(. is bounded on [to q, t*],
x(t r(t)) is bounded for [to, T). This implies that x’(t) -a(t)f(x(t r(t)))
is bounded and this contradicts that x(t) is unbounded on the finite interval
to, T). It follows that r(T) O.

If r(t) > 0 for all t, then we can conclude from Lemma that each solution of
(1) is defined on an interval of the form [to, ). The author does not know if the
same result holds when we just require r(t) >= O.

THEOREM 4. Suppose r(t) > 0 and suppose there exists N > 0 such that

(7) b(t)r(t) exp a(s) ds <= N fort >= O.

Then for 7 < 1, all solutions of (6) are bounded. If, in addition, a(t) dt or, then
all solutions tend to zero as .

Proof. Let x(t) be a solution of (6). Since r(t) > 0, it follows from Lemma 1
that x(t) is defined on an interval of the form [to q, ). We will first show that
if ]x(t) x(t- r(t))] is bounded for >= to, then x(t) is bounded. Suppose other-
wise. Then there exist m > 0 and t* _>_ to such that Ix(t)- x(t- r(t))l <= m for

>__ to, ]x(t*)l >= 2M and x’(t*) and x(t*) have the same sign, say x’(t*) > O,
x(t*) > 0. But since ]x(t)- x(t r(t))l <-_ M, it follows that x(t* r(t*)) >= m > 0
or x’(t*) -a(t*)x(t* r(t*)) < 0 which is a contradiction. Now consider

Ix(t)l 5 G(t) [X(to)l + a(s)lx(s r(s))l ds.

Then G’(t)= a(t)]x(t- r(t))] __> 0 so G(t) is monotone increasing for >= to. If
G(t) is bounded, then x(t) is bounded. Suppose G(t) is unbounded. Let tl >= to + q
be chosen such that G(t) >__ for _> tl. Then, for >__ tl, we have [x(t- r(t))]
<= G(t r(t)) <= G(t) and

(8) G’(t) a(t)[x(t- r(t))l _<_ a(t)G(t) <= a(t)G(t).

We apply Gronwall’s inequality to (8) to obtain

(9) .x(t). <_ G(t) <= G(t)exp(j a(s)ds) fort>__t,

where G(t)= ]X(to)[ / fo a(s)lx(s- r(s))lds. By the mean value theorem for
derivatives,

(10) Ix(t)- x(t- r(t))l- Ix’()lr(t), t- r(t) <= <__ t.

Let 2 + q. From (9) and (10) we have for >__ rE,

Ix(t)- x(t- r(t))l- a()lxr( r())lr(t)

<= b()Gr( r())r(t) <= b(t)r(t)Gr(t)

<__ b(t)r(t)G(t) <= b(t)r(t)G(t) exp a(s) ds <= G(t)g.
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Thus, Ix(t)- x(t- r(t))l is bounded and it follows that x(t) is bounded. Now,
suppose a(t) dt . Then from (7) b(t)r(t) 0 and, by Theorem 2, all solutions
tend to zero.

As a final remark it is perhaps appropriate to give some additional history
of the problem studied in this paper. In recent years several papers concerning
the one-dimensional delay-differential equation have been written in response to
a research problem of Bellman [1]. One of the earliest such papers was authored
by K. Cooke 3] in which he examined the linear equation

(11) x’(t) -ax(t- r(t)).

He showed that if r(t) >= 0 is continuous with r(t) - 0 as - and r(t) dt < ,
then each solution x(. of (11) satisfies

(12) lim x(t) e c

for some constant c and conversely, for each constant c there is a solution which
satisfies (12). This result has been extended by Grossman and Yorke [6] and
Chow [2] to include the case where a(. is a bounded function of t. Similar results
have also been obtained in [4], [5] and [8]. Also, in [11] and [12], Winston has
obtained results along these lines for nonlinear equations where the nonlinearity
is due to state dependent delays. We have not attempted to obtain results as
sharp as these investigators. At the same time, however, our restrictions on aft),
r(t) and f(x) have, in general, not been as stringent as those imposed by others.
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BEST RATIONAL FUNCTION APPROXIMATION
FOR LAPLACE TRANSFORM INVERSION*

I. M. LONGMAN"
Abstract. Rational function approximations ,,,(p) in partial form to a function tip) of the Laplace

transform operator p are determined to have inverses g(t) which approximate the inverse f(t) off(p)
in a least squares sense. Examples are presented and compared with Pad6 table and other rational
approximations.

1. Introduction. In a previous paper the author 11 has considered the general
question of the generation of rational function approximations for Laplace
transform inversion. The original idea of using rational approximations for this
purpose goes back to the work of Luke [2], [3]. Since then the method has been
successfully applied by a number of authors. For a general account of the use of
rational approximations, including those of Pad6 in the inversion of Laplace
transforms, the reader is referred to Luke 41. Examples of applications are also
given in the work of Longman Ill, 5], [6], [7], [-8], [9], [10], Akin and Counts
[11], 12], Counts and Akin [13], and Murphy [14]. However Luke and the other
workers have not considered the important question as to how to obtain "good"
rational approximations for this purpose, although questions of "suitability"
and "convenience" were raised by the author [1]. A desirable characteristic
(Longman [1]) for Laplace transform inversions arising in most physical prob-
lems is that our rational approximations ,(p) to f(p) should have no poles in the
right-hand half-plane Re (p) > 0.

The purpose of the present paper is to establish a practical criterion for a
"best" rational approximation, and to demonstrate its application. The criterion
adopted is a least squares one in the t-space, requiring however only a knowledge
of f(p) but not of its inverse f(t), apart from a general assumption of square
integrability. The details are presented in the next section.

2. Theory. We define the Laplace transform f(p) of a real function f(t) in
the usual way"

(1) f(p) e-’f(t)dt

and we assume meanwhile that f(t) is square integrable, that is to say that

(2) K If(t)] dt

exists and is finite.
Now let us suppose that we are given f(p) or have obtained it as the oper-

ational solution of a physical problem, and wish to obtain a sequence of approx-
imations to f(t). (It often happens in applications of the Laplace transform that
the Bromwich integral and other inversion formulas are not convenient for
numerical computation.) We approximate f(p) by a rational function ,.(p) which

Received by the editors February 8, 1973.
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we may as well consider to be already expanded in partial fractions

(3) g.(p) Ar/(p + ).
r=l

We have supposed here that the n poles p -, of ,,(p) are all simple, and that
the numerator of g,,(p) is of lower degree than the denominator, so that the ex-
pansion (3) is valid. We further suppose that all the e have positive real parts.
The inverse g.(t) of g.(p) is

(4) g,(t) A e -’r’,
r=l

and we now make the demand that the A’s and c’s be chosen so that g,(t) is the
"best" approximation to f(t).

This requirement is made explicit by demanding that the integral

(5) I, [g,(t) f(t)] 2 dt

(whose existence is established by the above conditions) shall be a minimum.
By elementary calculation we find

(6)
I. A e-’ f(t)

r=l

dt

A,Ak e
r=l k=l

2f(t)
r=l

A, e -"’ + {f(t)}21 dt.

An essential feature of our method is that, apart from the constant K
(equation (2)), I, is determined in terms off(p) rather than f(t). We have

,.: 7: 7:
r=l k=l k r=l

We now seek ,, A to minimize I,. For this we require

2 A 2()= 0,
OA k r + k

(8)
I. A,A _,

2 2Af () 0
= ( + )

Thus we need to solve

r-- 1,2,...,n,

r- 1,2,...,n.

A," f(a,), r 1,2,..., n,
k= (Xr -[- (Zk

(9)

: -f’(o) r=l 2 n
= (o,. + )2

These are 2n equations for the n A’s and n ’s. Here we have assumed that no A
vanishes, and for later reference each equation is preceded by the parameter
with respect to which I. has been minimized in deriving the equation.
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find

(10)

It is of interest to note the significance of these equations in the p-plane. We

,,(p) f(p), p o o,

,’,(p) f’(p), p ,,
or, in words, g’n(P) and its derivative g"n(P) are made equal to f(p) and its derivative
f’(p) respectively at minus the poles of g,(p).

Now, unfortunately, the solution of equations (9) for the A’s and e’s is not
a simple matter when n is larger than 1. Furthermore the solution may not be
unique and some solutions may yield a smaller minimum of I than others. Com-
plex solutions of (9) are of course allowed, but only those which yield real
functions gn(t). This means that complex s must occur in conjugate pairs, and
that the two corresponding A’s are also conjugate to each other.

For any given solution of (9) we can calculate I except for the constant K
from (7); this enables us to compare different solutions and choose the best, that
is, the one that yields the smallest In. It may also happen, in some cases, that
although we do not know f(t) we can calculate K by Parseval’s theorem [15,
p. 267],

fo 1;o(11) e-at[f(t)] 2 dt n If(a/2 + iy)]2 dy,

which for a 0 yields

f fo(12) K [f(/)]2 dt -n [f(iy)] 2 dy.

In order to solve the equations (9) in practical cases an iteration method was
used, and this is described in the next section.

3. Solution of the equations. Analytic solution of the equations (9) is not in
general tractable, but we may hope to solve them by an iterative procedure in
which we seek to minimize I successively with respect to its 2n parameters A,
A2, An, 01, 02,’’" On. With this in mind we solve each of the equations (9)
for the parameter with respect to which it represents a minimization. This yields
the system of equations

r= 1,2,...,n,
k= Or -3t-

(13)
k

9 A f’(0,)
k=l ((Z -t- 0k)2

r 1,2,..., n.

Starting from an initial guess for the A’s and s we proceed by iteration and
hope for convergence to a solution. This has been done on a computer for a
number of examples. At each step of the iteration we compute also I (with the
term K if knownotherwise without) and check that I decreases as the iteration
proceeds. In some cases a poor initial guess leads to divergence or to a complex
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solution g,(t), but then another initial guess often leads to a meaningful solution.
Some results of applying the method are given in the next section.

4. Some examples. Let us consider first the simple example

(14) f(p) (p + 1) -2

for which we know the inverse

(15) f(t) e-’.

For the case n we have for A, (dropping the suffix 1) the equations

A/a 2(a + 1) -2,
(16)

A/a2 8(a + 1)- a,
having the solution

so that

1/3, A=3/8,

(17) gx(t) (3/8)e -’/3.

Using K 1/4 we readily find here that

11 5/128 -+--0.0391.

We may compare this with the [0, 1] Pad6 approximant to f(p), namely

h(p) 1/(1 + 2p)

having the inverse

Then we find

h(t)= 1/2 e -’/2.

11 [h(t) f(t)] 2 dt 1/18 - 0.0556.

We next consider the example

(18) f(p) (1/p) log (1 + p),

which has as inverse the exponential integral

(19) f(t) El(t ----du;

(see [16, p. 251, no. 5]). This function is tabulated in Abramowitz and Stegun
[17, pp. 228-251] and in Jahnke, Emde and L6sch [18, pp. 17-22], and was con-
sidered in the author’s previous paper [1], where approximate inversion was
carried out by means of diagonal elements of the Pad6 table of the Maclaurin
expansion of (19), as well as by means of rational approximations obtained by a
transformation due to Levin [19].
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Equations (9) were solved in the form (13) for values of n from 1 to 4, and in
Table we give the values obtained for the A’s and e’s and for the I,. Here we
were able to use the known value for K"

(20) K [gl(t)] 2 dt 2 log 2;

see [17, p. 230, no. 5.1.33].

TABLE
Values of the A’s and ’s for f(p)= (1/p)log(1 + p) for
n 1, 2, 3, 4. The last column gives the integral I. for the

error (equation (5)).

3.92155363

2.36902424
34.2657866

1.89681580
13.2520248

207.922736

1.66883035
8.07965471

63.1163866
993.435106

A

3.18724852

1.98881870
3.40540679

1.49002978
2.29828967
3.40964161

1.20384539
1.83690663
2.31144962
3.40978572

0.0911

0.0125

0.0024

0.00056

Using these results, values of g,(t) were calculated for a few selected values
of t. They are compared in Table 2 with El(t). The results compare favorably
with earlier results obtained using Pad6 and Levin approximations [1].

0
0.5
1.0
1.5
2.0

TABLE 2
Values of E(t) and g,(t) for 0(0.5)2.0 and n 1, 2, 3, 4

El(t)

0.5598
0.2194
0.1000
0.0489

gl(t)

3.1872
0.4486
0.0631
0.0089
0.0013

g2(t)

5.3942
0.6084
0.1861
0.0569
0.0174

g3(t)

7.1980
0.5802
0.2236
0.0866
0.0335

8.7620
0.5550
0.2275
0.0985
0.0428

5. Further developments. It is planned to apply the method to a number of
inversion problems arising in physical applications of the Laplace transform. A
tabulation of A’s and ’s for a number of functions f(p) would seem to be useful,
and might find application in the inversion of operational solutions of physical
problems of the type

(21) f(p, )ck() d.

Such solutions arise, for example, in theoretical seismology [6].
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As a variant on the method we can consider minimizing the integrals

(22) In(a e-a’[g(t) f(t)] 2 dt.

This introduces a weight function e -at which is useful if we desire to emphasize
the accuracy of our approximations g,(t) for small values of t. This is also useful
in cases where f(t) is not square integrable, that is, where K (equation (2)) does not
exist. We then may still have a finite value for

(23) K(a) e-a’[f(t)] 2 dt,

and we may be able to find this from f(p) using Parseval’s theorem (equation (11)).
We can also then relax the conditions on ,(p) to some extent, and allow poles
on the imaginary axis in the p-plane.

On the other hand, this weight function does not unduly complicate the
algebra. For I,(a) we now have the formula

ArAk(24) I.(a) -2 Arf(z + a)+ K(o),

and the equations (9) are now to be replaced by

(25)

A
At" f(0 + a), r 1,2,...

Ak
0," -f’(a + a)

/=l(0r + t + a)2
r-- 1,2,...,n.

It is hoped that the results of these further investigations will be published
in due course.
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CDC 6600 computer at the Tel-Aviv University Computation Centre.
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EXPONENTIAL DECAY OF FUNCTIONALS OF SOLUTIONS
OF A PSEUDOPARABOLIC EQUATION*

V. G. SIGILLITO"

Abstract. Exponential decay estimates are derived for quadratic functionals of solutions of
boundary value problems associated with a third order diffusion-like equation. Spatial as well as time
decay estimates are included.

1. Introduction. In this paper we derive two decay estimates for quadratic
functionals of solutions of boundary value problems associated with the differ-
ential equation

(1) u,ii -4-- au, iit bl’t O.

One estimate gives the exponential decay of a functional with increasing distance
from part of the boundary and the other gives the exponential decay with in-
creasing time.

Equation (1) is a member of the class of equations referred to as pseudo-
parabolic by Showalter and Ting 1 and we adopt that terminology here. Equations
ofthis type occur in the mathematical description ofa variety ofphysical processes,
for instance, in the theory of nonsteady flow of second order fluids [2]; in the
theory of seepage of homogeneous fluids through a fissured rock [3] and in the
study of imprisoned resonant radiation in a gas [4], [5], [6].

For results related to the spatial decay estimate see the author’s paper [7]
and those of Edelstein [8], [9] where the spatial decay of solutions of second order
parabolic equations is studied. Results on decay estimates of weak solutions of
pseudoparabolic equations are given in [1].

2. Notation and definitions. We shall be concerned with (1) defined in the
(n -4- 1)-dimensional cylindrical domain

Dr=B (0, T], 0< T<

where B is a bounded domain in n-dimensional Euclidean space R,. The lateral
surface of the cylinder Dr will be denoted by Sr.

The summation convention will be employed throughout so that repeated
subscripts (except and z) are to be summed from 1 to n. The symbol ’i will be
used to denote partial differentiation with respect to the variable xi.

3. Spatial decay. We consider the problem
(2) u,, + au,,,- u,, 0 in D,o, to =< T,

(3) u(x, 0) 0 in ,
(4) on(U + au.,) + (u + au,,) 0 on [cB Col [0, to.

* Received by the editors April 16, 1973.

" Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland 20910.
This work was supported by the Department of the Navy, Naval Ordnance Systems Command, under
Contract N00017-72-C-4401.

581



582 v.G. SIGILLITO

We assume that the boundary cB of B has a plane part Co and that B lies
entirely on one side of CO An unspecified energy flux flows into the region through
Co x [0, to], a portion of the lateral surface Sto. As usual, c/cn denotes the normal
derivative and a and e are nonnegative constants. Without loss of generality we
assume also that a __< 1. (For one possible physical interpretation of this boundary
value problem see [4].)

Let Cs be the intersection with B of a plane parallel to and at a distance s
from Co and let Bs stand for the set of all points of B whose distance from Co is
greater than s (we assume that Bs is connected). Then we shall prove the following"

(5) U(s, t) <= U(O, t)e -sly, 0 < <= to,

where

U(S, t) EU, iU,i + (U,)2 + a2u, irU, ir] dx dr,

and u is a smooth solution of (2)-(4). The explicit constant c will be determined in
the proof.

Proof. As the first step in the derivation of this estimate we multiply (2) by
u,t and integrate by parts over B to obtain

(u,t) 2 dx u,tn(U + au,t) da +
Bs-Cs

u,t-ff(u + au,t) da

fB u’it(u + au’t)’i dx.

Integrating this with respect to from 0 to to and using (4) yields

fifB(u’t)2dxdt+fifn.u’it(u+au’t)’idxdt=fifcsU’t--(u+au’t) dadt

(6) u,t(u + au,t) d dt.
Bs Cs

However,

u(x, to)
-c

u, tu da dt - ,-c,
(u2),t da dt - .- c,

and

f2ofB lf2fB lfB u(x, to)u(x,to)
(7) u,,,u,, x (u,,u,,),, x x,

by (3). Using these expressions in (6) we obtain the equality

(U,t)2 dx dt + a U,itU,it dx dt + - -c
u2(x, to) da

(u,t)2 da dt + - u,i(x, to)U,i(x, to) dx

u,t-n(u + au,t)da dt.
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Now multiply (2) by u and again integrate by parts to obtain

u,u dx (u/),dx= u (u + au, r) da +
Bs Cs

f U,i(U %- au,), dx.

Upon integrating with respect to t, rearranging and using (3) we have

fif 1
ua(x to) dx + U, iU, %- au, ibl, it dx dt

9)
u (u + au,t) da dt + U-n(U + au,t) da dr.

But

u(u + au,,) clr

u(u + au,,) da dt -Bs-Cs. B,-Cs
u(u + au,) da dt

U2 da dt -using (3) and (4). Thus this equality along with (7) and (9) implies

 o,O U,ibl, dx dt + u2(x, to) dx + - U,i(X to)U,i(X to) dx

(1 O) %-
Bs-Cs

U2 da dt + - B.,.-c

u (u + au,)do.dt.
Bs-C.

Addition of (8) and (10) gives

U(s, t) + -} uZ(x, to) dx + (1 + a) u,i(x to)U,i(x, to) dx

(11)
%- (1%- a)

Bs-Cs.

tO) do

u2(X’to)do.+ fif,B._c
<= (u + u,,)-Un(U + au,t) d ch.

EU2 %- a(u,t)2] d(r dt

We now drop the positive terms on the left-hand side of (11), and use the arith-
metic-geometric mean and Schwarz inequalities to obiain

fi yc f fU(s, t) =< (u %- U,t)2 da dt + [u, iu, %- a2u, itu, it] da dt
3) 0

(12)
1 u d dt + [u, iu, + aau,iu,i d dt
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for arbitrary positive 7 and ft. But u is initially zero and thus we can write

u(x, ) d <_
Ti (u.O d.

This inequality in (12) yields

(13) U(s, t) < (1 + B)
1 + 4tg

u2 da dt + (u,u, + a2u,ru, i) da dr.

The optimal choice for 3 is 2to/n and this value of 3 leads to the choice for
y of y /(1 + 2to/n); with these values of y and inequality (13) becomes

(14) U(s, t)<1 + 2to/X fO fc (U2 + U’iU’i + a2u,itu, i, da dt.

Now we can also express U(s, t) by

U(s, t) [u, iu, + (u,,)2 + a2u, i,u,i,] dx dr ds’,

where is the maximum diameter of B normal to C0;thus, by (14),

dU 1
+-uNO,

ds c

where c (1 + 2to and our estimate is an immediate consequence of this
inequality.

4. Time decay. In this section we consider u to be a suciently smooth
solution of the boundary value problem

(15) u,gi + au,i.- u,=O inDr,

(16) u f(x) on ,
(17) u =0 onSr,.

We also redefine B, as B, D, {t }. If we let

(18) V(r) (u + au, iu,3 dx,
B

then the main result of this section is the following"

where k 2/(1 + a2), 2 being the smallest fixed membrane eigenvalue for the
region B.

The proof is simple. If we differentiate (18), integrate by parts and use (15)
and (17) we find that

dt
2 u,u, dx.
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But we can write

dV
< _22 fB u, iu, idx 2(1-2))tfB u2 dx,

where we have used the inequality

uax__< u,,u,,

which is valid by (17). Choosing 7 21a/(1 + a2t), we have

dV 221
dt + a2

from which the result follows immediately. Inequality (19) is a best possible
result since equality holds when u(x,t)= exp[-21t/(1 + a21)]ua(x), where
u(x) is the first fixed membrane eigenfunction.
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INEQUALITIES FOR JACOBI POLYNOMIALS AND
DIRICHLET AVERAGES*

B. C. CARLSON

Abstract. Upper approximations are derived for the absolute values of single and double Dirichlet
averages of x". These averages are homogeneous polynomials of degree n in several complex variables.
Special cases yield upper approximations to the absolute value ofa Jacobi polynomial with any complex
values of the indices and argument. A Jacobi polynomial is represented in a new way by a triple sum.

1. Introduction. In discussing the convergence of series of Jacobi poly-
nomials, one finds a need for upper approximations to the polynomials which
hold more generally than those previously available. The asymptotic formulas of
Darboux [6, p. 196] show that

(1.1) lim sup [P’)(cos 0)l 1/" eIIm ol

(For a definition of the Jacobi polynomial P,’6) see (5.1) below. In the complex
plane whose points represent values of cos 0, the locus of points with Im 0 const.
is an ellipse with foci and 1.) In view of (1.1) it seems reasonable to seek a proof
of the following theorem.

THEOREM 1.1. Let and 6 be any complex numbers. There exists a sequence
of positive numbers f,, depending on and 6, such that, for every complex value of O,

(1.2a) [P’a)(cos 0)l --< fn(0, b) enlIm ol

(1.2b) lim [f,(0, 6)] 1/" 1.

n=0,1,2,...,

It seems that the only known result of type (1.2) is a very precise one [6,
Thm. 7.32.1], [5, 10.18] which gives the maximum value for real 0 of Pt,’6)(cos 0)
if and 6 are real and greater than 1. We aim for less precision in the present
paper, but we shall prove Theorem 1.1 and exhibit explicit formulas for f,. The
proof depends on a new representation (5.11) of the Jacobi polynomial by a triple
sum.

We shall derive first some simple inequalities for certain homogeneous poly-
nomials in several variables denoted by R, and ,. They are the single and double
Dirichlet averages of x". One of the inequalities for R-polynomials can be special-
ized to obtain a result of type (1.2) for Gegenbauer polynomials ( --6). The
corresponding inequality for -polynomials yields a less precise result of type
(1.2) for general Jacobi polynomials and provides the proof of Theorem 1.1. A
variant of this theorem will be used in a subsequent paper to discuss the expansion
of analytic functions in series of Jacobi polynomials with complex indices [4.

* Received by the editors April 23, 1973.
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2. Dirichlet averages. Denote the set of nonnegative integers by , the real
line by R, the complex plane by C, and the right half-plane by C> {x e C "Re x
> 0}. Suppose beck> and define c =1 bi. On the set E of all k-tuples
(u1,.., uk) of nonnegative weights with =ui 1, we define the Dirichlet
measure

k
bi du dUk- a,(2.1) dlab(u) [B(b)] 1-I u, k > 2

i=1

where B is the beta function in several variables,

(2.2) B(b) [F(c)] -a ]-I F(b).
i=1

Note that lab(E)-- 1. Let z e C and denote a convex combination of its com-
ponents by u. z = uiz. The Dirichlet average [2] of x", n e , is a homo-
geneous polynomial of degree n,

(2.3) R,(b, z) f (u. z)" dlab(u).

The integration extends over the set E. If k we define R,(b, z) z".
Suppose further that fl C, and define j= lflj. Let v be a x-tuple of

nonnegative weights with -a vj 1, let Z be a k x c matrix of complex num-
bers, and define u. Z. v =a =aK uiZv. The double Dirichlet average [3]
of x" is

(2.4) t,,(b, Z, fl) ff (u Z v)" dlab(u) dlat(v).

Before extending these definitions to general complex values of b and fl, we
note some elementaryinequalities. Let Re b (Re b a, ..., Re b) and define the
norms

(2.5) Izl max {[zal,’", IZk[}, [Zl max {[Zall, "’", IZkKI}.

The total variation measure [lab] is given by

(2.6)
dl#bl(U) IB(b)]-

i=
Ueb’- dua duk-1

IS(b)[-aS(Re b)dlaReb(U).

It follows that

IR,(b, z)l-< flu" zl" dlpi(u)=< Izl"f dll(u)--Izl"lB(b)l-lB(Re b).

A similar procedure for N, completes the proof of the following inequalities.
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THEOREM 2.1. Let n N, b ck>, z Ck, fl C,, Z CkK. Define the norms [z[
and [Z[ by (2.5). Then

B(Re b)
(2.7) IR.(b, z)l <- lz],

]S(b)]

B(Re b)B(Re fl)
(2.8) ],,(b, Z, fl)] _<

3. General complex parameters. We now proceed to define the polynomials
when the real parts of b and fl are not necessarily positive. If a C let

(3.1) (a,0) 1, (a, n) a(a + 1)... (a + n 1), n 1 e N.

Then, if b s ck> and m e k,

k B(b + m) (bl, mx)"" (bk, mk)(3.2) l-I u., dflb(U
S(b)i=1 c, m

i=1

Multinomial expansion of (u. z)" in (2.3) shows that

(3.3) (c,n)R,(b,z) n (bx,mx) (bk, mk)Z,, Zkrnx

where the summation extends over all nonnegative integers mx,"-, mk whose
sum is n. Since the right side is a polynomial in the components of b, we may use
(3.3) as a definition of the left side for all b Ck, k >__ 1.

Likewise, multinomial expansion of (u-Z. v)" in (2.4) gives

(c, n)(y, n),,(b, Z, fl)

b x, m1 b, m,2 fix, ., mix fl, Z mi
(3.4) n i=x 2=x i=x i=1

mlx m

where the summation extends over all nonnegative integers m11, "", mkK whose
sum is n. The right side serves to define the left side for all b Ck and all fl 6 C.

We now prove a form of Vandermonde’s theorem and a generalization
thereof.

THEOREM 3.1. Let n N, b Ik, fl ([r. Define c ,= bi and 7 j=lflj.
Then

(3.5) v (bl, m) (bk, mk) (c, n)
n!m!
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where the summation extends over all nonnegative integers ml, mk whose sum
is n. Also,

E E E
j=l j=l i=I i=I

(3.) 11

where the summation extends over all nonnegative integers m,..., mkr whose
sum is n.

Proof. Since both sides of (3.5) are polynomials in the components of b, it
suffices to prove the equation when Re b > 0. In this case (2.3) shows that
R,(b, z)= 1 if z zk 1. Substituting these values in (3.3) gives (3.5).
The proof of (3.6) using (2.4) and (3.4) is exactly similar.

In addition to the norms Izl and IZI defined by (2.5), we introduce the norms
k k

(3.7)
i=1 i=1 j=l

THEOREM 3.2. Let n N, b Ck, Z Ck, Cr, Z Ckr. Define norms as in
(2.5) and (3.7), and let c f=lbi and ?, .= flj. Then

(3.8) I(c, n)R,(b, z)l =< ([Ibll, n)lzlt

(3.9) [(c, n)R,(b, z)l _-< (Ib[, n)l[ zll ",

(3.10) I(c, n)(7, n)l(b, Z, fl)l _-< (llbll, n)(ll/ll, n)lZI,
(3.11) [(c,n)(7,n),(b,Z,fl)[ <= (Ibl,n)(lfll,n)llZII .

Proof. If a e C and n e N, we find from (3.1) that

(3.12) I(a, n)l _-< ([al, n).

Hence, by (3.3),

(3.13) I(c,n)g(b z)l < n (Ibl,m)’" (Ibl,m)
iml!"" mk! ’lzl Izl".

The right side does not exceed

n!lzl" (Ibll,ml)’" (Ibkl,mk)
IZI( bll, n),

ml! mk!

where we have used (3.5). This proves (3.8), and the proof of (3.10), using (3.6),
is exactly similar.

To prove (3.9), note that

(3.14) ([bt[, m) (Ibkl, mk) =< ([b[, mx) ([b[, mk) -< ([b[, n),

for the middle member is a product of n factors which do not exceed the cor-
responding n factors of ([b[, n). Thus (3.13) implies, by use of the multinomial
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theorem,

I(c, n)R.(b z)l < (Ibl n)n
Iz, l" Iz,l

(Ibl, n)] z

The proof of (3.11) is exactly similar" it suffices to note that

]bk],
J=

mkj) <- (Ib[, n),

with a corresponding inequality for ft.
Equation (3.3) leaves R, undefined if (c,n)= 0. We shall be particularly

interested in the case where all components of b have a common value, say v.
Then R, is a rational function of v which may have either a pole or a removable
singularity when (c, n)= (kv, n)= 0. We show next that the singularity is re-
movable if v is zero or a negative integer.

TI-IOlM 3.3. Let n, k- 1, r be nonnegative integers such that n > kr. If
b (v,..., v) C, the singularities of R,(b, z) and N?,(b, Z, fl) at v -r are re-
movable. Similar statements hold for N?, with respect to fl and with respect to b
and fl jointly.

Proof. By (3.3), if (kv, n) :/: O,

n! (v, m_! (v, mk)
(3.16) R,(b, z) (k-i n) m, mk! z"’ z

Since this is a rational function of v, it suffices to show that -r is not a pole. By
(3.1), (kv, n) has a simple zero at -r. Since the summation extends over all non-
negative integers ml, "", m whose sum is n > kr, at least one of the mi in each
term of the sum must exceed r. Thus the numerator of every term has a zero at
-r, and the function tends to a finite limit as v -r. The proof for N?,, using
(3.4), is entirely similar. If fl (v’, ..-, v’), each term of N?, is the product of a
rational function of v and a rational function of v’. Therefore it is immaterial
whether v and v’ tend to the respective limits -r and -r’ separately or together.
This completes the proof.

We shall henceforth assume that removable singularities have been removed
by requiring continuity. Sin.ce (3.8)-(3.11) provide no estimates of [R,] and IN?,[ at
such points, and very large overestimates nearby, we now consider these cases
separately.

THEOREM 3.4. Let n, k- 1, r be nonnegative integers such that n > kr. Let
vC and define M max {Iv[, Iv + r + 11}. Then inequalities (3.8)-(3.11) remain
valid if we put b (v, v), replace (c, n) by k(kv, kr)(kv + kr + 1, n kr 1),
replace ([Ibl[,n) by k(k[v[ + 1, n- 1) if r 0, and replace ([b[, n) by ](v,r)[(M,n

r 1). Moreover, (3.10) and (3.11) remain valid if corresponding replacements
are made with regard to (for b, c, k, v, r, M read , , to, v’, r’, M’) or if replace-
ments are made with regard to both b and .

Note. The replacement for (c, n) is nonzero if Iv + r[ < 1/k. Hence we obtain
upper estimates of JR,[ and [N,[ on a neighborhood of the removable singularity
atv -r.
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Proof. Consider a single term in the sum (3.16) and suppose that mi is one
of the summation indices which exceeds r in this term. Then, if (kv, n) v O,

(3.17)

(v, mi) v(v + 1)... (v + r)... (v + mi- 1)
(kv, n)

Thus,

kv(kv + 1)... (kv + kr)... (kv + n- 1)

(v,r)(v + r + 1,mi- r- 1)
(kv, kr)k(kv + kr + 1, n kr- 1)"

Ik(kv, kr)(kv + kr + 1, n kr 1)R,(b, z)l

=< n!
(Ivl, ml) I(v, r)(v + r + 1, mi r 1)1 (Ivl, m)

where may take different values from 1 to k in different terms of the sum. Since
both sides are continuous functions of v, the inequality holds without exception.
If r>= 1, thenlvl +r-> land

I(v, r)(v + r + 1, mi- r 1)1 (Ivl, r)(Ivl + r)(Ivl + r + 1, mi- r 1) (Ivl, mi).

Thus, by (3.5), the right side of (3.18) does not exceed

(klvl, n)lzl" (llbll, n)lzl".

If r 0 this method fails. We then assume v 4:0 and divide both sides of
(3.8) by Ivl. The resulting inequality compares continuous functions of v and
therefore is valid even if v 0.

To modify (3.9) we return to (3.18) and note that

(Ivl, ml)...l(v, r)(v + r + 1, mi r 1)1 (Ivl, mk)

--< ](V, r)l(M,ml)’-. (M,mi r 1)... (M,

=< I(v, r)l(M, n r 1).

Thus the right side of (3.18) does not exceed [(v, r)[(M, n r 1)Ilzll",
The proofs for (3.10) and (3.11) are entirely similar.

4. Gegenbauer polynomials. Equation (3.3) leads at once to the generating
relation

(4.1) i=ll-I (1 tzi)-b’= ,=o t" e,(b,z), Itl" Izl < 1.

Putting b (v, v) and z (ei, e -i) gives the left side the value (1- 2tcos 0
nt- t2) -’, which is the generating function of the Gegenbauer polynomials. Thus,

(4.2) C,(cos 0)
(2v, n)

R,,(v v" ei e-io) n e N
n!
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This is a polynomial in v as well as in cos 0. Inequalities (3.8) and (3.9) yield, for
all complex v and 0,

(4.3) IC,(cos 0)l =< (2lvl, n) enl,mOi,
n!

(Ivl, n)
(4.4) C,(cos 0)1 _-< [2 cosh (Im 0)]".

n!

The first inequality is ordinarily the more useful and is always the sharper when
0 is real or n is sufficiently large. In particular it gives for Legendre polynomials
(v 1/2) the famous inequality IP,(cos 0)1-< 1 for real 0. However, the second in-
equality is the sharper if IIm 01 is large but n is not.

From (2.7) we obtain the additional inequality

(4.5) IC,(cos 0)l =< l(2v, n)lB(Re v, Re v) enllmOi, Re v > 0.
n !lB(v, v)l

This is sharper than (4.3) if Im v 4:0 and n is large.

(4.6)

(4.7)

We now return to (4.1) and prove a result needed in the next section.
LEMMA 4.1. Let m N, v C, x C. Then

R2m + l(v, v x, -x) O,

(V + 1/2, m)R2m(V v; x, x) (1/2, m)x2m.

Proof. In (4.1) put b (v, v) and z (x, -x) to obtain

(2v
(1 tZx2) t" R,(v v" x -x).

n=o n!

The binomial series of the left side is

(1 t2x2) E t2m(v’
rn=O /9/!

Comparison of coefficients of t" in these two series leads to (4.6) and (4.7) with the
help of the identity

(4.8) (2v, 2m) 22re(V, m)(v + 1/2, m).

5. Jacobi polynomials. The representation [6, p. 68]

(5.1) Pt"’a)(x) 2-"
m=O ( -/Im 6n_-Jl-m)(X__ l)m(x_ l)n_m

shows, by comparison with (3.3), that

(5.2) P’)(x) (1 + 0 + 6 + n, n)
2n!

R(-e n, - n;x + 1,x 1), neN.

Both sides are polynomials in , 6 and x. If 6, a quadratic transformation of
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R, puts it in a form comparable to the right side of (4.2)"

P(,’)(cos 0)= (1 + o, n)R,(1/2 + a 1/2 + a" ei e

(5.3)

-io)

(1 + 0, n) 1/2 +a(COS 0)
+

Applied to (5.2), the inequalities of 3 do not give results of the desired
type (1.2). However, (5.3) and (4.3) yield

(5.4) IP,’)(cos 0)1 =< I(1 + z, n)l(ll + 21, n) enllmOi, (l + 2, n) :/: 0,
I(1 + 2,n)ln!

and this is of type (1.2). Since the left side is continuous in and the right side
approaches a finite limit as tends to -1/2 or a negative integer, we can obtain an
inequality of type (1.2) in a neighborhood of any such point. In particular, in a
region containing the points -1/2 and -1, we find by cancelling factors in the
numerator and denominator that

(5.5) IP’)(cos 0)l <
1(2 + , n 1)1(11 + 21 + 1, n 1)enllmOl

21(3 + 2, n- 2)In!

n_>_2, (3 +2o,n-2)0.

On the other hand, (5.4) is useless if 1/2 + -r, where r is a positive integer
with 2r < n. At such a point (and for better estimates nearby) we use (5.3) and
Theorem 3.4 to obtain

(5.6) IP,’)(cos 0)l <
(I 1 + 21, n)I(1 + , n)l enllmO

21(1 + 2, 2r)(2 + 2 + 2r, n- 2r- 1)In!

wherer- ls,n>2r, andl1/2++rl <1/2.
For general values of and 6, we shall use instead of (5.3) a new representation

of the Jacobi polynomial as an A-polynomial.
LEMMA 5.1. Let n

_
[, b 6 Ck, zCk, ]6C 6C. Define c= = lbi,

7 j=, and assume (c, n)(y, n) :/: O. Define Zij zi + for all 1,..., k
and j 1,.... x. Then

m=O m

Proof. Since both sides are rational functions of the components of b and, it suffices to prove (5.7) when b s C> and / s C.. In (2.4) substitute u. Z. v
u. z + v. , apply the binomial theorem, and integrate using (2.3).

LEMA 5.2. Let n e N, (, ) e C, (x, y) e C. Define Z
-y -x-y

Then

(5.9)

+ +  ;z;1/2 + + a)= o,
(1 + o, n)(1 + 6,n)lz,,(1/2 + o,1/2 + 0;Z;1/2 + 6,1/2 + 6)

(1/2, n)(1 + + 6 + n, n)R,,(-o n,-6 n;x2 y)
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Proof. Since the right sides of both equations are polynomials in and 6,
we may suppose (1 + 20, 2n)(1 + 26, 2n) :/: 0. For every p N, (5.7) implies

2 -(1/2 + , + ;,-( + , + ;,-
=0

If p is odd, the right side vanishes by (4.6). If p 2n we may put r 2m and use
(4.7). The right side becomes

(2n) (,n-m)(,m)_ xy_
=o 2m (1 +e,n-m)(1 +,m)

2- 2"(2n)( 1)" n, m)(- 6 n, n m)xzy2,_2
+ + .) . m)’m=0

=(’n)(1 + + 6 +n,n)R,(__ n,-6-n’x2, ,Y2).
(1 + ,n)(1 + 6, n)

COROLLARY 5.3. Let n , (, 6) C2, 0 e C. Define
i0/2 i0/2

Z
e-i eiO/2

Then

(5.10) P,’)(cos 0)
(1 -+-0, n)(1 -+-6, n)

(1/2, n)n

Proof. Put x cos (0/2), y /sin (0/2) in (5.9) and use (5.2), which com-
pletes the proof.

If Re > -1/2 and Re 6 > -1/2, we may combine (5.10) and (2.4) to obtain a
representation of the Jacobi polynomial by a double integral. Simple changes of
the integration variables transform this into a double integral found by Braaksma
and Meulenbeld [1, (2.3)]. On the other hand, for unrestricted e and 6, (5.10) and
(3.4) yield the apparently new representation

P(,"’)(cos 0) 22,(} + , n)(1/2 + 6, n)

(5.11)
E(-1)q+(1/2 + a’ p + q)(1/2 + a,r + s)(1/2 + 6,p + r)(1/2 + 6, q + s)

p!q!r!s!

exp [i(p q r + s)O/2],

where the summation extends over all nonnegative integers p, q, r, s whose sum
is 2n.

THEOREM 5.4. Let n N, (, 6) C2, 0 C, and assume (1/2 + , n)(1/2 + 6, n) O.
Then

(5.12) [P(,’)(cos 0)l _-< f,(e, 6) e"1’1
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where
(11 + 21,2n)([1 + 261,2n)

(5.13) f,(, i) 22,(2n)! l(1/2 + , n)(1/2 + 6, n)l"

Proof Apply (3.10) to (5.10) and use (4.8), which completes the proof.
The function f, defined by (5.13) satisfies (1.2b), as one can verify with the

help of [5, (1.18(4))]. However, (5.4) is a sharper result if 6 and n is large. The
singularity off, when or 6 is -1/2 is removable. For example,

(]1 + 261,2n) (2n)!
lim

6-1/2 1(1/2 "+" 6, n)l n!
and hence,

(11 + 21,2n) enllm01 n) 0(5.4) IP"=’-/2(cs )1--< 2"n!l(1/2 + ;t)l (1/2 + =’

The result for P(,-1/2,)is similar. The inequality

(5.15) ip,-1/2,-1/2)(COS 0)1 <
(1/2’ n)enllml

is obtained by taking the limit of either (5.14) or (5.4). It is equivalent to the
elementary inequality cos nO[ exp (nlIm 01).

Iforfis , -,..., the right side of (5.13) may be infinite, but the fol-
lowing theorem gives inequalities of type (1.2), thereby completing the proof of
Theorem 1.1.

TOREM 5.5. Let n e N, (e, 6)C2, 0C, r- 1 e N, r’--1 e N. Assume
r < n and r’ < n. Then (5.12) remains valid in each of three cases"

(i) If ll + 2e + 2r[ < 1, replace

I(1 + ,n)l
(5.16) 22"1( + ,n)[

by
21(1 + 2e,2r)(2 + 2 + 2r,2n 2r- 1)1

on the right side of (5.13) if ( . 6, n) 0 or (5.14) if 6 -.
(ii) If ll + 2 + 2r’[ < 1, replace

I(1 + ,nl
(5.17) 21( + , n)l

by
21(1 + 2,2r’)(2 + 2 + 2r’,2n- 2/- 1)l

on the right side of(5.13) if ( + e,n) 0 or the analogue of(5.14) if e -.
(iii) If l1 +2+2r1 < and [1 +26+2/[ < 1, make both replacements

(5.16) and (5.17) on the right side of(5.13).
Proof. Apply Theorem 3.4 to (5.10).
We conclude with a variant ofTheorem 1.1 which will be used in a subsequent

paper on Jacobi series [4].
TORE 5.6. Let (, 6)e C2, (x, y)eC2, Ix + Yl Ix- y]. There exists a

sequence of positive numbers f,(e, 6) such that

1(1 + + 6 + n, n)R,(-e n,-6 n;x2,y2)1
(5.18a

5 nf,(e, 6)Ix + yl2" n e N

(5.18b) lim [L(e, 6)] /" 1.
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Proof. Apply (3.10) and Theorem 3.4 to (5.9), which completes the proof.
The numbers f,(e, 6) are the same ones determined in Theorems 5.4 and 5.5.

By (5.2), Theorem 1.1 is the case x2 cos2 (0/2), y2 _sin2 (0/2).
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AN INITIAL VALUE PROBLEM FROM
SEMICONDUCTOR DEVICE THEORY*

M. S. MOCK?

Abstract. A system of three quasi-linear partial differential equations is considered, as a simplified
model of the transport of mobile carriers in a semiconductor device. Assuming a convenient form of
the boundary conditions, it is shown that the initial value problem is well-posed, and that the steady
state solution is unique and stable. A finite difference approximation preserving reasonable bounds
on the numerical solutions is also described.

1. Introduction. Let D be an open bounded connected region in R", with
smooth boundary cD; we discuss classical solutions of the initial value problem

(1.1a)
u
Ot

Ov

Au- V. (uV,)- R(u, v),

(1.1b) Av + V. (vV)- R(u, v),

(1.2) tcA, u- v- N, (x,t) 6f2 =D (0, T];

(1.3) v. Vu v. Vv v. V 0, (x, t) cqD 0, T],

for the three functions u, v, defined in f, where T is a specified positive constant.
In (1.1)-(1.3), is a positive constant, x (Xl, "", x,), N is a specified H61der
continuous (exponent ,) function of x D, and v is the unit normal vector at each
point in OD; in the following, we take

uv- 1
(1.4) R(u, v)

:(u+ v+2)’
where r is a positive constant, although this particular form is not essential to
our results. The prescribed initial data,

(1.5) u(x, O) Uo(X), v(x, O) Vo(X), x e D,

is assumed to be twice continuously differentiable in x, to be strictly positive in
D, to satisfy the boundary condition (1.3) and also the compatibility condition

(1.6) fo (u(x) Vo(X) N(x)) dx O.

By a solution, we mean a set of three functions u, v, q of (x, t) f, twice con-
tinuously differentiable in x, and continuously differentiable in t, satisfying (1.1)-
(1.5), with u, v strictly positive in f, and the requirement

(1.7) k(x, t)dx O, [0, T],

* Received by the editors January 22, 1973.- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012,
and IBM System Products Division, East Fishkill Laboratory, East Fishkill, New York.
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which is imposed to remove the arbitrary additive constant in the solution of
(.2).

The system of equations (1.1), (1.2) is a simplified model of carrier transport
in a semiconductor device [12], in which the functions u, v, represent the electron
and hole densities and the electrostatic potential, respectively. In obtaining
(1.1)-(1.2), several simplifying assumptions have been made; these include
the applicability of Boltzmann statistics, and constant and equal carrier mo-
bilities. A system of units is employed in which the Boltzmann voltage, the
electronic charge, the intrinsic carrier density and the common carrier mobility
all have magnitude unity. The recombination term, given by (1.4), is a standard
Hall-Shockley-Read expression [10].

Several numerical investigations of problems of this form have been reported
[1], [3], [4] based on finite difference methods. In this paper we obtain some
analytical results, which are intended to corroborate previous computations and
possibly to aid in the development of improved numerical techniques.

In 2 of this paper, we obtain some a priori bounds on solutions, one of
which is essential in proving the existence of a solution in the large. The proofs
of existence and uniqueness of a solution, and its continuous dependence on
initial data, are carried out in 3, using a continuity argument. The linearized
problem near the stationary state is discussed in 4. A specific finite difference
approximation is introduced in 5, and the applicability of our results to actual
computations is discussed in 6.

Below we present some notation. Except in 6 where stated otherwise, all
constants and functions are understood to be real-valued. However it is con-
venient to introduce a complex scalar product (.,.) for functions defined in D, as

fDf(x)g(x) f, g functions,dx, scalar

(1.8) (f, g)

i=lfof(x)g(x)dx, f, g n-vector-valued functions,

f(x) (f(x), f(x)), g(x) (gl(x), ., gn(x)).
We also introduce the norms

2 (L gf)[fll 2 =(f,f), Ilfllg

(1.9) ]fl sup If(x)[
xD

iff is vector-valued.

Ilfll (vf, Vf) [[fl[ 2
1,g (g/, ggf),

or suplf(x)[
i=1 xD

In the following, we use the symbols C, c to denote large and small positive
constants depending on the domain D. When it is desired to refer to ’a particular
such constant, a stbscript is added.

2. A priori bounds. In this section we obtain a priori bounds on solutions of
(1.1)-(1.6), which depend strongly on the assumed form of the boundary con-
dition (1.3). For strictly positive initial data, it follows from the maximum prin-
ciple applied to the functions ue-* and re*, and (1.1)-(1.3), that solution functions
u, v are strictly positive in Y. We also have the following estimates.
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LEMMA 1. As a function of t, s is bounded by a constant depending on the
initial data and N but not on T.

Proof. Differentiating (1.2) with respect to t, and substituting (1.2) for
cv/tgt, we obtain

(2.1)

which is a well-known equation expressing conservation of total current. Taking
the scalar product of (2.1) with , we integrate by parts and use (1.2), (1.3) to
obtain

xd
5 d- II011 -(u + v, IA012) (AO, u v)

(2.2) -(u + v, IV4,1) (Ai/s, AI/s) + (A, N)

<- 4’112,.+, -IIAII 2 + -IINI
<- -collqll + N 2,

since u / v is strictly positive in fl. Thus

(2.3) 114’ll l(t) =< max (llqsll 1(0), IINII (2XCo)- 1/2).

LEMMA 2. As functions of t, the Lp-norms (in D) of u, v, and thefirst and second
space derivatives of dl are less than or equal to C(p)(1 + t), for all finite p.

Proof. We define

(2.4) ap(t) - (uP(x, t) + vP(x, t)) dx, p >= 1; ao(t 1.

Differentiating (2.4) with respect to time and using (1.1), we have for all p >_ 2,

dap(t)
(up- 1, Au Vu. Vl/# L/AI//) / (vp- 1, Av / Vu. Vl// /

dt

(Up--1 / up- 1, R(u, v))

(2.5) 1
_< (p- 1)(u,,- IVul ) -(V(u.). v) (u. A)

P

1
-(p 1)(vp-z, IVvl 2) + -(v(v), vo) + (v", Aq) + pap_z/Z,

p

where we have performed integrations by parts using (1.3), and have estimated
the recombination term rather crudely using (1.4) and the positivity of u, v. Col-
lecting terms in (2.5) and using (1.2) we obtain

dap(t)
d-- / (p 1)((uP- 2, iVulZ) + (vp- 2, IVvlZ)) pap_ 2

1=< --(V(uv- vP), V6)- (up- vp, A) (cont.)
P
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(2.6) (l_)(up_vp, A)__ p- 1
---(u" v", u- v- N)

----(b/p-1 + b/p- 2/2 -’[- "q- Vp-1 (b/ /))2 (U

<
p(p- 1)

For p >__ 2, there exist positive constants c(p), C(p) such that for any positive
function u satisfying (1.3),

(2.7) (p 1)(uV_2, [Vu[2) >-_ c(p___))(
P

Combining (2.6), (2.7) we obtain

(2.8)

updx- C(p) udx

dap(t)
-c(p)ap(t) + bpap_ (t) + ap_2(t) + C(p)aP(t).

dt

From (2.8), we can infer bounds on ap(t) inductively from a bound on al(t).
From (2.4), using (1.1), (1.3), (1.4) we have

(2.9) al(t _< al(O) + t/r,
so that

(2.10) ap(t) < C(p)(1 + p)

which is our desired result. We remark that in the case of no recombination,
R(u, v) O, we have a(t) a(O), so that the ap(t) are bounded independently
oft.

3. Existence-uniqueness theory. In this section we prove the existence and
uniqueness of a solution of (1.1)-(1.7), and its continuous dependence on the
initial data. The proofs are based on a continuity argument, and depend on
Lemma 2, for a sufficiently large value of p depending on the number of space
variables n. We also use an estimate for the Green’s function G(x, t;y, s) of the
heat operator in , with respect to the boundary condition (1.3) (see [2, p. 134])

(3.1) ]G(x,t;y,s)] + T-_F..a(x,t;y,s) <=Clt-sl-Ulx-y[ -"+-2"), 1/2<p<l,
i=1

and the following lemmas on the equivalence of solutions of (1.1)-(1.7) and a
corresponding system of integral equations, and on the magnitude of the minor
terms in (1.1).

LEMMA 3. Suppose there are three functions u, v, , defined in , with their
first space derivatives continuous in x, and uniformly bounded in f suppose u, v, 67
satisfy (1.3), (1.7) and the relations

(3.2a) u(x, t) ;v
(O,t)

G(x, t; y, s)r(y, s) dy ds + f G(x, t; y, O)f(y) dy,

(3.2b) v(x, t) ; G(x, t; y, s)rz(y, s) dy ds + fD G(x, t; y, 0)g(y) dy,
(O,t)
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(3.3) teao u v N, (x, t) e D x (0, T],

where

(3.4) r V. (uVO) + R(u, v), r2 V. (vVO) + R(u, v),

and f, g satisfy the requirements given above on the initial data. Then u, v, are a
solution of (1.1)-(1.7) with initial data f, g.

Proof. We apply well-known estimates for the solutions of linear elliptic and
parabolic problems. From (3.3), we have the first and second space derivatives of
(., t) H61der continuous (exponent ) in x [5, p. 136], uniformly in t, and thus
from (3.4) that r 1, r2 are uniformly bounded in f. Then from (3.2), using (3.1),
we have that u, v are H61der continuous (exponent < 1/2) in t, uniformly in x. Then
from (3.3), the first and second space derivatives of , are continuous in t, so that
r, r2 are continuous in f. It then follows [2, p. 148], [6, p. 342] that u, v and their
first space derivatives are H61der continuous (exponents fl, /3/2, fl < 1) in x,
respectively. Thus r, r2 are H61der continuous (exponent e) in x, uniformly for
e (0, T]. Using the requirements on f, g, the H61der conditions on , and hence

on r, r2 can be extended to 0. It then follows [2, pp. 144-147] that u, v satisfy
(1.1), and thus that u, v, form a solution as described above.

At this point it is necessary to introduce some additional notation. Let p
denote a time interval (p, p], with ]p] p- p. In what follows, we shall
repeatedly divide the interval (0, T] into sufficiently small such intervals. Let f
be a function of x, defined in D x p. Then

If(’, t)l sup If(x, t)l, {f(., t)) if(., t)l +
af(., t)

xeD i=
(3.5)

[flp, sup If(x, t)l, ((f))o’ Iflp’ +
xeD i=1 -X/p,
tep’

where p’ is a time interval contained in p. The bilinear nature of (1.1) is reflected
in the following lemma.

LEMMA 4. Let p be a time interval in [0, T-], and supposefor j 1,2 the functions
blj, Vj, llj, fj, gj and their first space derivatives are continuous in D x p and satisfy

t) 6(x, t; y, s)IV-(fv) + R(f, g)](y, s) yUj(X
(p,t)

(3.6a)

J G(x, t; y, p)uj(y,p,)+ dy,

t) f a(x, t; y, s)[- V. (gV,,) + R(f, g)3 (Y, s) dyUj(X
OD (pa,t)

(3.6b)

+ Jo G(x, t; y, p)vi(y, p,) dy,

(3.7) tAffj=f-gj-N, x D, v Vj O, x OD,

for all (x, t) D p. Then for any positive < 1/2 there exists a positive constant



602 M.S. MOCK

C l(fl) such that for all p,

<<Ul u>>to,t + <<v
(3.8) +

+

Proof. Subtracting (3.6), (3.7) with j 2 from the equations with j 1, it is
sufficient to estimate the differences of the factors in brackets in (3.6), in the
maximum norm; the result (3.8) then follows immediately from (3.1). The re-
combination terms are easily estimated, using (1.4); for the other terms, we have
for all x, z D x p,

IV. (fV) W. (f2V2)l IWf.W Vf2" Vzl + IfAa f2A2l

(3.9) + If f21

[<L(, t) -fz(", t)> + <g,(., t) g2(’, t)>3,

where we have also used the Schauder estimates for the derivatives of 2.
An entirely similar result holds for the terms from (3.6b) and establishes the
desired result.

Our existence-uniqueness results are described by the following two
theorems.

THeOreM 1. Forj 1,2, let uj, vj, be two solutions of(1.1)l.7) with initial
data Uj, o, vj, o. Then there exists a constant C, depending on T and the initial data,
such that

(3.10) <<ua u2>>to, + <<v v2>>o, C[<u,o U2,o> + <v,o Va,o>].
In particular, a solution corresponding to specified initial data is unique.

Proof. We divide the interval (0, T] into intervals of length IPl, and apply
Lemma 4 in each interval, with fixed. Since uj, vj, j are solutions of (1.1)1.3)
we have for all z p, from (3.8),

<u,(., t) u(., t)> + <(., t) (., t)>

+ c(t
(3.)
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Let 1 + ((Ul))to,rl + ((vl))to,rl C2, and pick IP[ so that 2CiC21Pl 1/2. Then if

(3.12) ((Ul U2))p + ((V 192))p 1,

we can infer from (3.11) that

(3.13)
((U bl2 )) p -JI- ((191 192)) 0

+ 2(V1(’, Pa) 192(’,/ga),

since (ul(., t) u2(., t)) + (Vl(., t) 192(’, t)) is a continuous function of t.
We choose (ul,o -U2,o)+ (vl,0- v2,0)_-< 2-T/Ipl; then applying (3.13) suc-
cessively to each time interval, noting that (3.12) remains satisfied, we obtain

(3.14) (Ul U2>>I0,T] + ((Vl 192[0,T] 2T/IoI((Ul,o /22,0) -[- (191,0 192,0))
which is our desired result.

THEOREM 2. The problem (1.1)-(1.7) as described above possesses a solution.

Proof. Let z be the function of x in D satisfying

(3.15) xAz ez- e N, x6D; v.Vz O, xecD.

It is trivially verified that u(x, t) eztx), v(x, t) e -ztx), O(x, t) z(x) + C satisfy
(1.1)-(1.4), i.e., z defines a steady state solution. Let H be the subset of [0, 1] such
that for all h e H, the problem (1.1)-(1.4) possesses a solution with initial data

(3.16) uh(.,O) =(1-h) e + huo, vh(’,O)=(1-- h) e + hvo,

where Uo, Vo are the prescribed initial data. From (1.6), (3.15), (3.16) it follows, that
for all h e [0, 1] the initial data uh, Vh are strictly positive in D and satisfy the com-
patibility condition

(3.17) fo(uh(x, O) vh(x, O) N(x)) dx O.

The set H is not empty, containing h 0.
We next show that H is open. Given a solution Uh, 19h, Oh, we show the

existence of a solution in Uh+ , Vh+6, qh+6 for sufficiently small positive 6. It
suffices to construct such a solution in a small time interval p (Pa, Pa +
provided Ipl is bounded away from zero for all 6(0, T]. Let Uh+, 19h+t, Oh+O be
the limit of a sequence {u"), vm), ")}, defined by

(3.18)
um + (x, t) f (oo,,

G(x, t; y, s)IV. (/,/(m)vo(m)) -- R(u(m), 19(m))] dy ds

+ fo G(x, y, O)uh + a(Y, P,) dy,

(3.18b)

(3.19)

U(m+l)(X, t) fDX(pa,t) G(x, y, s) [- V. (v’)VO")) + R(u(m) 19(m)) dy ds-- fD a(x, y, 0)19h + (Y, Pa) dy,

/CA@tin) Utm) 19(m) N, x D, v V0(m) 0, X e OD,
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for all pc, e D x p; with u() b/h, /)(0) /)h" Let <<Uh)[0,T -- <</’)h)[0,T] -- 1 C 3

From Lemma 4, we have

<<U(m+ 1)__ u(m))p ..it <<V(m+ 1)__

< CllPl(((u(,,o_ u(,-1))p qt_ <<V(m) U(m-1))p)

2 C3 .qk (<<u(i)_ u(i-1))p
__

<<u(i) v(i--l))p) gn 1,
i=1

(3.20)
<<U(1) u(O)>>p _[_ v(>>0

_-< <uh+(-, p.) u(.,

+ <v,+o(., po) v,(., po)>.

By the same argument used to prove Theorem 1, it follows from (3.20) that
if we take ]Pl, 6 sufficiently small that

(3.21)
2C1(C3

__
1)lpl <

<Uh+(’, O) Uh(. 0)> -+- <Vh+(’, O) Vh(’, 0)> --< 2 -(1 +

then the iteration (3.19) converges in ((.))p in each interval and hence in
(( ))[o,r]. Thus the limit functions Uh+6, Vh+ and their first space derivatives are
continuous in l); a limit function Oh+6 exists, and Uh+6, Vh+6, d/h+6 satisfy (3.2)-
(3.4). It then follows from Lemma 3 that Uh+6, Vh+6, Oh+6 are the defined solution
of (1.1)-(1.4).

The proof of Theorem 2 is completed by showing that H is closed.
LEMMA 5. Let {u(j), v(j), g,(J)} be a sequence of solutions of (1.1)-(1.4) whose

initial data converge in ( ). Then u(), v(), () converge in ((.))[0,T] to limitfunctions
u, v, d/ satisfying (1.1)-(1.4).

Proof. Again it suffices to consider a small time interval, denoted by p.
From (1.1)-(1.3), we have, performing an integration by parts,

u(J)(x, t) u(k)(x, t) f VyG(x, t; y, s)[u(/)V(j) u(k)V0(k)] (y, s) dy ds
D (pa,t)

(3.22) fo G(x, t; y, s)[R(u(j), v(j)) R(u(k), v(k))] (y, s) dy ds
(pa,t)

2r- fl) 6(X, t; y, pa)(u(J)(y, Pa) U(k)(Y, Pa)) dy,

similarly for v, and

IgA(O(J)- t(k)) u(j)- u(k) -v(j) -+- v(k), x e D,
(3.23)

v. V(O() O(k)) 0, x e
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From (3.22), using (1.4), (3.1), (3.5) we have (/? < 1/2)

luO- u)lo =< luO(., p)- u(., p)l 4- CIp.lqluJ- ulo + IvJ-

+ [ IVxG(x, t; y, s)l [luU)(y, s)l IV(0u) O(u))(y, s)l
xp

+ I(uu u)(y, s)l IV0(y, s)l] dy as
(3.24)

luU( P,)- u( P)I + ClPla(tuu- ulp + Ivu-

+ C(lu- ulp + Iv- vlp) IVvG(x, t; y, s)l(lug(y, s)l
OD xp

+ [VO(y, s)l) dy ds.

We now estimate the y-integral in the last term in (3.24) by H61der’s inequality,
using Lemma 2 for Lp-bounds of ]uu] and IVOl for suciently large p; such
bounds depend on T and the initial data (h) but not on j, k. The s-integral is then
absolutely convergent, and we obtain, using (3.1),

luu ulp lu( P.) u( P)I
(3.25)

+ C(T, h, )(luCJ- ulo + v-
and a similar expression for Ivu)- v)lo. Picking Clpl , we find that the
sequences {uU)}, {vu)} are uniformly convergent in D x p and hence in ft. The
limit functions u, v are thus continuous in x and in t, in ft. Then uu), vu), and the
first space derivatives of 0 J) are uniformly bounded in fl, independent of j.

Let 0 denote differentiation with respect to an arbitrary space variable, and
let p’ denote another time interval. From (1.1), (1.2) we have

u’o’ < ’uU’( P’)’ + xG(x, t’y, s)R(u, vU’)dyds
(p,t) Jp’

fD (uJ) vJ) N))dy
p’

(3.26) + xG(x, t; y, s)(Vuj) VOj) + uu) ds
(p,t)

I#uCJ( p’.)l + cIp’l + Clp’l<<uJb)o
for < , where the C’s do not depend on j or p’, for p’, < T. Taking [p’[ suffi-
ciently small, we may infer a bound for ((uU)))[o,r] independent ofj, and
similarly.

Then from (1.1)1.3) we have in any time interval p,

(3.27)

cG(x, t; y, s)[Vu. VOu) Vu(). VO

U(k)u(J)(u(J)- v(j)- N)---(u()- v()- N)

R(uu) vu)) + R(u(), v())] (y, s) dy ds

+ cxa(x, t; y, po)(uU)(y, p,) u)(y, po)) dy;
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separating and collecting terms, we readily obtain

<<u u>> __< <u(.,
(3.28) + C s(T fi,

for fl < 1/2, where Cs does not depend on j,k. A similar relation exists for
<<veJ- v>>. Taking IPl sufficiently small, we have that the sequences {uJ},
{veJ} converge in the norm <<.

Thus the first space derivatives of the limit functions exist and are continuous
in fl; hence a limit function , exists, and the limit functions u, v, , satisfy (3.2)-
(3.4). By Lemma 3, it follows that u, v, , are a solution of the problem (1.1)-(1.7).
This concludes the proof of Theorem 2.

4. The linearized problem. The proof of Theorem 2 introduced a steady state
solution of the system (1.1)-(1.4) in this section, we discuss some of its properties.
We first show the following theorem.

THEOREM 3. The stationary solutions of (1.1)-(1.4) are all of the form u- ez,
v e -z, 0 z + c, where z is determined from (3.15); in particular, if (1.7) is also
imposed, the stationary solution is unique. This remains true if (1.4) is replaced by

(4.1) R(u v) (uv 1)d

where d d(u, v, x) is a strictly positive bounded function in D.
Proof. Dropping the time derivative terms, we rewrite (1.1) as

(4.2) V. (eV(e-u)) (uv 1)d 0,

(4.3) V. (e-V(ev)) (uv 1)d 0.

Taking the scalar product of (4.2) with e-(u l/v), we obtain, integrating by
parts, and using (4.3),

(e-d/v, (u l/v)2) -(e, IV(e-’u)l 2) (e-/v, V-(eOV(e-Ou)))

(4.4) -(eO, IV(e-u)l 2) (e-/v, V (e-OV(e%)))

-(e, IV(e-u)l 2) (e- 3%- 2, iV(e%)12)

which is clearly impossible unless e-u and ev are constants, and uv 1. Setting
u e+c, v e--c in (1.2) gives (3.15) with + c replaced by z. Thus if (1.7) is
imposed, the arbitrary additive constant is removed, and the solution is unique.

We next linearize the system (1.1)-(1.3) about the stationary solution. Let z
be the stationary electrostatic potential function satisfying (3.15); we set

(4.5a) u(x, t) exp (z(x) + (co(x) O(x))

(4.5b) v(x, t) exp (-z(x) + (qb(x) co(x))

(4.5c) O(x, t)= z(x) + co(x)eat,
where the complex functions 0, qS, co are small perturbations, and 2 is a complex
eigenvalue to be determined. Retaining only the first order terms in the small
quantities, the system (1.1)-( 1.2) becomes

(4.6) V. (uV0) -(0 qb)d 2u(O co),
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(4.7) v. (vv) + (o O)d ,v( ),

(4.8) tcAco u(co 0) + v(co qS), x e D,

and the boundary conditions (1.3) become

(4.9) v VO v V v Vco =0, x e c3D

except as noted below, we also impose the requirement

(4.10) fo co(x) dx 0

to remove arbitrary additive constants from 0, b, co. In (4.6)-(4.8), u ez, v e -z,
and d d(ez, e -z, x) are understood to be evaluated at the stationary state. We
next show the following theorem.

THEOREM 4. The eigenvalues (2) obtained from (4.6)-(4.10) are real and non-
positive.

Proof. Taking the scalar products of (4.6) with 0, (4.7) with b, respectively,
integrating by parts and adding the results, we obtain

-II0 ,, 4 1. 0 411 ,(Ou, o o) / ,(4v, 4
(4111)

2(11011,2 + IIq]l2 -(Ou + v, co)).

The scalar product of (4.8) with co gives similarly,

(4.12)
_-< 1/2(101 2 / 114112 / coil2 + IIol 2)

so that (4.11) becomes

-( 0112 + 0 bla2)/ 0112-+ bll 2 0 o 2 0121,u-- ,v
(4.13)

Thus 2 is real. Unless I1o I1 is zero, (4.13) may be rewritten

(4.14) 2 =<
__02 2

and the result follows. If co is zero, it follows from (4.10) that co 0 in D.
Then (4.8) gives uO -vck, and (4.6)-(4.7) becomes

(4.15)

(4.16)

V. (uV0) (1 + u2) dO ZuO,

v. (vv4,) ( + v) 4, ,v4,,

either of which implies real negative values of 2.
We next show that the eigenvalues 2 are bounded away from zero.
THEOREM 5. The eigenvalues obtained from (4.6)-(4.9) are less than or equal to

-c(O, z, d).
Proof. In the case IIoll 0, the result is obvious from (4.15). For IIoll :/: 0,

we have from (4.12),

(4.17) 10112 + I10112 + I10 = < 1/410112 + 1/41bll 2 + I10 2 + 09 2.
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then (4.14) becomes

II011,+ ,+10-1(4.18) 2 < -4
o11 + 114, I

We now write 0 0’ + a + b, b qS’ + a- b, where a, b are constants,
and 0’, b’ satisfy

(4.19) fo O’d dx ;ldp’d dx O

instead of imposing (4.10), we fix the arbitrary additive constant in 0, b, co by
setting a 0.

Substituting in (4.18), we obtain

II0’ll z ’x,u / I1, / II0’- I1 + 4b2oddx2< -4
0’ [I,2 + qg’ 2 + 2b (O’u 4’v) dx + b2 (u + v) dx

(4.20)
< -2

II0’l,u+ dp’ 21,/3+4bZoddx
0’11. / I1’ / b2f.o(u / v)dx"

It follows from (4.19) and the assumptions on d that there exists a constant
C6, depending on D, d, such that

(4.21) 0’ + 114/ 2 < C6(ll0, 12,u + ’tt,)"
substituting (4.21) into (4.20) we have finally

10’ z ., 4b2od dx1,u+l I1, +
2< -2

C6( 0’112 b’ b=[.o(u v) dx,.+1 :,,) + +
(4.22)

2
-8 oddxmax

C6 o(u + v) dx
which is the desired estimate.

In the special case where the function z satisfying (3.15) is simply a constant,
the eigenvalues of the system (4.6)-(4.10) can be described by two self-adjoint
second order equations. In this case, (4.15), (4.16), and (4.8) with co 0 are con-
sistent, and the eigenvalues of

(4.23) A0-2d0coshz=20, xeD; v.VO=O, xeOD,

are eigenvalues of (4.6)-(4.10). The eigenvalues corresponding to nonzero co are
obtained by differentiating (4.8), and using (4.6), (4.7) to obtain

0 "(2 A)(tcAco + u(O co) + v(ck co))

(4.24). 2cAco tcAzco + (u + v)Aco + 2[u(0 co) + v(q5 co)] (uAO + vAqS)

2tc(Aco) #A(Aco) + (u + v)(Aco), x e D.

From (4.8), (4.9), we obtain

(4.25) v.V(Aco) =0, xec3D;
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equations (4.24), (4.25) define a second order eigenvalue problem with Ao9 as the
dependent variable.

We note that the eigenvalues of (4.24), (4.25) do not depend on the recom-
bination factor d, but do depend on the "dielectric relaxation time" Zo, given by

(4.26) ro x/(u + v).

5. A finite difference scheme. In this section we present a simple finite
difference scheme for the approximate solution of the system (1.1)-(1.4). We treat
the space derivatives in (1.1)-(1.2) by a method which has been successfully
applied to the steady state problem [8], [9], [13] and the time derivatives in
(1.1) by simple backward differencing. The scheme so obtained is accurate only
to order At + (Ax)2, but assures strictly positive computed values of u, v, and
preserves Lemma 1 and Lemma 2 (with p 1 only) in the difference equations.

For simplicity, we write out the difference equations assuming one space
dimension and equally spaced mesh points; the generalizations to higher dimen-
sions and to unequally spaced points are immediate. We use the notation

(5.1)
ujk u(jAx, kAt), j ,2, ..,M, k=0,1,..., T/At,

with similar notations for v, . We assume that the boundary conditions (1.3),
(1.7) are treated by relations of the form

for all values of k. The difference equations we consider are the following:
k k-1 [" k ku-u -,+

_
At (Ax)2 e_q,+ e_q, (U+l e +, uj e-

(5.3a)

eZ L e-,- uj_ e

(5.3b)

k-1
Vj Uj

At (Ax)2 e,) eq, (v+ eq’ &k--Vje J)

eJeJ-
e R(uJe Uj_

_]

(5.4) cg,+l 20 + -1 k k__ Nj Nj N(jAx)
(Ax)2 u v

In (5.3), the factors in brackets are defined continuously at +1. By
inspection, equations (5.3) satisfy a maximum principle, so that the positivity of
u, v follows from that of u- 1, v- a. Summing (5.3a) with respect to j, we obtain

M M M M Ax Atk k-1 _At Z R(u, v)(5.5) Z u Z ua 2j= j= j=
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using (1.4), with a similar expression for v. Hence Lemma 2 for p is preserved
by the difference equations. The most important stability property of this differ-
ence scheme is described by the following lemma.

LEMMA 6. For all positive integers k, the quantity

(5.6) -(Ax)
j= Ax

is bounded, by a constant depending on the initial data and (MAx), but not on
Ax or At.

Proof. Differencing (5.4) with respect to time, multiplying by jk. and summing
with respect to j by parts, using (5.2), we obtain

(5.7)

M

kx At

Uj Hj

j--1

k-1
Vj -+- Vj

At

inserting (5.3) and using (5.6), we see that (5.7) becomes, performing another
summation by parts,

At
(/jk.._ I//_ 1)g <= gk- ._[_

J= 2

At(5.8) E- + xx
M At M

k k k Z (Ojk.._ Ojk.._ 1)

where a(e)= e-e- is positive semidefinite and O(E2) as e 0. Setting
7j ff ff-1, summing the second term on the right side of (5.8) by parts and
using (5.4), we obtain

M (+1--2t + -1 +1-- 2’k- -1Ek <= Ek- (At)(Ax)
(Ax)2

c
(Ax)2 + gj

j=

(5.9)
At /Tja(Tj) 7a(--7) 7ja(--7j)v 7a(7)
X j= 2 Leyj Hj + e-Yjuj-

+
e -7j

+
cgj 1 Vj_

which is the difference equation analogue of (2.2). Since uj, vj are positive, the
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last term on the right side of (5.9) is negative semidefinite, and we may estimate
(5.9), using (5.2), as

(At)(Ax) ’ 2(5.10) Ek

_
E cAtEk + E Nj,2

which implies the desired bound for Ek.
Lemma 6 is sufficient to show the existence, but not the uniqueness, of a

solution of the nonlinear system of difference equations (5.2)-(5.4).
k-l k-1THEOREM 6. Suppose uj vj are positive for 1 <= j <__ M and satisfy
M

(5.11) Z (b/jk..- /)jk-1 Nj) 0",
j=l

positive, for any valuethen there exists a solution to the system (5.2)-(5.4) with uj, v
of At.

Proof. We let At vary from zero to its desired value, and apply elementary
k k-1degree theory. For At -0, the existence of a unique solution with uj uj

l.)j
k

l)j
k- follows from (5.11). It is thus sufficient to show the existence of a con-

stant, which may depend on Ax or M, bounding all possible solutions; we use
for convenience the norm

(5.12) ukl / Ivll / , sup lull / sup Ivl / sup I,1.
<_j<=M <_j<=M <_j<=M

From Lemma 6, the existence of a bound on II,kll, depending on M and on
uk- 1, vk- but not on At, follows; then bounds on Ilukll and Ilvkll may be obtained
by applying a maximum principle argument to (5.3), using (1.4), or for finite At
by appeal to (5.5).

6. Discussion and summary. In spite of obvious limitations, some of the
results obtained above may be of practical value in the construction of suitable
numerical methods for problems of this type. The most important such limitation
is the assumed form of the boundary conditions. The a priori estimates of 2, on
which the existence-uniqueness theory is based, are dependent, in the case of two
mobile species, on the boundary conditions as adopted above. Since the steady
state problem is much more complicated when more interesting boundary con-
ditions are adopted [7], it appears unlikely that our results can easily be generalized
in this respect.

With this assumed form of the boundary conditions, our results on the
asymptotic behavior of the solutions are probably not sharp. One expects in-
tuitively that with these boundary conditions, the solution should approach the
steady state for large t, independently of the initial data. Our results are not strong
enough to claim this. If, however, we had established the completeness of the
eigenfunctions of the linearized problem in 4, and if the convergence result of
Lemma 5 were obtained independently of T, then the asymptotic approach of
all solutions to the steady state would follow by a continuity argument, using
Theorem 1.

Numerous difference schemes are known for parabolic equations [11, pp.
189-191]; the difference scheme described in 5, and in particular the backward
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time differences in (5.3), are motivated by the result of Lemma 6. From (2.2), or
from (4.23)-(4.25), we expect that the smallest time scale z in a particular difference
approximation will be approximately

-1 + O(Ax 2),(6.1) 1 , .-
where the dielectric relaxation time To is obtained from (4.26) in many problems
of practical interest, this term strongly dominates the right side of (6.1). We infer
from Lemma 6, and in particular from the positive definite nature of the terms
in brackets on the right side of (5.9), that time steps of order Zo are not necessary
for the stability of this difference scheme. We note, however, that if the Poisson
equation (5.4) is oriented differently in time, so that it may be solved independently
of the continuity equations (5.3), then results of the form of Lemma 6 are not
obtained, and it appears likely that such schemes will require At _<_ O(zo) for
stability.

Note added in proof Additional results on the asymptotic behavior of solu-
tions satisfying these boundary conditions have been obtained, and will be pub-
lished separately. Lp-estimates of u, v, independent of ti/ne, have been obtained.
In addition, it has been shown that the solution decays exponentially to the steady
state solution, for large time, if the function N in (1.2) is simply a constant in D,
or if the initial data is sufficiently close to the steady state solution, in L2
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TWO-TIMING METHODS VALID ON EXPANDING INTERVALS*

F. W. KOLLETT"

Abstract. The problem

y" + ef(y,y’) + y O, y(O) a, y’(O) b,

with f a polynomial is considered. A two-timing method is described which yields series expansions in
for the solution. These expansions are then shown to be generalized asymptotic expansions, uniformly

valid on intervals of the form I0, k/e]. The method of proof also yields the existence of solutions to the
above problem on such intervals for k appropriately chosen.

1. Introduction. Initial value problems of the form

(1.1) y" + ef(y,y’) + y O, y(0)=a, y’(0)=b

describe autonomous nonlinear oscillations. Van der pol’s equation, y"+ e(1
yZ)y, + y 0, the unforced Duffing equation, y" + e(y’) 3 + y 0, and equa-

tions arising in satellite problems fall into this category. Such problems are
discussed at some length by Kevorkian 3], who uses two variable expansion
procedures to construct formal expansions for solutions. In his work Kevorkian
points out the need of a theory to establish the asymptotic validity of such
expansions. This paper aims to supply such a theoretical foundation.

As is pointed out by Morrison I5] and Perko [7], two-timing methods are
closely related to the method of averaging as introduced by Krylov and
Bogoliubov [4]. Theoretical work supporting the method of averaging has been
presented by Bogoliubov and Mitropolsky [1 and by Perko [7, who also proves
the validity of a two-timing method on I0, k/e] for certain first order systems of
the form y’ ef(t, y, e). The equations considered here are not of this form, and
the proofs in this paper do not rely on relating two-timing methods to the method
of averaging.

The methods used in this paper generalize arguments presented by Reiss in
[8] to yield a two-timing method applicable to certain nonlinear oscillation
problems. Reiss’ expository paper discussed linear problems with constant coeffi-
cients. Methods similar to those used here in the proof of asymptotic validity have
been used by O’Malley I6] and Erd61yi I2] to prove asymptotic validity of certain
perturbation methods as applied to singular perturbation problems.

2. Preliminary definitions and a basic inequality. In what follows we will be
concerned with functions of e and which as functions of are uniformly bounded
on intervals of length inversely proportional to e. The following definitions are
introduced to provide a proper setting for the ideas to follow.

DEFINITION 1. A function f(e, t) will be said to be in Ck, if it is continuous on
(0, 13 [0, k/e] and if there exists M independent of e such that If(e, t)[ __< M for
all (e, t) (0, 13 x [0, k/e].

* Received by the editors November 29, 1972, and in revised form June 17, 1973.
f Mathematics Department, Bard College, Annandale-on-Hudson, New York, 12504.
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DEFINITION 2. For f(e, t) fll will be used to denote
sup If(e, t)l.

(,t)(O, [O,k/]

For example, if g is continuous on i0, k], then f(e, t) g(et)sin is in C,,
and f o < max,tok,t ,k]

DEFINITION 3. A function f(e, t) will be said to be in C, if f(e, t) and ft(e, t)
are both continuous on (0, 1] 0, k/c], and if there exists M such that both
]f(, t)[ ._<= M and [ft(, t)[ __< M for all (e, t)in (0, 1] 0,

DEFINITION 4. For f(e, t) in C,, f , will denote

max{ sup
(,)e(O, 11 [O,k/] (,Oe(0,1] [0,/]

For example, if g is in C[O,k], then f(e, t)= g(et)sin is in C, since
< 211 11 , where(c?/ct) [g(et) sin t eg’(et) sin + g(et)cos and f

max {maxo, I (xll, max0, I ’(xtl} This example illustrates the importance
of the restriction of e to a bounded interval. Actually, the above definitions could
be stated in terms such as "for e sufficiently small," but little would be gained in
using this slightly more inclusive definition.

Note that a function of alone belongs to C, if and only if f(t) and f’(t) are
continuous and bounded on [0,

The theorem and corollary which follow are to be used in remainder estimates
to establish asymptotic validity of expansions presented later in the paper.

THEOREM 1. Let g(t), h(t), and F(t) be in C, and L[y(t)] y"(t) + eg(t)y’(t)
+ 1 + eh(t)]y(t). Then there exist positive constants , fl, and 7 such that any
solution y(t) of the equation

(2.1) L[y(t)] F(t)
satisfies the inequality

(2.2) [ly(t)llx,-_< ly(0)[ +/ly’(0)l + 7 F(t)o

satisfying the initial conditions yl(0) 6il, y’i(0) 6i2, where 6ij is the Kronecker
delta. Then the solution to (2.1) can be written

y(t) y(O)y(t) + y’(O)yz(t) + G(t, s)F(s) ds,

while

y’(t) y(O)y’(t) + y’(O)yi(t) + G(t, s)F(s) ds.

Showing that y(t) and y(t) are in C,, and that G(t,s) and G(t,s) are both
bounded for 0 _<__ s <= <= k/e will establish (2.2).

(2.1h) LIy] 0

The following corollary is also established by the proof of the theorem.
COROLL,R" 1. Let G(t, s) be the Green’s function for the operator Ly]. Then

both G(t, s) and G,(t, s) are bounded for 0 <- s <= <__ k/e. (Gt(t, s) denotes the partial
derivative of G(t, s) with respect to t.)

Proof. Let Y and Y2 be the fundamental set of solutions for the homogeneous
equation
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Let y(t) be any solution of (2.1h) and set

(2.3) y’(t) r(t) cos O(t), y(t) r(t) sin O(t).

Equation (2.1h) is then equivalent to the system

O’(t) cos20(t) + eg(t)cos O(t)sin O(t) + [1 + eh(t)] sin20(t),

r’(t) r(t)[eg(t) cos20(t) + eh(t) cos O(t) sin 0(t)].

Clearly,

(2.4) r(t) C exp leg(s) cos20(s) + eh(s) cos O(s) sin 0(s)] ds

and there exists K such that lit(t) , =< K. By (2.3), IlY(t)l lk, < K. Then both
and Y2 are in C,.

G(t, s)
Yl(t)y2(s) yl(S)Y2(t)

w(s)
and

yi(t)y2(s)- y(s)Y’2(t)
Gt(t, s) --,

w(s)
and w(s) satisfies Abel’s equation

w’(s) + g(s)w(s) O, w(O) 1.

Therefore w(s) exp {-ef g(u)du} is bounded away from 0 for s e [0, k/e], so
G(t, s) and Gt(t, s) are bounded for 0 <= s < k/e and the theorem and corollary
are proved.

The above proof remains valid if g, h, and F depend on e as well as on as long
as g(e, t), h(e, t), and F(e, t) are in CkO,

Perhaps it should also be mentioned that the theorem can be proved more
directly by making the Prufer substitution (2.3) directly in (2.1) rather than in (2.1h)
and using Gronwall’s inequality. This, however, would have the disadvantage of not
proving the corollary simultaneously.

In order to facilitate the reading of the later sections, a brief list of the
symbols used is presented here"

y(t,z) represents the coefficient of d in the asymptotic expansions"
ZN Zv=0 y(t, z)d; {. }, denotes the coefficient of e in the expansion of the
quantity in brackets; and O-notation refers to a limiting process as e ---, 0+.

3. A two-timing method for linear problems with periodic damping. The linear
equation

(3.1) y"(t) + eg(t)y’(t) + y(t) O" y(O) a, y’(O) b

with g(t) continuous and periodic with period 2r has a solution valid for _>_ 0. In
this section a method is developed for generating an expansion for this solution
and this expansion is shown to be asymptotically valid on intervals having length
inversely proportional to e.

Theformal asymptotic expansion. Let z et and assume equation (3.1) allows
an asymptotic solution j_> o yJ(t, r)e. The functions y will then be determined by
formally inserting this expansion into equation (3.1) and equating the coefficients
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of e to zero. Proceeding in this way, one finds that yJ(t, z) must satisfy

(3.2) YJtt + YJ- _y;2 g(t)y-2 2y- g(t)yl-1,

(3.3) yJ(0, 0) a6o, y{(0, 0) b6o y-1(0, 0),

where y-1 0, y-2 0, and 6j is the Kronecker symbol.
Setting j 0 in (3.2) yields y(t, z) Ao(Z sin + Bo(z cos t, where Ao(z and

Bo(z are arbitrary functions of z. The initial conditions y(0, 0) a, y(0, 0) b
lead to the choices"

(3.4) Ao(0) b, Bo(0)= a.

We now wish to choose Ao(z and Bo(z in such a way that [[y y(t, z)[[ O(e)k,e

As will be shown later, this will be the case if yX(t, z) C,,e, and this can be assured
by choosing Ao(z and Bo(z carefully.

More explicitly, having y(t, z)= Ao(z)sint + Bo(z)cos t, (3.2) shows that
y(t, z) must satisfy

(3.5) yXt + yl 2A(z) cos + 2B(z) sin g(t)[Ao(z cos Bo(z) sin t].

The right-hand side of equation (3.5) is periodic with period 2t in the variable t,
and can be expanded in a Fourier series whose coefficients are functions of . If the
coefficients of sin and cos in this expansion are zero, the solution to (3.5) will be
in C,. Equating these coefficients to zero yields a linear first order system for Ao
and Bo which together with the initial conditions (3.4) determines Ao(z) and Bo(z)
uniquely.

Having now determined y(t, z) completely, we solve (3.5) for yl(t, z). The
solution will involve two arbitrary functions A(z) and BI(Z), multiplying sin
and cos respectively, which are then determined by expanding the right-hand
side of the equation ytZt + y2__ _yO_ g(t)yO_ 2y1_ g(t)yl in a Fourier series
and setting the coefficients of sin and cos equal to zero. This again yields a first
order linear system of equations which can be used together with the initial
conditions for A I(r) and BI(r) to determine these two functions. This procedure
can be repeated to any desired order.

An example will illustrate the method. The proof of the asymptotic validity
of this expansion procedure follows the example.

Example. Consider the equation

(3.6) y"(t) + sin ty’(t) + y(t) O" y(O) a, y’(O) b.

According to the above procedure,

y(t, z)= Ao(z sin + Bo(z cos t,

so yl(t, ) satisfies

(3.7) Ytt + Y 2A(z) cos Ao(z) sin cos + 2B(z) sin + Bo(z) sin 2 t.

The Fourier series for the right-hand side of (3.7) is

Bo() Ao()B()
2A)(z) cos cos 2t + 2B)(z) sin sin 2t

2 2 2
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We therefore require that

A)(z)--0, Ao(0)=b, B;(z)=__0, Bo(0)=a

yielding Ao(z) _= b, Bo(z) -= a. This choice of Ao and Bo reduces equation (3.7) to

y + yl
a a b

cos 2t sin 2t

so
a a b

y(t,r) = + gcos2t + sln 2t + Aa(r)sin + B(r)cos

while y(0, 0) 0, y(0, 0) -y,(0, 0) yield

(3.8) B 1(0) -(2/3)a, A,(0) b/3.
Continuing, y2 satisfies

yt2t + y2 BI(’C)
__

2 -2A + -) cos + Bt(z)
2B + sin

2

a
sin 2t cos 3t

b
d sin 3t.

cos 2t

We therefore require that
a

A =0,
12

which together with (3.8) implies that
a b

A(z) -zz
IZ

b 2
Bl(Z --i’c -a.

The expansion to first order for the solution to (3.6) is therefore

Z(t,z)=(bsint+acost)+e -+ --iz-a cost+ -i-- sint

a b ]+gcos2t+gsin2t
By the results of the next section we conclude that the solution y(e, t) of (3.6)
satisfies Ily(e, t)- zl(e, t)ll, O(e2).

Proof of asymptotic correctness. To prove that expansions derived in this way
are asymptotically valid on intervals of length inversely proportional to , write

N

(3.9) y yJ(t, z)d + Ru+ 1"
j=O

Formal substitution of (3.9) into equation (3.1) and use of (3.2) yields that R+x
must satisfy

R} +1 + eg(t)g + + R+1 (-- Y,- g(t)Y 2Yt g(t)y)e +

(3.1o) + (- y, g(t)yT)d + :,
+1(o) o, s+1(o) yT(o, o)d + 1.
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The expansion procedure used to determine fi insures the boundedness of
the coefficients of eN+I and eN+2 on the right-hand side of (3.10) for z in any
compact interval [0, k].

Theorem 1 can be applied directly to (3.10)to yield I]RN+ a(t)]l, =< MeN. To
see that ][RN+ l(t)] lk,e O(eN+ 1), note that y(e, t) jo y(t, r,)e + RN+ and also
y(e, t) u= o yJ(t, z)e + yN + x(t .c)eN + .ql_ RN + 2, where the functions yO, yX, yN
are unchanged. Thus RN + (t) yN + eN + _[.. RN + 2, and since yN + (t, z) and

is O(eN +(d/dt)yN+ l(t, ) are bounded for (t, :) [0, k/z] [0, k] and ]RN + 2 k, 1),
we conclude that ]IRN +1 lk, is O(eN+I).

We have therefore proved the following theorem.
TrIEOREM 2. Let g(t) be continuous and periodic with period 2re on [0, ). Then

the solution to the initial value problem

satisfies

y"(t) + eg(t)y’(t) + y(t) O" y(O)=a, y’(O)=b

N

Y o yJ(t, z)e o(eN+ 1),
j= k,e

where yJ(t, ) are the functions defined above.

4. A two-timing method for autonomous nonlinear oscillations. The auton-
omous nonlinear initial value problem

(4.1) y" -4- ef(y,y’) + y O" y(O) a, y’(O)= b

is discussed at some length by Kevorkian 3]. He presents a method for computing
a series expansion for the solution to (4.1) and states without proof that the series
is asymptotically correct on intervals of length k/e. In this section a modification
of his method is presented together with a proof that the resulting expansion is
uniformly asymptotically valid on intervals of length inversely proportional to e.
For sufficiently small e, the existence of solutions to equation (4.1) on expanding
intervals is also established as a direct consequence of the constructive nature of
the proof of asymptotic validity.

The formal asymptotic expansion. We again seek to express the solution to
(4.1) (assuming its existence) by means of a series

(4.2) y yJ(t, z)e.
)>_o

We assume that f is a polynomial.
By substituting (4.2) into (4.1) and equating the coefficient of e to zero, we

get

0y + yO =0. y(O, O) a, Yt 0) b,

which has the solution

(4.3) y(t, z)= Ao(z sin + Bo(z)cos t" Ao(0) b, Bo(0)= a.

Using this function as a first approximation to y, yl(t, z) must then satisfy

(4.4) y -4- yl 2ytO {ef(yO(t, z), y(t, z) + ey(t, 27))}1



TWO-TIMING METHODS 619

(4.5) (0, 0) 0, /(0, 0) -y(0, 0),

where the notation {’}i is used to denote the coefficient of e in the expansion of
the quantity in brackets. As in the linear case the quantity on the right-hand side
of (4.4) is periodic with period 2z in and can be expanded as a finite Fourier series
with coefficients dependent on :. The coefficients of sin and cos are then set
equal to zero, eliminating resonance in equation (4.4). This yields a first order sys-
tem of equations (generally nonlinear) for Ao(: and Bo(: which together with the
initial conditions (4.3) determine Ao(:) and Bo(: on some interval [0, k]. (k
depends on the problem since only local existence is guaranteed for solutions of
the nonlinear system determining Ao and Bo.) Having determined Ao and Bo,

we solve equation (4.4) and find that yl(t, ) has the form yl(t, )+ Al(:)sint
+ BI(:) cos t, with yl(t, ) bounded on [0, k/e] x [0, k]. (4.5) yields initial conditions
for A1 and B1. AI(:) and BI(,) are evaluated by setting the coefficients of sin and
cos in the expansion of the right-hand side of

2y + 72 _2yXt yO {ef(yO(t,
equal to zero and solving an initial value problem, which is linear.

More generally, the method proceeds as follows: Substitution of (4.2) in (4.1)
and equating the coefficient of d to zero yields

(4.6) YJtt +
(4.7) yJ(0, 0) abjo, y{(O, O) bbjo y-1(0, 0),

where Z denotes =o Ye. The right-hand side of (4.6) is expanded in a Fourier
series and the coefficients of sin and cos are set equal to zero, yielding a system
of equations for the functions Aj_ and Bj_ multiplying sin and cos respectively
in yJ-1. Once Aj_ and Bj_ are determined, equation (4.6) is solved. Then y[ is
of the form Yv + Aj(’c)sin + Bj(’c)cos t, and the procedure is repeated.

It is important to note that the system of equations determining Aj(’c) and
Bj("c) will be linear for j > 0.

Proof of asymptotic validity. Suppose that the method outlined above is
applied to equation (4.1) to obtain the expansion ,ju= o yJ(t, ")ej. As mentioned
earlier this quantity is denoted by Zu. Supposing y to be a solution to problem
(4.1), denote y Zu by eu / 1Ru + 1, that is,

y ZN + eN+IRN+I
Direct substitution of this into (4.1) and use of equations (4.6) yields the following
equation for RN +

F_,N + (RN+I + RN+ 1) Z {-f(Zu, ZU,l},e, 2u+ ly N+ lyN-
i>N

(4.8) eu + 2y e[f(y, y’) f(Z, ZU’)],

RN +1(0) 0, Rv +1(0) yN(0, 0).

The series on the right-hand side of (4.8) has only a finite number of terms since f
is a polynomial. If we let

h(t) 2 {-ef(Zu,ZU’)},e’- 2eV+lY- 8N+1y-1- 8/V+22
i>N
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and

(R+ )

equation (4.8) can be rewritten as

f(y, y’) f(ZN, Z’)
sN+

R}+a + sf2(zN, zN’)R+I nu (1 + efl(Zu,ZU’))Ru+l
h(t)

eI(Ru fx(Zu ZU’)Ru +(4.9) eu +1 +1 f2(Zu ZU’)R’u + 1]

RN +1(0) 0, RN +1(0) y(0, 0),

where f denotes the partial derivative off with respect to the ith variable, 1, 2.
Note that the quantity h(t)/ + occurring in (4.9) is in C,.

Now write Ru+l P + Q and let P be the solution to

h(t)P" + sf2(Z, Z’)P + [1 + 8fl(Z, Zu’)]P eN+l,
(4.10) P(0) 0, P’(0) -y(0, 0).

By Theorem 1, sP is in C],,, that is, both P and P’ are O(1/s) on [0, k/s]. Then Q is
a solution of

Q" + sfz(Z, Z’)Q + [1 + sfl(ZN, zN’)]Q

(4.11) -s[o(R+l)- fl(ZN, Z’)(P + Q)- fz(ZU,ZU’)(P + Q’)],

Q(0) 0, Q’(0) 0.

Letting G(t,s) be the Green’s function for the linear operator L(y)= y"
+ sfz(Z, ZN’)y + (1 + sfl(Z, ZU’))y, equation (4.11) is equivalent to

Q(t) s G(t, s)[ff(R + 1) fl(Z, ZN’)(P + Q) f2(Z, ZV’)(P’ + Q’)] ds,

(4.12)

Q’(t) s G,(t, s)[ff(Ru + 1) fl(Zu, ZN’)(P + Q) f2(Zu, ZU’)(P’ + Q’)] ds,

while G(t, s) and Gt(t, s) are both bounded on [0, k/s] by Corollary 1.
For N >= 1, Taylor’s theorem for functions of two variables can be used to

show that if S is any function such that sS is in C,, then

(P + S)- fl(Z, Zu’)(P + S)- f2(Z, Zu’)(P + S’)= O(s- 1) on [0,

(4.13)

with

-(P + S)= f{Z + s+(P + S),ZN’ + (P’ + S’)} f(Z,Z’)
sN+

Using the method of successive approximations, we can then show that the system
of equations (4.12) has a solution in Ck., as follows.
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Let Qo(t) =- O, and define recursively

Qn+ 1(t) --e G(t, s)[(P + Q.) fl(zN, zN’)(P + Q.)

f2(Zs, ZS’)(P + Q’.)] ds,
(4.14)

LQ’+ 1(0 - Gt(t,s)[ff(P + Q.)- f(ZS, Z’)(P + Q)

f2(Zr, Z’)(P’ + O’)] ds.

By (4.13) and Corollary 1, Q(t)/e- C,,.
Furthermore it can be established (see concluding paragraph of proof) that

[,N(4.15) n+l n < [M n n k, + K] Qn Qnk,e

Since for N >= 1, I1111, is bounded independent of e, we find

for suciently small (take C , + K). Then

so the series ,=,> I},- e,-,I}’,, is convergent, and the sequence {,(t)} con-
verges uniformly to a function in C,, which is a solution to (4.12).

Since C, and C,,, it is seen that I}Y Zll ’, O(N). But arguing
as in the linear case, we conclude that in fact, Ily-
formal expansion is asymptotically valid on expanding intervals.

quation (4.15) will now be established’

+ 0 (t, s)[(P + 0) (P + O- 1) fl(Z, z’)(O, - 1)

f(z, z’)(O; ’_ ,)] ds

and the quantity multiplying G(t, s) in the integrand can be simplified to

f(z + + l(p + 0), z’+ d+’(P’ + ’))
f(z + d+ (p +

_
), z,+ d+ l(p, +

A(z, z,)d + 1(

_
) f(z, z

(4.16) e +

The following general argument completes the proof.
Let g be a twice continuously differentiable function of two variables. Then

g(A + B+D)- g(A + B+ C)- Vg(A).(D- C)

[Vg(A + B + C + 01(D C))- Vg(A)] (D C)

[Vgl(A + 02(B + C + O,(D C))). (B + C + 01(D- C)),

Vg2(A + 03(B + C + O,(O C)))" (B + C + 01(3- C))]. (O- C),

where the capital letters denote two-dimensional vectors and the thetas are
elements of (0, 1).
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Applying this result to (4.16) with g f, A (ZN, ZN’),B eN+I(P,P’),
D e +I(Q., Q,,) and C eN + 1(Q,_1, Q’,- 1), and using Schwarz’ inequality
yields (4.15).

THEOREM 3. Let f be a polynomial and consider the initial value problem
y" +ef(y,y’)+y=O; y(0) a, y’(0)= b.

For e sufficiently small, there exists k > 0 such that this problem has a unique solution
on [0, k/e]. Furthermore, letting yJ(t, ) be the functions defined above,

N

Y E yJ(t, 75)e o(eN+ 1).
j= 0 k,e

Proof. Only the existence remains to be proved. It is an immediate
consequence of the existence ofZs satisfying the iterative process and the fact that
P and Q satisfy (4.10) and (4.12) respectively. Then y Zs + e,s + x(p + Q) is the
solution.

5. Example. In this section an example is presented to illustrate the methods
described earlier. This example has also been treated by Kevorkian’s method in
[3]. Kevorkian works with the initial conditions y(0) a, y’(0) 0, claiming that
any problem can be reduced to this. While in principle this is accurate, one cannot
then retrieve the solution to the original problem. For this reason, the computations
here are carried out with initial conditions y(0) a, y’(0) b. This generality leads
to coupled systems of equations for the functions of z. These equations, though
much harder to solve than the uncoupled systems arising for the simplified initial
conditions, yield explicit information about the dependence of the solutions on
the initial conditions.

Example 1. Consider the initial value problem
(5.1) y" -+- e(y’) 3 + y 0; y(0) a, y’(0) b.

For this example,

(5.2a)

(5.2b)
As always,

(5.3)

{ef(y, y’)}x (yt)3,

{af(y, Y’)}2 3(Yt)2(Y + Ytl)

and Ao(r and Bo(r must satisfy

(5.4) Ao(0) b, Bo(0 a.

Inserting (5.2a) and (5.3) into (4.4) and expanding the right-hand side in a Fourier
series yields

y + yl [_2A 3 3 3 2zAo zAoBo] cos

3 2 3 3+ [2B) + -AoBo + Bo] sin

[ A3 3AoBo]cos3t+

+[ABo- ---1 sin 3t.

y(t, ) Ao(:) sin + Bo(z) cos
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Solving
3 32A’o + -aAo + 1/4AoB -O,
3 2 3 32B’o + -AoBo + -Bo 0

with initial conditions (5.4) yields

Ao(z) 2b[3(a2 + b2)z + 4-1/2
BOO:) 2a[3(a2 + b2)z + 4-1/2

so

(5.6) y(t, z) [3(a2 + b2)z + 4]- 1/2(2b sin + 2a cos t).

With this choice of y(t, r), (5.5) reduces to

I [3y,+y 3 _B cos3t+ ABo- sin

and upon solving and substituting the known values of Ao and Bo,
b3- 3ba2yl(t, r)= 1_43(a 7+ 2 4]3/2 cos 3t +

(5.7)
+ A l(r) sin + BI() cos t.

Equations (4.5) then yield

9a3 + 2lab2

(5.8) AI(0)
32

Use of (5.2b), (5.6), and (5.7) in (4.6) yields

y + y= [- 2A’l
/

a3-- 3ab2
413(a2 + b2)-c + 4] 3/2.

BI(O)
3ba2 b3

32

sin 3t

[9b2 + 3a2]A1 6abB

[3(a2 + b2)r + 4] [3(a2 + b2)’c + 4]

9a(a2 + b2)2 -]
413(a2 + b2)z + 4]3/2.j COS

6abA1 (3b2 + 9aZ)B1
+

[3(a2 + b2)z + 4] [3(a2 + b2)r + 4]
+ [2Bi +

9b(a2 + b2)2

413(a2 + b2)z + 4]3/2.. sin

+ terms involving cos 3t, sin 3t, cos St, and sin St.

We therefore require that A I(z) and BI(’C be solutions to the coupled system of
equations

[9b2 + 3a2]A1 6abB 9 a(a2 q-- bE)2
2A’l(z)+

[3(a2 +b2)z+4] +[3(a2 +bZ)r+4] 413(a2 +b2)z+4] 3/2 =0’

(5.9) 6abA [9a2 -}- 3bZ]B1 9 b(a2 + b2)2
2B’l(z) +

[3(a2 + b2)’c + 41
+

[3(a2 + b2)’c q- 4] 4 [3(a2 + b2)’c q- 413/2
0
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with initial conditions (5.8). This problem is equidimensional, and the change of
variable

(5.10) eS= 3(a2 + b2)z + 4

reduces this system to

6(a2 + bZ)A’a + (3a2 + 9bZ)A1 + 6abB1 --a(a2 + b2)2 e -(3/2)s

(5.11) 6(a2 + bZ)B, + 6abA1 + (9a2 + 3bZ)B1 =-b(a2 + bZ)e -3/2),

where prime now represents differentiation with respect to s. The general solution
of (5.11) is

(5.12)
A -a(a2 + b2) e-3/2) + cl(a e -3/2)s) + c2(b e-(3/2)s),
B --b(a2 + b2)e -3/2)s + cl(-b e -3/2)s) + c2(ae-3/2)).

Equations (5.12), (5.10), and (5.8) together yield

3a5 + 30a3b2 + 67ab’Al(z) 8(a2 + bZ)[3(a2 + b2)z + 4]3/2 +

21a’b + 34a2b3- 3b
BI(Z

8(a2 + b2)[3(a2 + b2)z + 4] 3/2 +

We therefore conclude that the solution to (5.1) correct on [0, k/e,] is

y [3(a + b2)z + 4]- 1/212b sin + 2a cos t]

3as + 30a3b2 + 67ab4"

8(a2 + b2)- b2)z + 4] 3/2 +

+e +

+

+ O(e2).

15a5 + 30a3b2- ab’
3213(a2 + b2)z + 4]1/2(a2 + b2)

b 30aZb3 15a4b
3213(a2 q-- b2)z -F 411/2(a2 + b2)"

15a + 30a3b2- ab
,

3213(a2 + b2)z + 4-]1/2(a2 + b2)
sin

21a4b + 34a2b3 + 3b

8(a2 -F b2)[3(a2 q-- b2)z -F 4] 3/2

b5 30a2b3 15a4b
3213(a2 + b2)’r -F 411/2(a2 + b2} cost

(b3- 3ba2)
413(a2 + b2)z + 4] 3/2 cos 3t +

(a3- 3b2a)
413(a2 + b2)z + 4]3/2

sin 3t
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LIE THEORY AND SEPARATION OF VARIABLES.
1" PARABOLIC CYLINDER COORDINATES*

WILLARD MILLER, JR.’f

Abstract. Winternitz and co-workers have characterized the parabolic cylinder function solutions
of the reduced wave equation in two variables as eigenfunctions ofa quadratic operator E MP / P2M
in the enveloping algebra of the Lie algebra of the Euclidean group in the plane. Here we study the
representation theory of the Euclidean and pseudo-Euclidean groups in an E-basis and use the results
to derive a number of new addition and expansion theorems for products of parabolic cylinder
functions.

Introduction. In the papers [1] and [2], Winternitz and Frig and Winternitz,
Lukc and Smorodinskii have introduced a group theoretic method for the
description of separation of variables in the principal partial differential equations
of mathematical physics. In this paper we apply their idea to the reduced wave
equation in two variables and the separation of this equation in parabolic cylinder
coordinates.

The relevant group is E(2), the Euclidean group in the plane. Its Lie algebra
g(2) is three-dimensional with basis P1, P2, M and commutation relations

[M, Pi] P2, [M, P23 -P1, Eel, e2] O.

A two-variable model of this Lie algebra is

Pt cx, P2 3y, M=ycx-

and the reduced wave equation is

(,) (p2 + P)f(x, y) -c02f(x, y),

where o is a nonzero constant. In [1] and [2] the.authors characterize solutions f
of (*) by requiring in addition that f be an eigenfunction of a quadratic operator L
in the universal enveloping algebra of g(2)’Lf 2f.

More precisely, let 5 be the space of symmetric quadratic elements in ’ and
let be the center of. The group E(2) acts on 5e and via the adjoint representa-
tion and leaves these vector spaces invariant. Hence the vector space - 5e/5
fq is also invariant under the adjoint representation. (In this case 5e f)c
{a(P + P)}.) Thus - is decomposed into orbits under the group action.

In [1] it is shown that there are exactly four orbits, up to multiplication by a
scalar, and that these orbits correspond exactly to the four coordinate systems in
which (,) is separable. If L belongs to one of these orbits the corresponding
solutions of (*) in which variables separate are determined by Lf 2f. The
parameter 2 corresponds to a separation constant.

In this paper we will be concerned with the orbit associated with parabolic
cylinder coordinates" x (2 r/2)/2, y r/. For L we will choose the operator
E MP + P2M on the orbit.
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We study the spectral resolution ofE corresponding to irreducible representa-
tions of E(2) and of the closely related groups CE(2), the complex Euclidean group,
and PE(2), the pseudo-Euclidean group in the plane. We also determine the matrix
elements of the representation operators with respect to an E-basis. Past treat-
ments of the representation theory of these groups have used P- and M-bases and
have led to addition theorems for Bessel functions. Here we obtain addition
theorems for products of parabolic cylinder functions. We also construct two-
variable models of these irreducible representations which lead us naturally to
solutions of (*) in parabolic cylinder coordinates.

Finally we show how to decompose the quasi-regular representation of E(2)
in terms of an E-basis.

Some special cases of the addition theorem in 2 were discovered by Epstein
3] and most of the plane wave and cylindrical wave expansion theorems can be
found in Buchholz [4]. However, the general addition theorems appear to be new
as does the explicit group theoretic and functional analytic significance of the
results.

1. The complex Euclidean group CE(2). Let g(2) be the Lie algebra of the
complex Euclidean group in the plane. There is a basis for g(2) such that

(1.1) [M, Q1] Q2, [M, Q2] Q1, [Q1,Q2] 0.

I’he complex Euclidean group CE(2) is the matrix group with elements

0 0 0

0 cosh0 sinh0 a
(1.2) 0 sinh0 cosh0 b

0, a,bC.

0 0 0

The Lie algebra cgd(2) can be related to CE(2) via the exponential mapping and
the formula

(1.3) g(0, a, b) exp (aQ1 + bQ2) exp (OM).

As is well known [5], corresponding to constants co, e e C such that co 4: 0,
0 =< Re e < 1, there exists an algebraically irreducible representation p(co, e) of
egg(2) such that

Mfm mf,,,, P+fm cofm+ 1, P-fro cofm-1,
(1.4)

m=e + n, n=0,+_l,_+2,....

Here P+ Q1 +- Q2, {fro} is a basis for the representation space of p(co, e)
and M, Q1, Q2 are considered as linear operators on .

A simple one-variable model of p(co, e) is given by the assignment [5, p. 50],

(1.5) M zz + e, P+ coz, P- co f,,,o+,,(z) z",

where is the space of functionsf(z) analytic in a deleted neighborhood of z 0.
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Using this model we study the eigenvalue problem

Eh 22o9h, he U,2C,

(1.6) E- MQ2 + Q2M 2QzM +

i.e., (z2- 1)
dh
dz + [(o + 1/2)z- (o- 1/2)z-X]h 22h.

For given 2 C the solution is hz(z) z/2-’(1 z)- /2(1 + Z)-- /2, unique to
within a multiplicative constant. Restricting z to the domain 0 < z[ < we find
h U if and only if . Thus eigenfunctions of E exist only for the representa-
tions p(o, ) and are given by

hx(z)
n=0

(1.7)

k n-k] n 2F1 -2-n

for 2 e C. (However, expansion (1.7) makes sense formally for all .)
Consider the linear transformation S from the space z/Z-Y,U to the space

of all functions analytic in 0 < Iz] < 1, defined by

f’(z) Sf(z)= z-1/2(1 z2)l/Zf(z)e

forfe zl/2-. Defining operators M’ SMS- 1, (p+), Sp+_ S- where M, P+
are given by (1.5), we find

(t.8)
z

hi()-l+z’
Let fl C with 0 -< Re fl < 1 and consider the space consisting of all

functions h()= 2= k,+", where the Laurent series converges in a deleted
neighborhood of 0. Clearly, the operators (1.8) define a representation of
egg(2) on which we denote/(c0, fl). The functions

(1.9) J+s()= ++ s=0 +1 +2

define a basis for /U and it is easy to show that (for fl 4: 1/2) the action of the
operators (1.8) on this basis determines a representation not equivalent to any
p(o), ). For fl 1/2 this representation is reducible. The action of the operators (1.8)
on the basisjz() z, 2 fl + s,s 0, __+ 1, +2,..., is

M’j 1/4(1 + 22)j+1 + 1/4(1 22)j_1,

(1.10) co-1p+,j jz + 2 (- 1)kjz+k,
k=l

(.D 1p-,jx Jz + 2 j, + k.
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The operators (1.8) acting on induce a local multiplier representation
R(0, a, b) of CE(2) given by

R (0, a, b) exp (aQ’ + bQ’2) exp (om’).

A straightforward computation 5] yields

JR(O, a, b)j () cosh sinh cosh - sinh

{ 09 }.[cosh(O/2)- sink(0/2)/exp i 2[b(1 + 2) a] Jo(0 L sinh]"
We define the matrix elements R(O,a,b)m of R with respect to the basis
{ja+,’n 0, 1, 2,... ) by

(1.11) R(O,a,b)j+,= R(O,a,b),ja+

or

exp 2[b(1 + 2a] cosh- -sinh
(1.12) 0 )-fl-n-1/2cosh-sinh R(O,a,b)m,,m-".

Clearly, the matrix elements satisfy the group property

R(O + 0’, a + a’ cosh 0 + b’ sinh 0, b + a’ sinh 0 + b’ cosh 0),,,
(1.13)

R(O,a,b)mkR(O’,a’ ,b),,,.
k=

Using well-known generating functions for Laguerre and hypergeometric
functions we obtain the following explicit expressions"

(1.14)

R(O a, a)m {0 if m < n,

ea(-- 1)m- ni(- 1)(__ 209a) if m > n

R(O -b b)mn 0 if m < n,
ob (- 1)e Lm_n(-2oob if m>= n,

R(O, O, O)m cosh -sinh
F( + m + 1/2)F(m- n + 1)

.2F(- fl n+1/2, fi+ m+1/2 tanh2m-n+l

0 0
tanh < < coth,

0 ifm < n,
R(O, a, b),.

e (- 1)m-(- -co[a + bl)Ll-(co[a b) ifm > n"t-’m
l=
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Here, L(,, i)(x) is a generalized Laguerre polynomial and 2El is a hypergeometric
function [6]. An alternative expression for the last matrix element is

R(0, a, b),,, e’b (- 1)k2
k=0

H,,- 2k(r/)H,,- .k(),

where rn _>_ n and q: COd, g/2 _.[_ 2
see [3].

-2boo and H,,(z) is a Hermite polynomial;

2. A two-variable model for CE(2). We now construct a model of (1.11) in
which M’, P+’ are differential operators in two complex variables. There is only
one such model

(2.1) Ma yc- xy, P ?,
where x and y are complex variables. Here

EM, P1] P2, IMp, P -P1, [P1, P2] 0.

We can satisfy relations (1.1) by setting

M iM3, Q1 P1, Q2 iP2, P+- P1 +--- iP2.
To compute the eigenfunctions f(x, y) of E corresponding to a model of

p(o, e) we must solve the equations

(2.2a) (p2 + p)f _o2f, (2P2M3 + P1)f -2i2of
or

(2.2b) (c2 + cy2 + o2)f 0, (-2x cy2 + 2y cxy + c,)f -2i2of.
These equations have solutions which are products of parabolic cylinder functions
expressed in terms of parabolic cylinder coordinates. Rather than verify this we
will construct the .basis functions jz satisfying (1.11) directly.

Note that the functions h(x, y) exp [.io)(ax + by)J, a2 + b2 1, satisfy

(p2 + P)h coZ h, Pl h icoah, Pzh icobh.
They are the simultaneous eigenfunctions of P1 and P2. We shall look for basis
functions of the form

f(x, y) [ F(e) exp [o)(x cosh 0 iy sinh 0)]e dO

I(F),

i.e., integrals over the functions h. Here, C is a simple path on the Reimann
surface associated with the analytic function F(z) such that either C is closed or
the integrand vanishes faster than any power of z at the endpoints. We also assume
that the contour is chosen such that I(F) converges absolutely and arbitrary
differentiation in x and y is permitted under the integral sign. It follows easily that

i( yc x(?,)f l( (zc + 1)F),

(c +_ icy)f l(o)z -+- f).
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Thus, (p2 + p2)f _co2f and the action of egg(2) on f corresponds exactly to
the action of the operators (1.5), with e 1, on F.

We conclude that the functions

(2.3)

f,,(x, y) fc zm- exp z-l(x + iy))J dz,
-1

iy) +

moeC, rn mo + n, n 0, +_l, +2,

satisfy equations (1.4) and define a basis for a model of the irreducible representa-
tion p(co, mo). If C is the contour in Fig. and Re [co(x + iy)] < 0 it is straight-
forward to show that

(2.4) f,,(x, y) 2rci eim-r/2)Jm(- icor), x r cos O, y r sin O,

z-plane

FIG.

where Jm(z) is a Bessel function [7]. Similarly, the functions

li---] exp -(z(x- iy)+ z-

(2.5) z- 1/2

=fc,,x/-1t-------, exp {[(: + ;)(x-iy)+(-i--t](x+
where z (1 t)/(1 + t), satisfy the equations

(2.6) Eja 22coja

d2

and (1.11). Here C" is the contour in Fig. 2 in the t-plane and Re [co(x + iy)] < O.
(This results from a comparison of the integrand of (2.5) and the functions ha(z)
following (1.6).) In terms of parabolic cylinder coordinates , q,

(2.7) 2x 2 g]2, y ,
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-1

FIG. 2

the basis functions are

2rciei,(z 3/2)

(2.8) .JxE, ir/] F(1/2 2)
D_ a- 1/2(x/- 2co{) D_ z- 1/2(x/-

where D,(z) is a parabolic cylinder function [7], and F(z) is a gamma function. (We
do not give the straightforward details of the verification of (2.8) but merely
mention that the result follows from the facts that j,[{, ir/] is symmetric in { and iq
and that .][{, ir/] is a solution of the parabolic cylinder equation in the variable
x/- 2co{ as can be checked by differentiation under the integral sign.) In the special
case 2 -n 1/2, n an integer,

2rri(- 1)"
(2.9) J-n-/2[, irl] n!2"

e(/2)(g--’2)Hn(4-c)Hn(4-ciq) ifn _>_ 0,

0 ifn < 0,

where H,(z) is a Hermite polynomial. Other choices of integration contours lead
to new sets of basis functions.

As we have seen, the./a[, ir/] form bases for representations/(co, fl) of egg(2)
which are not equivalent to the better-known representations p(eo, oO. The
/(co,/3) extend to local Lie representations of CE(2) with matrix elements (1.14).
Indeed, from (1.11), (1.12) and (2.5) we find

{R(0, a, b).] +,} [{, ir/] R(O, a, b)m,.Jt +m[, iq], 0 _<_ Re fl < 1,

for 0, a,b in a sufficiently small neighborhood of zero. This is the addition
theorem for the solutions (2.8) of the reduced wave equation under the action of
CE(2). Here the operator R(0, a, b) is defined on functions of x, y by

(2.10)
JR(0, a, b)f] (x, y) f((x + a) cosh 0 + i(u + ib) sinh 0,

-i(x + a) sinh 0 + y + ib) cosh 0).
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Using (2.7) one can easily compute the group action in coordinates , r/. Some
special cases are of interest. For 0 0, b a, we find

.jx[’, iFi’] e (-- 1)iLl ’)(- 2ooa).jx+l[, iFi],
/=0

,2 Fit2 2 FIE
__

2a, ’FI’ FI + ia.

For 0 0, a -b and Ibl < I + iFII 2 we find

,jz[’, irl’] e’b (- 1)L} ’)(-2oab).ja+l[, iFI],
/=0

,2 FI,2 2 FI2 2b, ’FI’ FI + ib.

If 2 -n- 1/2, n 0, + 1,..., the restrictions on b] can be omitted and the
sums become finite (since .j_,_ ,/2 0 for n < 0). Finally, for a b 0 we find

.jx[’, ir/’] cosh

F(I) 2F,

0 0

’ cosh + iFi sinh },
valid for Itanh (0/2)1 < < Icoth (0/2)1.

The formal relation (1.7) between basis vectors in different representation
spaces can sometimes be made meaningful in our two-variable model. For example,

Xconsider the function j( y) given by (2.5) with contour C’ (Fig. 1) in the z-plane
and Re [og(x + iy)] < 0. Here,

2., 2jP + P2 jz -co Eji 22coj’

Using (1.7) and (2.3) we obtain the expansion

ji(x, y) 2rti
n=O

e-im(-=/2)Jn+ 1/’2(--iogr),

x r cos 0, y r sin 0,

of.j] in terms of eigenfunctions of M. However, direct evaluation of the contour
integral in the coordinates , FI yields

2/2,+ 1/4

2/2,+ 1/4

.J’a { Fi 2x/ cOrc e 2 [ Fi F,

F11 - O)FI2 + F,

Other expansions of eigenfunctions of E in terms of eigenfunctions of M (Bessel
functions) can be derived via Weisner’s method [5], 10].

3. Representations of the pseudo-Euclidean group. Let PE(2) be the group of
all matrices (1.2) with real parameters 0, a, b, i.e., the group ofmotions ofthe pseudo-
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Euclidean plane [8]. As is well known, the irreducible faithful unitary representa-
tions of PE(2) are defined by operators T(0, a, b),

(3.1) T(0, a, b)f(x) exp [iT(a cosh x + b sinh x)]f(x + O)

acting on the Hilbert space L2(R of Lebesgue square integrable functions f(x)
on the real line. The inner product is

(f g) f(x)g(x) dx.

Here 7 is a nonzero real number.
The operators Q1, Q2, M related to PE(2) by (1.4) are easily shown to be

(3.2a) Q1 iT cosh x, Q2 iT sinh x, M cx,
or
(3.2b) P+ iTex, P- iTe -x, M c

We could now study the operator E, (1.6), acting on L2(R). Instead we will
study the eigenvalue equation gf -27 6f for the related operator

(3.3a)
or
(3.3b)

o MQx + QIM 2QIM + Q2,

g 2i7 cosh x c3 + i7 sinhx.
As given this operator is not well-defined. Initially we define g by (3.3) with
domain the subspace of C-functions with compact support. It is easily seen that
g is a symmetric operator on this domain with deficiency indices (1, 1). Thus, g
has a one-parameter family of self-adjoint extensions [9]. A straightforward
computation yields the self-adjoint operators {ds} where 0 =< < 2. Each gs is
defined by (3.3) with domain

!s f e Lz(R):fabs. cont., g*f Lz(R), Bsf 0},
where

Bsf eis lim v/cosh x f(x) lim x//cosh x f(x).

Each gs has discrete spectrum 6- e- 0, +2, _+4,... and normalized eigen-
functions

(3.4) .j6(x) eX/2(1 + eX)6-1/2(1 eX) -6- 1/2

Eigenfunctions of gs and gs, are related by

(.Js’ + 2,,Js + 2m).Js+ 2m,

(is’+ 2n,Js+ 2m)
ei#n- 1

/3 0(- 0 + 2(n m).

From now on we fix e and concentrate on a single operator fs.
In the basis {is + 2,} the matrix elements of the operators T(0, a, b) are given by

Tm,,(O, a, b) (T(0, a, b)j + 2,,Js+ 2m)"
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The {Tm,(O, a, b)} form a unitary matrix representatioh of PE(2). The following
special cases are of interest"

(3.5) Tmn(O, a, a) -2 ei"t(1 + it)2"- 2m- 1(1 it)2m- 2n- dt,

22"-m-1 (2n--2m-- 1)! 2mTmn(O a, a) 1) nik( a)(2n 1)/2

rc k=O (2n- 2m- k- 1)!
(-

ea/2W(zm_Zn_k 1)/2,(2m-2n+k)/2(Ya)

(3.6) =--1(1,2n- 2m + 1,2n- 2m + 1,-1,-7a)
g(n- m)

--(n- m- 1)! Wm-,,-1/z(27a) ifn > m,

Tin,(0, a, a) T,m(0, a, a) if m __> n,

Tm.(O a a) Fe/2 e-’"/2 JW_ 1/2,o(-- ya)k./
w_ l,o(a) ,/- a

The right-hand sides of (3.6) are defined by continuity from the domain
Im /a > 0. Here W,u(z) is a Whittaker function [4], [6], and O1 is a generalized
hypergeometric function defined by [6]

,(, , , x, y) . ()m+.(fl)m xy. IX[ <
o(7)+.mn

(fl) fl(fl + 1) (fl + m 1)

with analytic continuation via the transformation formula

( fl 7,x y)=e(l_x)_ ( x-’fl’Y’x- 1’ Y"

Additional matrix elements are given by

(3.7) Tm.(O, a, -a) T.(O, a, a),

T.(O, O, o)

(3.8)

2e/2
(1 + it e)+ 2n- 1/2(1 it e) -"-2"- 1/2

(1 -it)+2m-1/2(1 q-- it) --2m-t/2 dt

2eO/2
FA(1,-- 2n + 1/2, + 2n + 1/2,-- 2m + 1/2,

z+ 2m+-},l;1 ie + ie 1 + i)

-2i e +m+ n
(3.9) Mj+ 2n 2 4(n m)2 1.J+ 2m"

where FA(e, ill,’", fl,, Y’X1,’’’, X4) is a Lauricella function [6]. We will later
derive another expression for (3.8).

The action of M on a basis is given by
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The basis vectors do not lie in the domains of Q1 or Q2-
Vilenkin [8, Chap. 5] has studied the unitary representations of PE(2) in terms

of the spectral resolution for M. To obtain this resolution we map the space Lz(R
onto Lz(R’ using the Fourier transform:

h(y) h(x) e -ixy dx e L2(R’), h L2(R),- k(x) k(y) e dy e L2(R), k e L2(R’).

On Lz(R’ the action of the operators

T’(0, a, b) -T(0, a, b)ff-

is

T’(0, 0, O)k(y) eYk(y),

(3.10) T’(0, a, b)k(y) K(z y" a, b)k(z) dz,

K(z y" a, b) exp [iT(a cosh x + b sinh x) + ix(z y)] dx,

where the kernel K(z y; a, b) can be expressed in terms of Macdonald functions.
Note that

M’k(y) iyk(y), M’= M,-1.

To determine the relationship between the E-basis and the M-basis we
compute the ON-basis {j,+ 2,} for Lz(R’).

J’ + 2,(Y) J+ 2,(Y)

e(’/2)(r+i/z)F(6 + 1/2)I F(-iy + 1/2)
F(y + 5 + 1)

(3.11) + ei,( 1/2) F(iy + 1/2)
F(iy + 6 + 1)

Since

Y- (y) .(- y).

(di + 1/2, -iY + 1/2[-1)2F1 -iy + +

F1 iy + 6 +
if e + 2n > 0,

Tm.(O, a, b) (T’(0, a, b)j’ + 2.,J’ + 2rn),

we can derive new expressions for the matrix elements. For example,

rm.(O O, O) iOy’,e .1o + 2.(Y).lo + 2m(Y) dy.

4. A two-variable model for PE(2). We use a method analogous to that of
2 to construct two-variable models of the unitary representations of PE(2).
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Consider the functions

hs,t(x exp [iT(s cosh x + sinh x)], s, C,

which belong to L2(R) for Im 7(s + t) > 0. Then the functions

(4.1) H+2(s,t (Ja+2., s,t) (h,t,+2)= (h,,j__2.)
satisfy the equations

IT(0, a, b)H / a,] (s, t) (T(0, a, b)ja / a,, h,t)
(4.2)

T,.,,(, a, b)Ua/ 2,.(s, t)

and

IT(0, a, b)Ha+ 2, (s, t) (,Ja+ 2, T- 1(0, a, b)s,,)
(4.3) Ha+ 2,((s + a)cosh 0 (b + t)sinh 0,

(t + b) cosh 0 (a + s) sinh 0).

We see that the Ha/2,,(s, t) transform under PE(2) exactly as the basis vectors
j,.+ 2,,(x). The Lie algebra action is determined by the operators

QI 63 Q2--- t,
It follows easily from (4.1) that

(Q2 Q2)Ha + 2n 2Ha+ 2n,

In terms of the new coordinates

s ir/,

we find

(4.4)

(4.5)

M to3 sc.

gila + 2n 2(0 + 2n)Ha+ 2n"

H(s t) Ha[ r13 2e3ir(--l’/2D_ 1/2(x//-2y)D 1/2(%//-27r/)
Note also the relation

h,,r(x) .j__ 2,(x)H + 2,(s, t),

where the right-hand side converges in L2(R and also pointwise. We can consider
(4.5) as a generating function for the H6.

It is of interest to study these relations in the Fourier transform space
Lz(R’), i.e., in terms of an M-basis. We have

(4.6) h,s,t(y hs,t(y /%(_X_+_tt-iy/2Kiy(iTxs2 t2),

where Kv(z) is a Macdonald function [7. In Lz(R’ relation (4.5) becomes

(4.7) h;,,(y) j’_a_ 2,(y)Ha+ 2n(S, t),
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where J’6(Y) is given by (3.1). Furthermore,

(4.8) H6(s, t) (h,t,.j_6) h’,t(y).j’_6(y) dy.

Note that h’s,t(y) satisfies

Q2 Qa)hs,t(y) Mh’s,,(y -iyh’s,,(y),

so expressions (4.7), (4.8) yield relationships between g-basis and M-basis solutions
of the equation

2 (S2 f(s, t) y2f(s, t).

(4.9)

For Im y(sj _+ tj) > 0,j 1, 2, we have

(hsl,l,) exp [iT((s -+- s2)coshx q-(t -+- t2)sinhx)]dx

2Ko(iT(s + s2)2 -(t + t2)211/2).
On the other hand, computing in Lz(R’ we find

(hs,,,,hs,t) (hs,,,)(h__,_)dy

Kiy(iy- t)Kiy(iys -t)dy,

which is a special case of Crum’s formula [7, p. 55. (The general case follows from a
study of h,(x) exp [iT(s cosh x + sinh x) + fix] .) Finally, using the g-basis in
L(R) we find

(hst,tx,hs2,t2) (hs,t,.J+zn)(.J+2n, hs,t)
(4.11)

H-a- 2,(Sl, t)Ha+ 2,(s2, t2).

Comparison of (4.9) and (4.11) yields a bilateral generating function for the
H6(s, t).

Taking the inner product of hs,,(x) with Ja,+ 2, and using (3.4) we find the
relation

Ha,+ 2,(s, t)
(exp [iTr(’ z + 2n 2m)] 1)

2m(S t)
rci(0(-- + 2n- 2m) H+

In [8, Chap. 5], Vilenkin decomposes the quasi-regular representation of
PE(2) into a direct integral of irreducible representations. He expands an arbitrary
function f(s, t) such that

fR f(s, 012 ds dt < oo
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in terms of an M-basis, i.e., Macdonald functions. A very similar analysis allows
one to expandf(s, t) in terms of an g-basis of the form (4.4) for s, real. We omit the
straightforward computation.

5. The real Euclidean group. The real Euclidean group E(2) is the multipli-
cative matrix group with elements

cos0- sin0 a

(5.1) g(O,a,b)=|sinO cos0 O,a,bR.

\0 0

The Lie algebra g(2) can be associated with E(2) via the exponential mapping and
the formula

(5.2) g(0, a, b) exp (aP1 + bP2) exp (Ore).

I’he commutation relations are

EM, P1]---P2, EM,P2]-- -P1, [P1,P2]--0.

The faithful unitary irreducible representations of E(2) are defined by operators [8]

(5.3) T(0, a, b)f(q) exp [i7(a cos q b sin q)Jf(q + 0)

acting on the Hilbert space L2[-n, n] of Lebesgue square integrable functions
f(o) on the interval [-n, hi, with inner product

(f, g) f(cp)g(q) d0.

In (5.3) we assumef is defined on the whole real axis by the periodicity condition
f(cp) f(q + 2n). Here 7 is a nonzero real number. The induced Lie algebra
representation is defined by operators

(5.4) P1 iTcosq, P2 -iysinq, M c3o.
The operator E on L2[-7r, 7r] is defined formally by

(5.5) E MP2 + PzM 2PzM- P1 -2i sin q co- /cos q.

As given this operator is not well-defined. To be definite we define E by (5.5) with
domain the space of all C-functions on [-n, n] which vanish in neighborhoods
of q 0 and _n. Then E is symmetric on this domain and essentially self-
adjoint. To compute the self-adjoint extension we define a unitary mapping U
from L2[-,/] onto Lz(R ) Lz(R by

F_ (v) f_(cos q)

Here,

cos q tanh v.

f_(cos q) f(cp), -n=<o<0,

f+(cos p)= f(q), 0 < q __< g.
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It follows that

(5.7) f(rp)g(qg) dcp F+(v)G+(v)dv + F_(v)G_(v)dv

and EF(v) 2iSF(v). Now we take the Fourier transform

with inverse

(5.9)

Then setting

we find

f_’-,’(2) F(v) ei’; dv

F(v) J ,’(2) e- d2.

(., ) .+(2+ (2) d2 +
_

(2)_ (2) d2

(f, g5 (, if),

and E(2) 22-(2). Thus E can be extended to a unique self-adjoint operator
with continuous spectrum of multiplicity two covering the whole real axis.

The ON M-basis for representations (5.3) is given by functions

eino
(5.11) f,(0)-

x/,
n 0, +_ 1, _+2,

To find the relationship between the M- and E-bases we compute the vector-
valued functions "(2)

’_(2) e’"’(1 -+- COS )iZ/2-1/4(1 COS q))-i,/2- 1/4 dq

(5.12)

e(n/2’(i/2- 2)

I-’(-- l + (l)"F__(i2 -+- 1/2)
2F1

i2 + 1/2, n + 1/2
rtx/ 1/2)L r(i,- n + 1/2) i2- n +
ir(-i2+1/2) 2F1-i2+1/2, -n+1/2 11 q

F(-i2- n+ -i2- n+ 1

-1

Note that the "(2) form an ON-basis for L2(R @) L2(R).
Consider the functions

h:,y(qg) exp [iT(x cos q + y sin q)] L2[- n, 7],

for x,yC. Computing the expansion coefficients of hx,r with respect to the
M-basis we find

(5.13) H,(x, y) ( hx,r,f,) x/i" e-i,o J,(yr),

where x r cos 0, y r sin 0, r >= 0, and J,(z) is a Bessel function of integral order.
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On the other hand, in the E-basis we have

a’’(l) -’(1/,
where

eiVZ(sech v) 1/2 exp [iT(x tanh v + y sech v)]

1 fo t-i2- 1/2

(5.14)
a/ v/1 + z exp

where

dt

cos (i2rc)
[D-i- 1/2(6)Di,- 1/2(0") "-It- D_i,

_
/:z(-a)Diz- x/2(- o’r/)-],

a=ei’/x/, x=
2

y=

Similarly,

W() W:- (2).

Expanding hx,r(qg) in the E-basis we find

expi(xcosq+ysino)]
(sin )-/2 f_x/ cot )-z

(5.15) _’r(2)d2, 0 < q9 < rt,

with a similar result for -7t < p < 0. This is a well-known expansion formula
for a plane wave in terms of parabolic cylinder functions [7, p. 126]. In exact
analogy with the computation following (4.3) we can show that /gr(2) are
solutions of the reduced wave equation

(c2 + c2)f 72f
and eigenfunctions of the operator E MP2 + P2M with eigenvalue 22, where

P1 -C3x, P2 c3, M xcr yc3x.

A straightforward computation yields

(5.16) (hx,,, hx,,r,) 2rCJo(Tx//(x x’)2 + (Y- Y’)z).
On the other hand,

( hx,r, hx,,r,) < hx,r,f.) < f., hx,,r,)

(5.17) 2z ei"’-)J,(yr)J,(yr’),

x’= r’cos0’, y’=r’sin0’,
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and

(hx,y, hx,,y,) Jf_’r(2)_""(2) d2

+ vfY(2),Y’(2) d2.

This last expression can be considered as a continuous bilinear generating function
for the E-basis.

In Chapter 5 of [8], Vilenkin explicitly decomposes the quasi-regular rep-
resentation of E(2) as a direct integral of irreducible representations. He expresses
his results in terms of the M-basis (5.13). A very similar computation yields the
decomposition in the E-basis (5.14). Of course, the two bases are related by (5.12):

(5.19)

H,(x, y) ( h,,y,f,) ."t)a"+ t.o,. + (2) d2

y o%’-n+ of-__’ (2) (2) d2.

We describe the decomposition of the quasi-regular representation in the
E-basis. Let -Q92(R2) be the Hilbert space of Lebesgue square integrable functions
f(xl, x2) on the plane"

Then

where

f_ f_ If(x,, x)l dx dx2 < .

f(xl, x2) n r dr d2[Jf 7"-(- 2)ff_ (2)

+ -,,-x(_)_

ff ()) - dx dx25/gx+-l’2()Of(x1’ x2)

and "x2(2) are given by (5.14) with r.
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A NOTE ON A NONEXISTENCE THEOREM FOR NONLINEAR
WAVE EQUATIONS*

HOWARD A. LEVINE’

Abstract. Let u: [0, T) D be a C Hilbert-space-valued function satisfying an "abstract" wave

equation of the form Pu,t -Au + ,(u(t)), where P and A are symmetric linear operators defined
on D (a dense linear subspace of a Hilbert space H) and where :D H is a gradient operator with
potential ,C:D R. Let d be almost homogeneous of degree 4 + 2 for some 0 > 0 ((4 + 2)ad(x) =<
(x,(x)) for all xD) and let u(0)= Uo, ut(0)= Vo. We extend the results of [1] to the case

E(O) =- 1/2(Uo, Puo) + 1/2(Vo, Pro) ff(Uo) 0 and (Uo, Pro) <= O. We prove the following.
If E(0) 0, (Uo, Pro) 0 and Uo - 0, then u cannot exist on [0, oo) in the sense that there exists

T, 0 < T < oo, such that limt_r_ (u(t),Pu(t))= +oo. If E,:(0)=0 and (uo,Pvo)< 0, then either u

exists on E0, o) and (u(t),Pu(t))< (uo,Puo) for all t> 0 or limt_.r_ (u(t),Pu(t))= +c for some
T < . Moreover, we show by example that both situations can occur.

In this paper, we conclude our study of abstract wave equations of the form
Put, -Au + (u(t)) begun in [1] and continued in [2].

Let H be a real Hilbert space and D
_
H be a dense linear subspace. Denote

by (.,.) the scalar product on H and by the corresponding norm. Suppose
that D is also a Hilbert space and the injection i:D H is continuous as a
mapping of Hilbert spaces. (That is, there exists c > 0 such that Ilxl] =< c x for
x e D.) Let P and A be symmetric (not necessarily bounded) linear operators
mapping D into H such that (x, Px) > 0 for all x e D, x - 0 and (x, Ax) >= 0 for
all x e D. Let :D --, H be a gradient operator, that is, is the Fr6chet derivative
in the D norm of a scalar-valued function ad :D --, R called a potential associated
with -. It is well known that if - is Fr6chet differentiable, then ad exists if and
only if x is symmetric at each x e D. Assume that there exists a constant > 0
such that for all x D,

(,) 2(2z + 1)if(x) =< (x, (x)).

Consider the initial value problem

(1)

d2u
dt2

-Au+(u(t)) in[0, T),

u(0) Uo,

u,(0) Vo,

where u: [0, T) D is a "classical" solution in the sense defined precisely in [1].
We shall assume, for simplicity, that ad(0) 0. Since we are not interested in the
regularity question here, we shall omit all further reference to it and assume that
our solutions have the necessary regularity needed in order tojustify our calculations.
Moreover, we shall assume that such a solution to (1) always exists locally, that is,
near 0.

Let u satisfy (1) and define the total energy at time t, Es(t), by

(2) Ey(t) 1/2[(u(t), Au(t)) + (u,(t), Pu,(t))] ((u(t)) =- E(t) (u(t)).
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Then one knows that E(t)- E(0)--E(0)- (Uo). In Ill the following state-
ments were proved:

I. If (Uo) > E(0), i.e., if E(0) < 0, or if (Uo) E(0) and (Uo, Pro) > 0 then
there exists T, 0 < T < c, such that

lim (u(t), Pu(t)) +
t-*T-

II. If 0 < E.(0) < (uo, Pvo)2/4(2 4- 1)(uo, Puo), (uo, Pvo) > 0, and u exists
on [0, ), then there is 7 > 0 such that

lim inf e-t(u, Pu) > O.

III. If (Uo, Pvo) > 0,

Z(Uo, Pvo)2/4(2a + 1)(Uo, Puo) <= gz(o) < 1/2(Uo, PVo)2/(Uo, Puo),

and if u exists on [0, ), then

lim inf (u, Pu)t- 2 > O.

In this note we wish to examine the situation in which (Uo, Pro)<= 0 and
Er(0) E(0) C5(Uo) 0. This case is of interest, because, as was pointed out in
[1], if E(0) E(0) aJ(Uo) < 0, then the larger the escape time T, the less negative
was this difference and the "more likely" (Uo, Pro) was to be nonpositive. That is,
the following more precise version of I holds:

I’. Let 0 < r(uo)= x/[CN(Uo)- 1/2(Uo, AUo)] 1/2. Let

S.o {Vo Dl(vo, Pro) < r2(uo)}
and for each T > 0,

ST,,o {Vo e DI(vo Uo/zT, P(vo Uo/zT))< r2(uo)}.
Then if voeS, (that is, if E(0)<0),Vo eS.o-Sr,.o for some T>0 and
lim,_,T-(U(t), Pu(t)) +

Thus, since the sets BT =- S,o ST,,o decrease with increasing T(BT, BT2
if T2< T1), we might expect that if VoeBT for all T>0, that is, if roe
{vo e O[(vo, Pro) rZ(uo) and (uo, Pro) <__ 0}, then either the solution "blows up"
in infinite time or it remains bounded in the sense that (u, Pu) is bounded on
[0, oe). However, we show that if u exists for all time, (u, Pu) remains bounded.
Otherwise, (u, Pu) becomes unbounded in a finite time. This is the content of the
following theorem.

THEOREM. Assume r(uo) > O. If roe {voeDl(uo,Pvo)= 0 and (vo,Pvo)=
rZ(uo)(Er.(O)---0)}, then there exists T, 0 < T < oe, such that limt-.T-(U, Pu)=
+. If, however, vo {vo eD[(vo,Pvo) < 0 and (Vo, PVo)= r2(uo)}, either (i) u
exists on [0, ) and, for all > O,

(3) (uo, Puo) > (u(t), Pu(t)) >= (Uo, Puo){ 1 2at(uo, Pvo)/(uo Puo)} 1/

or (ii) there exists T, 0 < T < , such that limt_,T- (hi, Pu) + o. Moreover, both
situations (i) and (ii) can occur.
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Proof. Let F(t) (u, Pu) + Q2, where Q > 0 is a constant, be defined for all
_>_ 0. Then, as in [1, one can show that

FF"-( + 1)(F’)2 _> -2(2e + 1)F(t). Er.(0),

where

F’(t) 2(u,

and

F"(t) 2(u, Put,) + 2(u,, Put).

Suppose Er.(0) 0 and F’(0) 2(Uo, Pro) 0. Then (F-’) __< 0 on the existence
interval. Since F" >= 0 for all in this interval, F’ => 0 there. If F"(:) > 0 at some
point z > 0, then F’(z + 6) > 0 for some gi > 0 and hence F G must have a
zero to the right of + 6 since

F-(t) <__ F-(z + 6) + (t (z + 6))(F-)’( + 6) fort>_:+6.

Thus limt_r-F(t)= +oe for some T < . The only other possibility is that
F"(t) =_ O. However, we then have

0 2(u, Au) + 2(ut, Put) + 2(u, (u)).

Since Er.(t) Er(O) O,

so that, from (*),

(u(t)) -(u, Au) + 1/2(u,, eu,),

2(ut, Put) 2aJ(u) (u, o(u))

__< 4ff(u)

_<_ 20[(u, Au) + (ut, Put)].

Consequently (1 + e)(ut, Put) <= 0 and hence u 0. Thus ut(0 Vo 0 which
contradicts the fact that E(0) 0.

For the second statement, assume again that u exists on [0, oe). Since F" >_ O,
F’ is increasing and there are two cases. If F’(O) 2(uo, Pro) <-_ F’(t) <= 0 for all t,
then F(t) to F’(r/) dr/+ F(0) < F(0) and since F is concave, F-’(t) _< F-’(0)
etF I(0)F’(0). Rearranging this latter inequality and letting Q --, 0, we obtain (3).
If, on the other hand, F’(r) > 0 at some point, then, we again see that F has a
zero to the right ofr and hence(u, Pu) --, + oe as -o Tfrom below for some finite T.

Remark. A version of this theorem can be proved for weak solutions to (1)
taken in the sense of the definition in [2], provided one postulates separately that
Er.(t) <- E(O) for all >__ 0. Very informally, by a weak solution to (1) we mean a
function u" [0, T) D such that, in [0, r),

(p1/2(p, p1/2ut + fl (A 1/2q)(r/), A 1/2b/(r/)) dr/

(p1/2rp0, P1/2to) -k- fl (P1/2rp., p1/2U,) dr/ + fl ((o),(u())) dn
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for all "smooth enough" functions q:[0, t)--, D. The argument used to establish
(**) in this case is given in 2].

As an example to show that both situations (i) and (ii) are possible, let A have
eigenvalues 21,22 with 0 21 < )2. Let P 1 and let Xl and x2 be orthonormal
eigenvectors corresponding to 21 and 22 respectively. Consider the nonlinear
functional if(x) (1/3)(x, Xl)3. Then -(x) c’(x) (x, x1)Zx1 as a routine
calculation shows.

We consider
utt Au + (u, X1)2X1,

(4) u(O) alX -+- a2x2 b/o,

ut(O blX q- b2x2 - Vo,

and look for solutions of the form u(t) g(t)xl + h(t)x2. This leads to two equiva-
lent problems in ordinary differential equations, namely,

g,, g2,

g(0) a l, g’(0) b,
and

h" + /2h 0,

h(0) a_, h’(0)= b2.

The energy balance

(5) 1/2(22a22 + b2 + b2)=13_a13 (21 0)

must hold while we want to have

(6) albl + a2b2 < 0 (F(t) g(t)2 + h(t)2).
3 2If we choose bl <0, a >0 such that -a =b and a2 =b2 =0, then

u(t) a(1- bt/2al)-2Xl satisfies (4) in such a way that (5) and (6) are also
satisfied and u(t) exists and is bounded on [0, m). (In fact, (3) holds with equality
on the right-hand side.)

If we now choose a > 0 and b > 0 such that a > b and a2 -b2
2 3(5al b)/2(1 + 22) /2 then (5) and (6) hold provided a is chosen so large

that }a > b + (1 + 22)ab1. Moreover, in this case,

u(t) al(1 b lt/2a)- 2x + [a2 cost + (b2/)sin
clearly becomes unbounded in norm in a finite time and solves (4).

As an example from partial differential equations we can take A -d2/dx2

on (0, ) with D DA {fe C2(0, )lf’(O) f’(=) 0} and consider the follow-
ing realization of (4) as

t2 - u(y, t)dy

u(x, O)= Uo(X), 0 < x < ,
u,(x, O) Vo(X),

au
(0, t)

au
x ( t) O > O



648 HOWARD A. LEVINE

Note added in proof. Brian Straughan of Heriot-Watt University, Edinburgh,
Scotland, has shown that statements II and III can be combined and improved.

THEOREM (Straughan). (A) Ifu [O, T] --. D solves (1) and the initial data satisfy
(i) 0 < Er(0) < 1/2(uo, Pvo)2/(Uo, Puo),

(ii) (Uo, Pro) > 0,
then

then

lim (u(t), Pu(t)) oc for some T < oc.
tT

(B) If u exists on (0, ), (uo, Pro) > 0 and
(ii’) Ez(O) 1/2(Uo, Pvo)2/(Uo, PUo),

lim inf t- 2(u, Pu) > O.

These results and their proofs will appear elsewhere.

REFERENCES

[1] H. A. LEVINE, Instability and nonexistence ofglobal solutions to nonlinear wave equations of theform
Putt -Au + (u), Trans. Amer. Math. Soc., to appear.

[2] ,Some additional remarks on the nonexistence ofglobal solutions to nonlinear wave equations,
this Journal, 5 (1974), pp. 139-147.

[3] H. A. LEVINE AND L. E. PAYNE, A nonexistence theorem for the heat equation with a nonlinear
boundary condition, and for the porous medium equation, backwards in time, J. Differential
Equations, to appear.



SIAM J. MATH. ANAL.
Vol. 5, No. 4, August 1974

AN ELEMENTARY TAUBERIAN THEOREM FOR ABSOLUTELY
CONTINUOUS FUNCTIONS AND FOR SERIES*

DONALD G. SAARI"

Abstract. A general nonlinear condition on f’ is found which, when coupled with the assumption
that either f(t) O(t) or f o(t’), implies respectively that f’(t) O(t 1) or f’(t) o(t 1). Here
is a constant and oe or 0 +. Function f is either absolutely continuous on compact intervals of
(0, oe) or monotonically nondecreasing on the right half-line. Since f’ is required to exist only almost
everywhere, the nonlinear condition holds not only for functions, but also for series. Here a nonlinear
Tauberian condition on the terms ak, when coupled with limiting estimates of the partial sums " a or

Enak, gives limiting estimates for the terms a as k oo.

1. Introduction. Elementary Tauberian theorems are usually considered to be
those Tauberian theorems whose proofs do not depend upon Fourier transform
methods. This class of theorems treats the problems of differentiating an in-
equality or asymptotic relationship. For example, what conditions should be
imposed upon the function f, in addition to requiring that f O(t2), to ensure
that f’(t) O(t) as - oc (or 0)? If f(t) 2, when is it true that f’(t) 2t?
The example f(t)= tz-b cos(t8) shows that without additional conditions
neither of these statements is, in general, true.

Theorems about the asymptotic behavior of derivatives have proved to be of
interest and value in several subjects, including the study of the Laplace transform
[13] and the n-body problem of celestial mechanics [7], [8], [10], [14, pp. 428-429].
(A brief history of their role in celestial mechanics can be found in [10].) The
purpose of this communication is to offer a general Tauberian theorem of this
type which generalizes several of the results found in the literature. In addition to
relaxing the Tauberian condition, the present statement admits a wider class of
functions. Whereas previous theorems usually require the functions to be in
C2(0, ) or CI(0, oo), the result given here holds equally well for functions which
are monotonically increasing or absolutely continuous on bounded intervals.

An attractive feature of this theorem is that the central idea of the proof is
very simple. In order to illustrate this fact, we initially require stronger smoothness
conditions on the class of functions than are imposed later. In 4, we state the
theorem in the case where the functions are either absolutely continuous on
bounded intervals (that is, they can be expressed as the indefinite integral of
locally integrable functions), or monotonically increasing. Finally, in 5, we show
how this theorem holds for the case of series and summability. Here, the Tauberian
condition reduces to R. Schmidt’s condition for slowly increasing functions.

The central idea of this paper finds its origin in [9], where it is shown that the
limiting estimate f(t) O(t) coupled with a nonlinear Tauberian condition on f"
results in the conclusion that f’(t) O(1). The role of this Tauberian condition is
to control the rate of decrease (increase) of function f’. In this paper we find a more
general nonlinear Tauberian condition on f’ which plays the same role.

* Received by the editors November 24, 1972, and in revised form April 14, 1973.

" Department of Mathematics, Northwestern University, Evanston, Illinois 60201. This research
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Throughout this paper we restrict our attention to real-valued functions,
constants, and sequences. The independent variable will be described as ’"time".

2. Continuously differentiable case.
THEOREM 1. Suppose that f C1(0, oe) and that after some time If(t)[ =< ct,

where and C are real constants, C being positive. Suppose there exist functions
W(y) defined on (-oe, ) and q(y) defined on (1, oe) such that for all 2 > 1,

(i) limt_ sup {suPt<=tl<_2. (W(f’(t)/t 1) W(f,(tx)/t
and

(ii) there exist constants M > I1 and [3 > such that ]W(MC)- W(MC)]
>__ p(2), where 2 e2m if 0 and 2"1 (M + II)/(M Il) if = O.

Then for all values oft after some time, f’(t) < MCt
Notice that if W is unbounded for increasing y, then condition (ii) can always

be satisfied. If W is unbounded as y goes to both positive and negative infinity,
then it follows immediately that f’(t) O(t 1) as .

We defer until 3 the discussion on how this result generalizes other
Tauberian theorems. We simply mention at this point that this theorem gen-
eralizes Theorem 3 of [9] in the following respects. Reference [9] holds only for
z and requires that f C2(0, oe). Furthermore, it has a condition on the
second derivative of f which yields a continuous and increasing W. Finally, the
resulting q(2) is In/l.

Before we prove the theorem, we need the following lemma.
LEMMA 1. Suppose that f CI(0, 0o) and that after some time, say for > to,

that If(t)[ <= Ct, where z and C are constants, C being positive. If there exists an
interval (tl, t2), tx > O, such th(,lt for all in this interval f’(t) > MCt
then there exists some constant 2 such that t2 tl, where < 2
< ((M + [a[)/(M -[[))x/llif 0, and < 2 < e2/M if O.

Proof of the lemma. Clearly, only the upper bound on . needs to be determined.
According to the hypothesis of the lemma, if a 4: 0, then

(2.1) MC(2- 1)t/ < if(s) ds f(2t)- f(t) <= C(2 + 1)t.
The extreme ends of this inequality yield the desired upper bound on 2. If a 0,
then the left-hand side of (2.1) is MC In 2, and the right-hand side is 2C. Again, this
inequality gives the stated result.

Proof of Theorem 1. According to condition (i), for all values of after some
time we have sup(W(f’(t)/t-1) -W(f’(tl)/t-l))< q(21), where t_< =< 21t
and 21 is given above. (Assume in condition (ii) that W(MCfl) > W(MC).)

Assume the conclusion of the theorem to be false. Then sufficiently large values
of can be found such that tl-f’(t) >= MCfl. According to Lemma 1, the con-
tinuity of function tl-f’(t), and the intermediate value property for continuous
functions, sufficiently large values of can be chosen so that they satisfy the
inequality in the preceding paragraph and they satisfy the relationship tl-f’(t)

MCfl. For these values of it now follows from the lemma that there exists
(t, ,1 t) such that f’() _<_ MC 1. Again, using the continuity of tl-f’(t) and

the intermediate value property for continuous functions, we have that there exists
6 (t, ] such that f’(tl) MCt]- 1. Combining these facts with condition (ii), we
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obtain

qg(,) > W(f(t)t-) W(f(tl)tl -)
(2.2) {W(MCfl)- W(MC)[ >=
This contradiction proves the theorem in the case where W(MCfl) > W(MC). In
the case where W(MC)> W(MCfl), we let t be the point such that f’(t)

MCflt-1. Again from the lemma and the continuity of f’(t)/t 1, there exists
such that f’(t)= MCt-1 and t, (t, 2,t]. The contradictory inequality (2.2)

remains unchanged, and the theorem is proved.
We now state and prove the "small o" version of this theorem.
THEOREM 2. Suppose for some constant that f(t)= o(t) as o where

f e C(O, o). Let W(y) be a function defined on (-, c) which is not equal to a
Constant in any neighborhood of zero (in any interval (0, (5)). Let o(y) be a function
defined on the interval [1, 2-] such that it is continuous at y and q(1) 0. If

(2.3) lim sup sup (W(f’(t)/t
t-o tt,t

where/t e [1, 2], then f’(t) o(t 1) as --. . (Then lim sup -sf’(t) <__ 0.)
COROLLARY 1. If the hypothesis of Theorem 2 holds with the exceptions that for

constant A, f(t) At and that relation (2.3) reads

lim sup {sup (W((f’(t) aA)/t

then f’(t) At as . (Then lim sup -sf’(t) <= A.)
Proof of the corollary. Let g(t)= f(t)- AtL Function g(t) satisfies the

hypothesis of Theorem 2. Consequently, g’(t) f’(t) eAt o(t 1). But this
is what was to be proved.

Before we prove the theorem, some of the differences in the hypotheses of the
two theorems will be pointed out. It will be clear from the proof that the second
theorem is actually a corollary of the first. It turns out that condition (ii) of
Theorem 1 is satisfied in Theorem 2 by the combination of the continuity condition
on q and the hypothesis that f(t) o(tS). However, in Theorem 1 it takes both
conditions (i) and (ii) to rule out the case where W is a constant. Since condition
(ii) is omitted in Theorem 2, the fact that W cannot be a constant must be
explicitly stated.

Proofof Theorem 2. Let be an arbitrarily small positive constant. Let be a
positive number less than e such that IW(e) W()] r/> 0. Let M be so large
that q(21) < r/, where 21 is defined in the statement of Theorem 1. This can be
done because ofthe continuity requirements on q and since both (M + [0[)/(M le[)
and eTM approach the value one as m . Thus we have that IW(e)- W()
> ((/ 1)"

Define el /m. Since f(t) o(tS), after some time If(t)] =< el s. According
to Theorem 1, where C el, fl e/, we have for all values of after some time that
f’(t) <= et 1. A similar argument shows for all sufficiently large values of that
f’(t) > -t 1. Since is arbitrary, we have f’(t) o(t l) as , and the proof
is completed.
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Notice in the proofs of both theorems that the continuity requirement on f’
was used only to obtain the intermediate value property. However, by a theorem
of Darboux [5, p. 16], iff is continuous and f’ is fined at all points of interval [a, b]
where f’(a) 4: f’(b), then for any value c between the values f’(a) and f’(b), there exists
a (a, b) such that f’() c. Consequently, this property can be used to replace
the continuity requirement imposed on f’. Also, by use of these intermediate value
statements, it turns out that W need only be defined almost everywhere on

This is because in the proof we need only the values W(MCfl) and W(MC).
If W is defined almost everywhere, only minor modifications in the choices of M
and fl would be needed so that function W is well-defined at the points MCfl and
MC. The assumptions that f’ satisfies an intermediate value property and violates
the inequality tl-’f’(t) < MC give us that there exist values of t, tl such that
tl-’f’(t) mcfl and tl-f’(tl)= MC. However, the limiting statements for
W(tl-’f’(t)) must be interpreted as being over those values of such that the
function is well-defined.

THEOREM 3. In Theorems and 2 and in Corollary 1, the condition that
f C1(0, c) can be replaced by the condition that f e C(O, ) and f’ is defined at
each point on (0, oe). Also, W need only be defined almost everywhere on (-

The extension of Theorem 2 contained in Theorem 3 improves a result of
Karamata [4] by extending it to values of e - 1 and by removing the continuity
conditions on f’, W, and q. Also, Karamata requires W to be monotonically
increasing. (Karamata’s theorem generalized a result due to R. P. Boas [1]. Boas’s
theorem was motivated by the machinery developed by K. Sundman [12] in his
study of the collisions in the three body problem [14, p. 429].)

The corresponding "large O" and "small o" theorems for t--. 0 also hold.
The proofs are given most simply by modifying the reasoning rather than a change
of variables argument.

3. Applications. In the last section we showed how the theorems given here
generalize an earlier result of ours and papers by Karamata [43 and Boas 1]. In
this section we show how this theorem generalizes some of the other theorems
found in the literature and how it generates some new ones. By no means is the
study found in this section intended to be exhaustive or particularly sharp. The
prime purpose of this section is to show how Theorems and 2 can be used. In all
cases we will be assuming that t- . The corresponding results where t- 0
hold with similar arguments.

COROLLARY 2 [13, p. 193]. Suppose for f e C2(0, ) that f At (=O(t)) as
--. o, where and A are constants. If there exists a constant C such that after some

time f"(t) < Ct 2, then f’(t) At (= O(t 1)) as -. .
Proof. According to the argument given in the proof of Corollary 1, we can

assume without loss of generality that A 0. From the condition on the second
derivative, we have f"(t)/t < Ct-1. For all values of e, the choice of functions
W(y) and q9(2) and the fact that they satisfy condition (i) will be obtained by
integrating this inequality. It will turn out that in all cases, W(y) y. If 1, we
define W(y) y and q(2) 2 In 2. Integrating the above inequality from tl to t2,
t2 _-< 2t1, we see that W(f’(t2)) W(f’(tl)) <= C In (tE/tl) < 2C In 2.
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If does not equal unity, then by integrating the above inequality by parts
we obtain

C In (t./t) >_ s -f"(s) ds

sl-f’(s)- (1 e)s-f(s)lt2

(3.1)
tl

+ (e 1)e’ s if(s) ds.

In the case where f(t) o(t) the second term on the right-hand side is o(1), and
the integral is o(ln (t2/tl)). Condition (i) will now be satisfied if we define W(y) y
and q(2) 31Cl In 2. In the case where f(t) O(t) there exists a constant D such
that for all after some time If(t)t-l <= D. This implies that the integral on the
right-hand side of(3.1) is bounded above by 1(1 e)e]BD In (t2/tl). Hence we define
W(y)- y and o(,)-- 3DI1 =1 + (21CI + 31(1 =)=lD) In . Since W is un-
bounded the stated result follows in all cases from either Theorem or Theorem 2.

COROLLARY 3. Suppose for constant : and f(t) C2(0, oe) that f(t) AtL
If f"(t) <_  lf’(t)l t where b (2 e + 7)/(1 e), then f’(t) At 1.

This is an extension of a result due to H. Pollard 63. He required e to be posi-
tive and did not include the term.

Proof. Again we assume without loss of generality that A 0. Now,

(d/dt)(tl-f’(t)) tx-f"(t) + (1 )t-f’(t)

<-_ tX-Blf’(t)[bt + [(1 --)tx-f’(t)lt -1

< (1 + B[tl-f’(t)l + I(1 a)tl-f’(t)l)t

Hence we can define W(y) ’ (1 + Blsl + I1 e Isl) -1 ds and q(2) 2 In 2. The
theorem now follows from Theorem 2.

Actually, the choice of the value of b is such that the above turns out to be an
immediate corollary of the following.

COROLLARY 4. Suppose for constant a and f(t) e C2(0, o) that f(t) AtL If
there exists a positive measurable function og(y) such that f"(t) <_ og(tl-f’(t))t-2,
then f’(t) zAt-1 as .

With only minor modifications, the proof of this corollary is the same as the
proof of Corollary 3.

The "large O" theorems have an additional condition that needs to be satis-
fied, and hence the statement of these results is slightly more delicate than the
above. What we give here is the "large O" analogue of Corollary 4. A "large O"
analogue of Corollary 3 can then be found in a straightforward fashion.

COROLLARY 5. Let f C2(0, oe). Suppose there exist constants C > 0 and
such that after some time If(t)l <= CtL Furthermore, suppose there exists a positive
measurable function co(y) such that

(3.2)
d
(tl_f,(t)) < og(tl_f,(t))t_

dt
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Suppose either Y co-l(s)ds o as y --, o, or for some constant fl > 1

(3.3) lim (co-I(MC) flco- (MC))(M2 2)
M

exists and is greater than 2C-1. Then f’(t) is bounded above as o.

Proof. Our choices for W(y) and q(2) are W(y)-- co-l(s)ds and 0(2)
(1 + e)In 2, where e is an arbitrarily small positive constant which will be

specified later. (If there is a convergence problem for the integral as y ---, 0, then
define W(y) Y ( + co(s))-1 ds.) That condition (i) is satisfied for this choice of
W and q) follows by dividing both sides of inequality (3.2) by co(tl-f’(t)), and
integrating both sides of the new inequality. If W(y) is unbounded as y , then
the result follows immediately. If W(y) is bounded, then more care must be taken
to show that condition (ii) of Theorem is satisfied. Since co is positive, the
assumption that W is bounded implies that W(MCfl) W(MC)
We also have that q(21) -- 0 as M . Thus, from L’Hospital’s rule, a sufficient
condition that values M and/ can be found to satisfy condition (ii) is that the
limiting condition (3.3) be satisfied. Since the limit is required to be strictly greater
than 2C-1, a sufficiently small value of e can be determined to conform with the
definition of W and q) and still satisfy condition (ii). This completes the proof.

There is some difficulty in determining what should be the "natural" condi-
tions to impose upon a function f(t) In to obtain f’(t) t- 1. Differentiating the
function In twice and comparing the first and second derivatives suggests that
possibly either the restriction f"(t) < Ct-1 or the restriction f" < [f,]2 would
suffice. However, we saw in Corollary 2, and we can easily derive from Corollary
5, that these exact same conditions imposed upon f, where [f(t)[ < 3/2, yield
simply that tf’ is bounded, rather than being asymptotic to some constant. Indeed,
counterexamples to such a conjecture are very plentiful. One simply adds a
bounded function with the above properties, such as cos (ln t) + sin (ln t), to the
function Int.

One approach to the solution of this problem would be to follow the reasoning
leading to Theorem for the function In rather than . However, the following is
in some sense more general and seems to be sufficient for most applications. Here
we impose stronger restrictions on the asymptotic relation rather than on the
Tauberian conditions. The idea is that if the average of h(t)/g(t) is essentially a
constant and does not suffer rapid oscillations, then h g. To apply this result
to a problem such as f(t) t’(ln t)" In (ln t), we simply let h f’ and define g to
be the derivative of the right-hand side of this asymptotic relation.

THEOREM 4. Suppose for f and positive g in CI(0, oo) that t-1 )f(s)g-l(s)ds
--. A, where A is some constant. If there exists a positive measurable function co such
that

d
(3.4) d-(f(t)g-x(t)) =< co(f(t)g-l(t))t- 1,

then f(t) Ag(t) as

Proof. Let a(t)= of(s)g-X(s)ds. The stated result now follows from
Corollary 4 where 1.
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Notice that if g(t) (In t)"-1/t, where n is a positive integer, then Tauberian
condition (3.4) contains as a special case the condition

f’=< ]f]6, whereb=Zifn=

and 6 > 2 if n > 1. Notice how this compares with the statements made in the
preamble to the theorem.

In a similar fashion Corollary 5 can be used to obtain the corresponding
result in the case where t-1 ) h(s)g-l(s)ds O(1) as .

4. Absolutely continuous case. In this section we relax the smoothness
restrictions on function f to be that either f is monotonically increasing or f is
absolutely continuous on bounded intervals. In both settings f’ is defined almost
everywhere, but it no longer has the intermediate value property. We compensate
for this by requiring function W to be defined at each point of the real line and to
be monotonically nondecreasing (or nonincreasing). Also, instead of considering
points on the real line, we now must consider sets of positive measure contained
in "small" intervals. To reflect this change of emphasis from points to sets, in this
section "sup" will mean the essential supremum.

THEOREM 5. Suppose that function f is either monotonically nondecreasing or
absolutely continuous on bounded intervals of (0, ). Assume for constant and for
positive constant C that after some time f(t)l <-_ CU. Suppose there exist a nondecreas-
ing function W(y) defined on the real line and a function q(y) defined on [1, ) such
that for 2 > 1,

(i) lim sup,_o {sup,__<,l__<zt (W(f’(t)t1-) W(f’(tl)tl-))} <
and

(ii) there exist constants M > ]a and fl > such that W(MCfl)- W(MC)

=> q(21), where 21 e2/M + e if a 0 and (21 e)I1 (M + [a[)/(M -[a[) if a :/: O.
(Here, e is an arbitrarily small positive constant.)

Then after some time we have for almost all values of that f’(t)

_
MCflt 1.

Proof. Since the proof of this theorem follows quite closely that of Theorem
1, we simply provide a sketch of the proof where we emphasize what changes are
needed.

The first alteration is in the proof of Lemma 1. If f is monotonically non-
decreasing, the sign of equality in relation (2.1) becomes the sign "=<". This is due
to the well-known fact that if f is a monotonically nondecreasing function, then

b f’(t) dt <= f(b) f(a).
Assume the conclusion of the theorem to be false. That is, assume that

lim sup f’(t)t1- > MCfl as . Hence, after any value of time, there can be
found a set A of positive measure with the properties that

(a) A is contained in an interval of length e/2 and
(b) if A, then f’(t)t > MCfl.
Define point t* inf {tit A}. According to Lemma it follows that a set B

of positive measure can be found such that (a) B It*, 21t* and (b) if 6 B, then
f’(t)t <= MC. (To prove the existence of set B, we use the fact that 21 is at least e
units larger than the upper bound given in the lemma for the values of 2.)
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Combining the properties of sets A and B with the fact that W is nondecreas-
ing yields

(4.1) sup{ sup (W(f’(t)t1-) W(f’(tl)t-))} >= W(MCfl)- W(MC).
tA tl[t,lt]

Condition (i)of Theorem 5 states that after some time to,
sup{ sup (W(f’(t)t-) W(f’(tl)tl-))} < (D(I).
t>to t[t,At]

This fact combined with inequality (4.1) and condition (b) yields an inequality
similar to (2.2). This inequality proves the theorem.

In the same fashion as before, the "small o" version follows from the "large
O" theorem.

THEOREM 6. Suppose for constant that f(t) o(t) as - , where f is either
monotonically nondecreasing or f is absolutely continuous on bounded intervals of
(0, ). Suppose that function W(y) is defined on the real line and is an increasing

function in some neighborhood of zero (in some interval (0, 6)). Let q(y) be a function
de.fined on the interval [1, 2] such that it is continuous at y and p(1) 0. If

lim sup{ sup (W(f’(t)t1-) W(f’(tl)tl-))} < q(2)
to te[t,At]

where 2 6 [1, 2], then f’(t) o(t x) for almost all as ov (then lim sup -f’(t)
0)o
One immediate application of this increased flexibility in the choice of the

function f is to obtain more general statements for the results found in 3.
Another advantage will be explored in the next section.

Theorem 6 generalizes a result due to N. G. de Bruijn 2, pp. 139-140]. For
constant _>_ 1, he considers an absolutely continuous function on bounded
intervals, f(t), with the property f(t) as - . He shows that the Tauberian
condition "f’ is nondecreasing" implies that f’(t) t as - . His result
follows from Theorem 6 by defining W(y)= y and p(2)= 2 In 2, and it can be
generalized to the "large O" case by the use of Theorem 5.

The corresponding "large O" and "small o" theorems for t- 0 also hold.
Here we would require f to be absolutely continuous on compact subsets of (0, 1].
The proofs seem to be given most simply by modifying the reasoning rather than by
a change of variable argument.

5. Series. Since the proofs of Theorems 5 and 6 do not rely on the continuity
of f’, they can be applied immediately to series.

THEOREM 7. For constant , positive constant C, and sufficiently large integers
n, suppose either that []aml <- Cn, where is arbitrary, or that Iaml <- Cn,
where is negative. Suppose there exist a nondecreasing function W(y) defined on
the real line and a function p(y) defined on 1, ) such that

(i) lim SUPk {maxj (W(akkl-) W(ajjX-))} < q(2), where j [k, 2k] and
2>1,
and

(ii) there exist constants M > I[ and fl > such that W(MCfl)- W(MC)
> q(2t), where 2 e2/M + e if 0 and (2 e)I1 (M + II)/(M -Il) /f
-0.

Then for all n greater than some integer, a, < MCfln-. Here e is some

positive constant.
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Proof. The proof can be obtained either by mimicking the ideas found in the
proof of Theorem 1, or by defining f’(t) ak for e (k 1, k), k 1, 2,..’, and
f(0) 0. In the latter case, the conclusion of Theorem 7 follows from Theorem 5.
If e is negative, then the condition 12" a,I <= Cn implies that the series converges
to a limit. Hence we may be interested in the hypothesis lye. a[ __< Cn. In this case
the theorem is proved by defining if(t) as given above and setting f(0)

The "small o" version of Theorem 7 follows directly from Theorem 6. The
hypothesis on the series will be " ak o(n’), with the optional hypothesis for
negative values of e being ak o(n). It is clear that in certain cases this
includes the hypothesis that the nth partial sum is asymptotic to An. (For
example, if is negative, we replace 2 ak with , (ak- oAU-1).) Here, the
conclusion would be a,, eAn 1.

If we identify the operations of differentiation and integration of functions
with the operations of evaluating differences and sums of sequences, then the
statements and proofs of the results in 3 suggest the proofs of analogous corol-
laries for series. We list some of them here. Since the purpose is simply to give a
flavor of the types of statements which follow from Theorems 1, 5 and 7, we follow
the spirit of 3 and make no attempt to obtain sharp results or to provide an
exhaustive survey.

COROLLARY 6. Suppose for constant that " a O(n) (-o(n)) as n

If there exists a positive constant C such that ak+ ak Ck-2, k 1, 2, "",

then ak O(k 1) (=o(U-1)) as k - oc. If o is negative, the series " ak could be
replaced with the series ak.

Notice that cases of convergent series are given not only by negative values of
z, but also by z 0 and the "small o" hypothesis. Both the statement and proof
of this corollary are motivated by Corollary 2.

Proof. If e 1, then ak+l ak <- Ck-1. Notice that

a a. (a a,._ 1) + (am-x am-z) nt- nt- (an+x a.)

<__ C k-1 < 2Cln(m/n).
k=n

Hence, if W(y) y and q(2) 2C In 2, then the hypothesis of both Theorem 7
and its "small o" version are satisfied.

Let s, " a,, ao 0, and Abk bk+ bk. For arbitrary e 4: 1, we have
from the hypothesis that (k- 1)l-(a ak-1) < Ck-1. Using the technique of
summing a series by parts, we obtain

2C In (m/n) > C k-1 >_ (k 1)l-(ak ak_ 1)
n+l k=n+l

(k 1)l-Aak ml- 1-a n a,, akA(k 1)1
n+l n+l

m g/1a a,,- ASk_lA(k- 1)1-
n+l

m1-a,. n1-a. [SmAm(1-) s,An1-] + SkA(A(k 1)1-’).
n+l
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Applying the mean value theorem to Aktl-) and using the hypothesis on the
growth of sk, we have for the "large O" hypothesis that the term in the brackets is
bounded in magnitude by some positive constant D, and for the "small o" hypothesis
that the term in the brackets goes to zero as m, n o. Applying the mean value
theorem twice to the term A(A(k l) -), we have that there exists a positive con-
stant E such that the summation on the right-hand side is in magnitude bounded
above by E In (m/n) as m, n --* oe. (Note, if 0, then E 0.) We then define
W(y) y. To satisfy the "large O" hypothesis of Theorem 7, we define 0(2) 2D
+ (2C + E) In 2. To satisfy the "small o" hypothesis, we define q)(2) 2(C + E) In 2.
In either case the statement is proved.

If for negative values of e we use the hypothesis a O(n) (= o(n’)), then
the above proof still holds by defining s, -; a. This completes the proof of
the corollary.

Although the above proof followed very closely the proof of Corollary 2, this
will not always be the case. Some difficulties may arise in determining the definition
of function W(y) and satisfying the condition that W(y) must be defined every-
where (except possibly at zero). In certain problems a natural definition for W(y)
involves integration. In order to compare the integral favorably with any sum-
mations resulting from the Tauberian condition, the proof may require either
additional arguments or stricter Tauberian restrictions. We illustrate this in the
proof of the following corollary which is motivated by Corollary 4. It shows that
nonlinear Tauberian conditions similar to those which were applied to functions
also hold for series.

COROLLARY 7. Suppose for constant that either " ak o(n) or (if < O)
ak o(n). If any of the following three conditions are satisfied for some positive

measurable function co(y), then ak O(U-
(i) There exists a positive constant D such that co(y) + Dy is an increasing

function for positive values of y and IAak[ [ak+l ak] <= co(Ik1-akl)U- 2.
(ii) Function co(y) has the properties that co(y) + (1 )y is a nonincreasing

function for positive values of y and [Aak_
(iii) Function co(y) is a nonincreasing function for positive values of y and

]Aak-11, ]aak] - co(Ikl-aakl)ka- 2.

Proof. According to the mean value theorem, if a 4: 0, 1, then Ak1-

(1-a)k-. If a=0, then Ak= =(1-0)k-. if a= 1, then Ak=0
(1 1)k-
We first prove the theorem under the first hypothesis. According to the

definition of the terms involved and the hypothesis, we have for sufficiently large
values of k that

<= (k + 1)i-aco(Iki-aki)k-2 + ]ak]Ak1-
(5.1)

<= (2co(Ikl-akl) + Dllkl-akl)k -1.
Here constant D max (2D, [2 [). Define g(s) (1 + 2co(]s[) + D[sl)-l.
Then g(s) > 0 is a nonincreasing function for positive s.
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Let W(y)= rog(s)ds, and let q9(2)= 21n2. Notice that zXW(lk-=a,l)
g()A(Ikl-akl), where is some value between Ikl-a,l and ](k + 1)1-a+, I.
Since g is a nonincreasing function, we have for sufficiently large integers rn

and n, m > n, that

W(ImX-a,l)- w(In
m-1

m-1

(5.2)

<= 2’ g(Ika-al)A(Ik -ak[),
where 2’ denotes the summation over those values of k such that A([k -%1) >= 0.
According to inequality (5.1), the right-hand side of (5.2) is bounded above by
,,,-1 k- < 2 In (m/n). This shows that the hypothesis of the "small o" version
of Theorem 7 (or Theorem 6) is satisfied for 0(2)= 2 In 2, and the proof is
completed.

Notice that the second hypothesis forces the value of e to be greater than or
equal to unity. If e were less than one, then (1 e)y as y . Since re(y) is
positive, this would contradict the hypothesis that re(y) + (1 e)y is nonincreas-
ing. Using similar reasoning, we have that either there exists a value Yo such that
o(y0)#(1-)Yo =0oro(Y)(- 1)yasy .

Finally, since e 1, we have from the mean value theorem that A(k + 1)-"
=(1-e)-N(1-e)(k+ 1)-’,wherek+ < <k+2.

According to the above, the second hypothesis implies for large values of k
that

A(lkl-ak[) la+ llA(k + 1)1- + kl-Alal
(5.3) =< (1 cz)(k + 1)-la+ 1[ + k-Alal

< [co(l(k + 1)1- a+,l) + ( )l(k + )’ a+,13(k + 1)-’

If there exists a value Yo such that O(Yo) (a 1)yo, then define

-)s]--, 0<s<yo,
g(s)=

1, syo.
If such a value Yo does not exist, then define

g(s)=[1 +m(s)+(1-e)s]- fors>0.

Define g(0) limso g(s). Notice that g(s) is a nondecreasing function for s __> 0.
Also, notice that

(5.4) A(Ik’-=al) < g-l(l(k + 1)1-a+ ll)(k + 1)- 1.

Now define

w(y) g(s) ds.
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For sufficiently large integers m and n, m > n, we have that

W(lml-aml)- W(ln’-=a,I) 2 AW(Ikl-=a,l)
m-1

Z g(k)A(Ikl-akl)

Z’ g(l(k + 1)l-ak+
m-1

< (k + 1) -1 < 2 In (m/n),

where ’ denotes the summation over those values of k such that A(Ik1-’ak]) >= O.
The second to last summation on the right-hand side follows from the fact that g(s)
is nondecreasing and Ik-’al < , < I(k + 1)- "ak+11. The last summation on
the right-hand side follows from inequality (5.4). Hence, we have that if
q(2) 2 In 2, then the conclusion follows from Theorem 6 or Theorem 7.

Let D1 be a positive constant greater than I1 ]. It follows under the third
hypothesis that for positive e > 0 there exists a positive value Yo such that
co(yo) + Dlyo- serves as a lower bound for the function co(y)+ Dly over
positive values of y. Define

co(S) + Dlyo + e,
g 1(S)=

(DI(S -- YO) -- F,

for 0 < s < Yo,

for s >__ Yo.

Notice that g(s) is increasing for 0 < s < Yo and decreasing for s > Yo. Define
g(0) limso g(s).

Using the third hypothesis and following the reasoning used to obtain
inequalities (5.1) and (5.3), we find that

ak+,l)(k + 1)-1}.(5.5) A(Ikx ,al < min {g a(IkX-a,l)k-g x(l(k-- 1) 1-

Let W(y) g(S)ds. In the same fashion that inequality (5.2) was derived we see
for m and n sufficiently large, m > n, that

W(lm1- A(lkx-aml)- W(ln -a,,]) E’ g(G) =al).
It follows from the definition of g that

max (g(lkl-ak[), g([(k + 1)l-a,+ 11)).
Replacing g(k) by the right-hand side of the above inequality, using inequality
(5.5), and observing that (k + 1)-1 < k-1, we find that

m--1

W(]ml-aml) W(]n 1-a,,]) <_ Z k-1 < 2 In (m/n).

The proof is completed by defining (p(2) 2 In 2. This completes the proof of the
corollary.

A similar type of analysis yields the "large O" analogue of Corollary 7.
The following corollary is an immediate consequence of Corollary 7. Here

co(y) Bly[b, where the value of constant b is given below.
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COROLLARY 8. Suppose v and either " ak o(n) or (if is negative)
ak o(n). Let B be a positive constant, let be a constant, and define

b (2 + 7)/(1 ). Then ak O(U-1) as k - z if any of the following three
conditions are satisfied;

(i) b >= 0 and [Aak[ _--< Blaklb(k),
(ii) b < 0, > and ]Aak_ 11 <-- B[aklb(k),

(iii) b < 0, < and [/Xa_ 1, IzXa l _-< nla l lk ).
Comparing the statement of Corollary 8 with that ofCorollary 3 might prompt

the conjecture that it is not necessary to take the absolute value of the term Aak
in the Tauberian condition. The following is a counterexample to such a con-
jecture. Let 1/2, 0 and b 3. The Tauberian condition of the conjecture
would be Aa <__ [ak[ 3. Define

1/4 if k= 101"form= 1,2,...,
ak k-3 for all other values of k.

Clearly, "ak O(n1/) o(nl/2). Also, we have that Aak <= 0 unless
k 101". In this case Aak (k + 1)-3+ k1/4. But this is clearly less than
(kl/4)b k3/. Thus the conjectured Tauberian condition would be satisfied. How-
ever, lim sup kl/2[ak[ Go, not zero, so the conclusion would not hold.

Results for series which are parallel to those obtained for functions in
Theorem 4 can take several directions. One would be to impose the appropriate
Tauberian condition on the term A(ak/bk) SO that " ak/bk An ( ak/b An)
implies that ak/bk AU-1. Another direction suggested by Theorem 4 yields the
following statement which was motivated by work of G. H. Hardy and proved by
Szisz [3, pp. 124-145].

COROLLARY 9. Suppose for constants k that 0 <= 1 < 2 "’’, n -- GO,

and ,+ 1/#, - as n- Go. Furthermore, suppose that

t- A(S) ds t- a ds L (is 0(1))
#

as Go, and for positive constant C that

ak --C(]Ak ]Ak-

Then " ak converges to L (is bounded) as n Go.

Here again, the linear Tauberian condition could be generalized to a nonlinear
Tauberian condition.

Proof. Without loss of generality we assume that L 0. Define W(y)= y,
and G(t)= o A(s)ds. Then for constant 2 > and sufficiently large values of t,
we have

sup [W(A(t))- W(A(tl))]
t<t <-- 2t

__< sup (-ak)=< C + +
/An Rk -< ,2/1n +

]An+r ]An+r-

< C n+r- ]An < C C(/2 1)
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where/, is the term such that/, =< t, but/,+1 > t. Here the hypothesis #,+
is used to guarantee the existence of at least one index k which satisfies the

above conditions. If we define q5(2)= 2C(22 1), then the conclusion of the
corollary follows from Theorems 5 and 6.

Finally, we show in a simple case how Theorem 5 is related to the classical
problem of determining what conditions on a series, besides its (C, 1) summability,
imply that it converges. The following approach is suggested by a direct proof of
Corollary 6 for the case e which was given by H. Pollard in a personal
correspondence.

Let s, b.
COgOLLAg 10. Let function W(y) be defined on the real line and increasing in

some neighborhood of zero. Let function q)(y) be defined on [1, 2] and have the
properties that q)(1) 0 and q) is continuous at y 1. Suppose that oo bk s(C, 1).
If

lim sup {max (W(s- s,,)- W(s- s,))} < q(2)

as m o, where m <= n <_ 2m and 2e (1, 2], then bk s.
Notice that if W(y)- y, then the above becomes R. Schmidt’s slowly

increasing sequence condition [11, p. 136].
Proof. Define a s and a,+= a,,- b,. Then the statement lirnN (1

k/N)bk s as N-, oe is the same as the statement N ak o(N) as N oe.
The W condition becomes lim sup {max (W(-a,,)- W(-a,))} < q(2). Thus we
now have from the "small o" version of Theorem 7 that a, o(1) as n ---, oe. But
since s, s -a,+ o(1), we have that bk s.
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CONSTRUCTIVE EXISTENCE FOR SEMILINEAR ELLIPTIC
EQUATIONS WITH DISCONTINUOUS COEFFICIENTS*

ALAN R. ELCRAT"

Abstract. Estimates of the form [u[2 ClLu[o are established for an elliptic operator with dis-

continuous coefficients, and applications are made to show convergence of an iteration procedure to

solutions of semilinear equations with discontinuous right-hand side.

Introduction. In the study of existence problems for elliptic partial differential
equations, a fundamental task is the establishment of a priori estirnates for pos-
sible solutions. This work is devoted to deriving such estimates for a linear elliptic
operator with bounded, measurable coefficients, and the application of these
estimates to solutions of semilinear equations. In this application, precise in-
formation on the dependence of the estimates on the coefficients of the linear
elliptic operator is used to show that a certain iteration procedure converges. This
iteration is a function space version of a standard method used to solve nonlinear
systems of algebraic equations. The explicit information obtained is paid for with
restrictions on the domain in which solutions are sought and on the coefficients
of the operator. The most severe of these is that the coefficients of the principal
part are smooth enough for the equation to be written in divergence form, and
that the operator be sufficiently close to a self-adjoint operator. Nevertheless, the
results of 1 may be thought of as a contribution to the theory of linear equations
with measurable coefficients (cf. remarks at the end of that section).

1. Establishment of estimates. We consider the second order elliptic operator
Ll, aijblxixj aiUxi au

(the summation convention on repeated indices is employed here) defined for
functions u that have square summable second (distribution) derivatives on an
n-dimensional domain f. In particular we will be interested in the action of L on
the class W,o(f), which may be defined as the closure of functions in C2( that
vanish on c3f, this closure being with respect to the topology defined by the inner
product

(f,g) f.fgdx + f.vf. Vgdx + ftaD2fD2gdx.
(This last sum is extended over all second derivatives.) We assume immediately
that ai and a are bounded, measurable functions, that {aij} is a symmetric matrix
of measurable functions satisfying an inequality

v2l[ z <= aijij
for some positive constant v, all n-dimensional vectors and all x in fL and that
the functions a are sufficiently regular to ensure validity of the identity

(1) fn u(ajuxj)x dx f. aijUx,Ux dx
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for u in W,0(f). If each aij is bounded and has square summable first derivatives,
this last identity will be valid [1, Chap. 4]. We will impose a stronger condition
on aij.

With the above assumptions L may be thought of as a linear operator map-
ping W22,o(t2) into L2(f). Suppose the norms in these spaces are denoted, respec-
tively, I" 12 and l. 10. Our first goal is then to establish an inequality of the form

lu12 _-< CILulo

for u in W22,o(f) and to obtain information about the constant C in terms of the
coefficients of L. In order to obtain the desired results we make the following,
more specialized assumptions"

A1. The boundary of f is piecewise smooth and has nonnegative mean
curvature everywhere.

A2. The distribution derivatives of aj are bounded measurable functions.
It is perhaps worth pointing out at the outset that polyhedra, and smoothly
bounded convex regions are classes of regions that satisfy A1.

This assumption is not essential for the validity of an estimate of the above
type, but is of great utility in studying the dependence of C on the coefficients of
L. The assumption A2 implies that L has divergence structure.

In order to facilitate statements to be made later we define

S sup lai- (aij)J,

the supremum taken over t2 and all values of the index.
We will establish our result in a series of lemmas in which preliminary

estimates are obtained.
For the moment we assume that

a0 inf a > $2/4v2,

the infimum taken over f.
LEMMA 1. For e > 0 and o > 0 the inequality

(Lu)2 dx >= 2ev2(1 0) [Vul z dx + ao 2 4-o 2e bl
2 dx

is valid for u in wZ,o(f).
Proof. Since the techniques involved are standard the proof will only be

sketched. Observing the identity (1) we have

--fllalldx’-" faijblxiUxjdX-+- fDal,12 dx’+- [(aij)xi--aiblx,UdX,

and using the inequality

(2) 2bc <= eb2 + e-1c2

(#alid for positive e) we have

uLu dx < -e (Lu)2 dx + -
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To complete the proof we combine the latter, make use of our assumptions about
the coefficients of L, apply (2) once more with e 6, and set 6 equal to S/2v2.

LEMMA 2. The inequality

u2 dx(Lu)2 dx >- ao -4v2
is valid for u in W2,o(f).

Proof. Set cz and ao $2/4v2 in the inequality given in Lemma 1.
LEMMA 3. The inequality

fn(Lu)2dx>=(4aov2-4aov2S)fnlVul2dx
is valid for u in WZz,o(f).

Proof. Set e 2(ao -$2/4v2) and S2/4vZao In order to simplify
succeeding statements we define

Pu aijUxixj
and

Bij (aijakl aikajl)x,.

LEMMA 4. The inequality

fn (pu)2 dx v2fnlD2ulZdxq-taBijlux,Uxjx, dx

; BijlUxiUxjx dx <= n2B IVul 2 dx ID2ul z dx

The result is obtained by combining this with Lemma 4, and applying (2) with
, V2/n2 B.

We denote by A, a the supremum of a2, a over f, respectively.

holds for u in W,o(f).
Proof. This result is essentially established in [2, Chap. 2, 8]. We need

only apply A1 to the identity established there.
In the case n 2, the following alternative to Lemma 4 is available. A proof

is given in [3].
LEMMA 4’. If n 2, and aijij <= 2112 for all n-vectors , the inequality

(Pu)2 dx >= ID2ul 2 dx

is alid.
Returning to the general case, we denote by B the supremum of IBil over

and all values of the indices.
LEMMA 5. The inequality

2 lD2ul 2 dx (Pu)2 dx +
2v2 IVul 2 dx

holds.
Pro@ The Cauchy-Schwarz inequality implies
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LEMMA 6. Under the assumption ao > $2/4v2 the inequality

lul =< ClLulo
is valid with

C2
4 16Av2 + n4B2 + v’ 256a2v2 + 16v’+ + $2)2V2 v4(4aov2 2Vo S) (4aoV2

Proof. Since Lu Pu + aiux, au, several applications of (2) yield

fta(Lu)2 dx >= (1- e.x e.2) fa(pu)2 dx -+- (1 g71- gl) f(aiUxi)2 dx

-JI- (1 g- g 1) f a2u2 dx

for el, e2,/33 positive. Setting e e2 1/4, g3 1, and applying Lemma 5 implies

n 4fn [16A n4B21f 16021ftau2dx(3) Z IOZul 2 dx <= - (Lu)2 dx / !---- + v4.. , IVul z dx + vZ
To complete the proof we apply Lemma 2 and Lemma 3.

We have established the required inequality for sufficiently large values of
a0. The lower range of a0 will be dealt with now. We will make use of the lowest
eigenvalue 2 for the Laplacian with homogeneous boundary conditions on fL
which is given by

(4) 2 inf
j’talvul2- dx
U2 dx

the infimum taken over u in ffl(f).
LZMMA 7. If ao satisfies

the inequality

2(v2 + - (Lu)2 dx{6} u2 ;
holds.

Proof. Using Lemma 1 and the inequality implied by (4) we have

f (Lu)2dx
where

f(e, a) e(2v2(1 )2 + 2ao
S2

2v2

for e, positive. If the optimum choice for ( fixed) is taken and the requirement
that f(e, a) be positive is imposed, the theorem follows.

It must be remarked here that this result is vacuous if S is not smaller than
2x/ v2. Of course, if L is self-adjoint, that is, S 0, this condition is satisfied.
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LFMMa 8. Suppose ao satisfies (5). Then if
ao <= $2/2v2 + 1/2,

the inequality

Vul
2 dx <= v-2{1 +

holds. On the other hand if

(2V2 -- ao)2 S2

we have

ao > $2/2v2,

dx

a
IVu[2 dx <= (2v2ao $2) j, (Lu)2 dx.

Proof. Set a equal to 1/2 in Lemma 1, invoke Lemma 7, and optimize the
constant factor in each of the above cases.

For brevity we denote by the constant in the inequality

(7) IVul2 dx < n (Lu)2 dx

guaranteed by Lemma 8.
It is clear that Lemmas 7 and 8 combined with (3) yield an inequality of the

desired type for ao satisfying (5). The next step in our procedure is to combine
the results for the two ranges of ao that we have considered. Here we impose a
restriction on the size of S, this being the "closeness" of L to a self-adjoint oper-
ator alluded to in the introductory remarks.

A3. S < x/ v2.
An inspection of the inequalities involved shows that this condition guarantees
that

/V2 > 82/4v2

NS /v2

and that

Therefore the two ranges of ao intersect and their union contains all nonnegative
ao (properly). We now have the following theorem.

TI-mOrEM 1. Assuming A1-A3, there is a constant C(ao) such that

lu12 C(ao)lLulo, u

the constant C(ao) may be taken to be a continuous func,ion of ao for ao in the
interval (/ S 2v2, ).

C(ao) is given explicitly by "matching" the expression given in Lemma 6
with that implied by (3), (6) and (7) for ao satisfying (5).

Remarks. 1. If L is self-adjoint, the above simplifies to a certain extent. In
particular, we have a bound for IlL-l]] valid for -/v2 < ao < which is given
by a continuous function of ao.
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2. In the two-dimensional case Lemrna 4’ can be used to eliminate the de-
pendence on B.

3. The dependence of C on a i, as a becomes large, is linear as is shown by
the expression given for C in Lemma 6. This fact will be of crucial importance
in the applications to follow.

4. The special case L A a is of some interest. Routine modification of
the above reasoning yields the following bounds for IlL-Ill for ao (-2, ):

C2

2+ 4a2- 1 1
ag +ao’ 0 <ao,

8(1-2a)+ 5

(2 + a0)2
-/t < ao < min {2, 1/2}.

If a vanishes, the value 3 + 132 -2 is obtained as an upper bound for [A-I[] 2,
which may be compared with the value 1 + 2-1 + 2-2 derived in [4]. The latter
value has been shown to be sharp in the case of a convex polyhedron [5].

5. The condition that the boundary of if* have nonnegative mean curvature
has been used previously in the study of elliptic equations with discontinuous
coefficients by Talenti [7] and Chicco 8]. In particular, Talenti derived an ex-
plicit bound, similar to that obtained above, for an equation without lower order
terms under the assumption of "Cordes conditions" [9] on the coefficients aij.
Whereas no such restriction has been used here, we have imposed a certain amount
of smoothness on the aij (A2), as well as divergence structure of the equation.

Nonnegativity of the mean curvature of the boundary of f, that is of the
sum of the principal curvatures, is used to ensure that the boundary integral that
arises in transforming the integral of (Pu)2 in Lemma 4 can be neglected (cf. [2,
p. 178]). It is possible to relax this hypothesis to the assumption that the mean
curvature be bounded below by a negative constant, and the most important
aspects of the results obtained above would remain intact under this weaker
hypothesis.

6. The proof given above is elementary in that the imbedding theorems have
not been invoked. In addition, no smallness restriction has been placed on the
region f. In connection with this feature it is of interest to compare the above
results with some recent work of Sharovskii [6]. He derives an inequality of the
type given above under the assumption that n- 1 columns of {aij} consist of
continuous functions with possible discontinuities in the remaining column. Also
a certain smallness of the region, related to the modulus of continuity of the aij,
is required, whereas the equations he studies need not have divergence structure.

It is of particular interest to compare the above results with some recent work
of Chicco [10]. He studies the problem of unique solvability of the problem
Lu f, f L2( for u W,o(f). It is well known that this problem is uniquely
solvable if n 2, aij is bounded, and a is suitably restricted, but that if n >__ 3
some additional restriction is required on {aj}. (In particular, an example is
given in [11] in which aj is bounded, a _= 0, and uniqueness is violated.) In
this work a condition on {aj} is used which might be interpreted as "closeness"
of L to divergence structure. Under this assumption the existence of a positive
constant Zo such that a > o implies unique solvability is proved, in several ways
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the situation dealt with there is more general than that discussed above, but it is
instructive to observe that if c3f is such that L(W o(f)) is dense in L2( (e.g.,
c3f smooth) then our Theorem says that ao w/ ) 2v 2 implies unique solv-
ability of this problem. Therefore, we are able to obtain a stronger result, but
under more stringent hypotheses.

The explicit information obtained about C has been paid for with somewhat
restrictive hypotheses on the coefficients of L. In what follows we will attempt to
justify this expenditure by making an application which requires this information.

2. An application to nonlinear equations. We will study the Dirichlet problem
for the equation

(8) Lou f(x, u),
where

Lou aijUxx + biux
is an elliptic operator satisfying the assumptions of the first paragraph. All of
our results are for f either two- or three-dimensional, as the proofs given make
use of the imbedding of W22(f) in C(). Some generations to higher dimensions
are possible under more stringent hypotheses on f, but these are not dealt with
here.

The two existence theorems to be presented are based on certain "con-
tinuation" results for the Newton-Kantorovich method in Hilbert spaces. In
particular, suppose P is a twice continuously differentiable mapping of X into
Y, X and Y Hilbert spaces, and that

(9)

where , fl are constants. Suppose also that P" is locally bounded, that is,

P"(x)l K K(r)

for x in S(0, r). Then it is known that P is a homeomorphism of X onto Y, and,
furthermore, an iteration process can be given which converges to the unique
solution of P(x) 0, independently of the initial guess [12]. This process is of the
form

(10)
Xn+ (Xn, h), n 1,..., N 1,

)]-IP(xn) n N,Xn+ Xn- [P’(x,, ...,
where h I/N, and the first N steps arise from replacing the differential equation

c(t) -[P’(x)3-1p(x), e [0, 13,

by a difference equation with discretization error of order hp (p >= 1). In [12] an
explicit expression is given for a constant ho, determined by e, fl and C, where
IIx(1) xNl[ =< Chp is a discretization error bound, such that h < ho implies this
process converges. The task to be undertaken here is to show that under fairly
general assumptions on f the inequality (9) holds for the mapping P(u)= Lou

f(x, u) of X wzZ,o(f) into Y L2(). The main results needed in order to
accomplish this are those of paragraph one.

In order to proceed we need to recall a standard concept [13].
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DEFINITION. g(x, U) defined on fl x R is an N-function if
(i) g is continuous in u for almost all x,

(ii) g is measurable in x for all u.
We will utilize a certain class of N-functions, N().

DEFINITION. g N()) if g is an N-function and g is bounded for bounded
values of u, i.e., for any M > 0, g( x -M, M]) is a bounded set.

An essential step in our discussion is consideration of the operator G defined
on W(fl) by G(u) g(x, u).

LEMMA 9. Suppose that g N()), and that for almost all x, g has three deriv-
atives with respect to u, and gu, gu,, g,,, 6 N().

Then G maps W22()) into L2( continuously, G has two continuous derivatives,
and G" is locally bounded.

Proof. Repeated use will be made of the imbedding of W2(fl) in C(). This
implies that G(u) is a bounded measurable function if u W22(), and that

c.() g.(x, u(x))(x)

is a bounded linear operator with

G,I ess. max Ig,(x, u(x))l.

To see that G is differentiable at u (and hence continuous) the "remainder"

R(u, d?)= G(u + c)- G(u)- G’,(d?)= g,(x, u + t)- g,(x, u)]b dt

must be investigated. We have

IIR(u, )11o IIG’(u + t)- G’(u)ll IItlo,

so it suffices to show that the left-hand term goes to zero as does. (This will also
show that u G’, is continuous.) This follows from

G’(u+t)-G’(u)= [f gu(x,u+ stc)ds]t
since g,, N(). Existence, continuity and local boundedness is proven similarly,
using the hypothesis that g,u, N(fl).

Example. Suppose that ai(x) is bounded, measurable on , and gi(x, u) is
continuous and has three continuous derivatives with respect to u on R.
Then

g(x, U) ai(x)gi(x U)
i=1

satisfies the hypotheses of the above lemma.
THEOREM 2. Suppose that f satisfies the hypotheses of Lemma 9 and that

xS- 2v2 + e =< f,, f, O(u),

where e is a positive number. Then the iteration (10) convdrges to a unique solution
of Is).
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Proof. We need only observe that

P’(u) Lo

and make use of the estimate of Theorem 1.
It is desirable to eliminate the growth rate on f, required in Theorem 2. We

will make use of the following maximum principle in doing this. The proof is
essentially taken from [14, p. 426], but as generalized solutions are not considered
there it will be given for completeness.

THEOREM 3. Suppose that f(x, u) > 0 for all u > M. Then if P(u) O,

u<_M.

Proof. Set v u M, and let k be the supremum of v over f. We suppose k
positive and seek a contradiction. Since v is continuous there are points P where
v(P) k, and since v < k near c3f we may choose P and a neighborhood N of
P so that 0 < v __< k, v k in N. Our hypotheses imply that

Lo(M)-f(x,M+ b)<=O for allb> 0.

This is also true if b is replaced by any positive function b(x). Therefore, we may
set b =v if we restrict our attention to N, that is,

Then, since
Lo(M -f(x, u) <__ 0

P(u) LoU f(x, u) 0

in N.

in N,

we have Lov > 0 in N. Before completing the proof we need to observe that Lo
has divergence structure and that Lov > 0 implies that v is a (positive) sub-
solution for Lo in N. Therefore, the results of [15] imply that v is constant in N,
and this is the contradiction that we were seeking.

In an obvious way we also obtain the following.
THEOREM 3’. Suppose that f(x, u) <= 0 for u < -m. Then if P(u) O,

u> -M.

We conclude with a theorem which follows from Theorems 1, 3 and 3’.
THEOREM 4. Suppose thatf satisfies the hypotheses ofLernma 9, and that
(i) f, > x/S 2v2 + e,e > 0,
(ii) uf(x, u)> 0 if[u[ > M.

Then the iteration (10) converges to a unique solution of(8).
We need only replace f(x, u) by a bounded function f(x, u) coinciding with

f if lul -< M, and satisfying the other requirements on f. The iteration converges
to a solution of Lou f(x, u) 0 such that lul =< M and this function is a solution
of(8).

The essential feature common to Theorems 2 and 4 is the use of the a priori
bound of paragraph one to deduce the validity of the inequality (9) for the oper-
ator P. In the case ofTheorem 2 this follows directly from the fact that the constant
C of Lemma 6 has a linear growth rate with respect to a, for large values of a,
since, in the context of this paragraph,

sup IL(x, u(x))l O(sup lu(x)l) O(lu12),
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the last equality being a consequence of the Sobolev imbedding theorem. In the
case of Theorem 4 we use an a priori estimate for the nonlinear equation to re-
place the problem with an equivalent one in which f. is bounded. It then follows
from the estimate of paragraph one that [P’(u)]- 111 is bounded.

Acknowledgment. The author is indebted to the referees for several helpful
comments and suggestions.
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CALCULATION OF AN ADIABATIC INVARIANT BY TURNING
POINT THEORY*

WOLFGANG WASOW?

Abstract. Let u be a solution of the real differential equation 2/ _+_ t2(t)U 0. The quantity
rE(t, e)= t(t)u2(t, e) + eEq l(t)tE(t, e) is the ratio of the local energy to the local frequency for the
oscillator described by the differential equation. The total change, rE(co, ;)- r2(--, e), of this
"adiabatic invariant" is very small for small > 0. It is shown that under certain conditions the
asymptotically leading term, for this total change, as 0+, has the form b(e)e -c/, where c is a
positive constant and b(e) a bounded function, both of which can be calculated by quadratures. The
most important assumption is that the function tE(t) is positive for real and holomorphic in a
neighborhood of the real axis that contains a simple zero of qE(t). The proof is based on the theory
of simple turning points.

1. Introduction. It is known that if the length ofa simple pendulum is changed
slowly the ratio of the energy to the frequency is very nearly the same at the begin-
ning and at the end of the process. This is the simplest example of a so-called
"adiabatic invariant."

In [7 I have studied this invariant in a mathematical formulation due to
Littlewood [23 and obtained results somewhat more complete than Littlewood’s.
At the end of 7] I announced an explicit asymptotic formula for the adiabatic
invariant and gave a brief sketch of the arguments leading to it. The purpose of the
present paper is to supply a detailed statement and proof of that result, which is
exhibited in Theorem 8.2 of this article.

I have tried to make this paper self-contained in a narrow sense of the word,
but numerous facts are quoted from [7] without repeating proofs or giving motiva-
tion. Some acquaintance with 7] is therefore desirable.

In purely mathematical terms the problem is defined as follows: Let u u(t, e)
be the solution of the initial value problem

(1.1)
2/i + bz(t)U 0,

u(0, e) u0, ei(0, e) u.
Here ti du/dt, and Uo and ul are taken independent of the parameter e. Define
r2 rZ(t, ) by

(1.2) r2 ()U2
__
2 (]) /2.

One wishes to calculate the total change of the "adiabatic invariant"

(1.3) Ar2(e) r2(o, :) r2(- or, )

asymptotically as e +0, under some reasonable conditions on the coefficient
qz(t). The existence of the limit (1.3) is, of course, part of what has to be established.

In [7] and in [2] the function 4 was subjected to the hypotheses below.
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Hypotheses (H).
(i) (t)>0in-<t<.

(ii) The numbers lim,_ + b(t) exist and are positive.
(iii) q and all its derivatives exist and are in LI(- , v). (A function with this

property was called gentle in [7 .)
Littlewood’s result in [1], reproved in [7] by a different method, was the

relation

(1.4) ArZ(e,) O(e") for all n, as + 0.

In the method of [7] the Riccati equation

(1.5) er 2iCrt + - e21//2

for rc re(t, e), where

(1.6) ff q/2,

plays a decisive role. Its particular solution rt p(t, ), characterized by the initial
condition

(1.7) p(- , a) 0,

is especially important. This solution is unique, as was proved in [7]. Formula
(1.8), below, which represents the total change of r2 in terms of p(t, e), is the starting
point of the present paper. It follows immediately from formulas (4.10) and (6.1)
of

Ara(e) 2 Re [/a(0)uo + i- i/(O)u e-(i/*m/(t)[1 p(t, ) dt

(.t (1 + O(e)).

Here,

(1.9) O(t) (s) ds.

In [7], an asymptotic series

(1.10) p(t,e) pj(t)eJ, as e 0+,
j=0

uniformly valid in - < < , was constructed, and Littlewood’s relation (1.4)
was proved from this expansion. Formula (1.10) is, however, not sufficient to derive
more explicit results on Ar2 from (1.8). In fact, it is likely that nothing more precise
can be said without additional restrictions on 05 2. In the present paper 2 will be
assumed to be analytic. It is then possible to shift the path of integration in (1.8)
into the complex plane and thereby to improve the asymptotic information on the
adiabatic invariant r2, provided the asymptotic evaluation of p(t, e) can be extended
into the complex domain. This is the program of the present article.

The hypothesis that the change of the oscillator is infinitely differentiable is
essential for the validity of (1.4). If bz(t) is continuous and only piecewise differen-
tiable, it is known that rZ(e) O(e), but no better.
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By different, but related methods R. E. Meyer has independently and simul-
taneously obtained results that overlap with those of this paper. In [4] he proves
that--under certain analyticity hypotheses--the total change of r2 is exponentially
small, as e--, 0+. He has also derived more explicit formulas which will be
published soon. Weaker results in this direction can also be found in a paper by
G. Knorr and D. Pfirsch [1].

2. Assumptions and preparations. In accordance with the program just stated
we add to Hypothesis (H) the assumption that tE(t) is holomorphic on the real
t-axis and hence in a simply connected complex region containing the real axis. If
the path of integration is deformed into the complex plane one may eventually
meet some points where the integrand is no longer holomorphic. The nature of our
problem depends decisively on the type of the singularities thus encountered.

In the present paper we specialize the situation by requiring that the neighbor-
hood of the real axis in which 2 is holomorphic can be chosen so as to contain
exactly one zero o of 2(t), and that the zero be simple. Then tp(t) (which on
the real axis is defined as the positive square root of the positive function tE(t))
can also be uniquely continued, as long as one remains in a simply connected sub-
domain that does not contain to. At to, the function tp(t) has a simple branchpoint.

It is likely that the decisive exponential factor exp (- 2i(o/e) in our final result,
Theorem 8.2, will also appear if the restriction to a first order zero of bE(t) is
relaxed. The precise asymptotic expression for the total change of the adiabatic
invariant will, however, vary a great deal with the order of the zero. A similar
remark applies if bE(t) has a pole.

The function O(t) defined in (1.9) is likewise holomorphic in the same region
as th(t), provided the path of integration in (1.9) remains in that region.

In the terminology of the asymptotic theory of differential equations, to is a
simple turning point of the differential equation (1.1). The function O(t) plays an
important role in the theory of such turning points. It has a branch point at

to with the property that the condition

(2.1) Im (t) Im (to)

defines three curves in the neighborhood of to that meet at to forming equal angles
there. These so-called Stokes curves for the turning point to bound three Stokes
sectors with vertices at o

Since (t) is real on the real axis its branchpoints are symmetric to the real
axis. Without losing generality we may therefore assume that to is on the side of
the real axis where (I)(t) is at first negative. Then

(2.2) Im O(to) =< 0.

In 9 the theory of this paper is illustrated by the example

(2.3) bz(t) + l+2e-t"

This function is holomorphic for [Im t[ < n (here, n 3.14’") and 2(t) has
simple zeros at + in. A look at the geometry of that example may facilitate the
reading of the general description in this section.
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The global nature of (I)(t) and of the Stokes curves depends on global proper-
ties of bz(t) in the complex plane, which will now be discussed.

The equation

(2.4) " (t)

defines a mapping from the t-plane into the plane of the complex variable

(2.5) + it/.

We set

o o + ir/o (to).

The images of the Stokes curves at o under the mapping (2.4) lie in the line r/- r/o
of the -plane.

The three hypotheses below simplify the global behavior of the mapping (2.4).
They are not difficult to confirm for the function (2.3) and other examples.

Hypothesis (KI). Two of the three Stokes curves at to, say S and Sz, extend
to infinity as analytic curves, as do their images under the mapping " (t). The
curvilinear sector of central angle 2r/3 bounded by S and $2 contains the real
t-axis.

Hypothesis (K2). Let G be the region of the t-plane bounded by S, Sz and the
real axis. The function 4 is holomorphic, and has no zeros, in {to}. ( is the
closure of G.)

Hypothesis (K).

(2.6) Im O(to) 0.

It can furthermore be proved that the whole set G is homeomorphic, under
the mapping (2.4), to the strip

_-< _-< 0}.
The proof can be found in Appendix A.

In particular, $1 and $2 are mapped onto

(2.7) ’($1) 21 {’lr/= r/o, < o},
(2.8) {($2) 2 {{It/= r/o, { > {o}.

The transformation (2.4) takes the differential equation (1.5) into

drc
(2.9) e- 2iz + 2:- g22:2,

where

(2.10) 2: q/4
2dt/d

As long as we operate in the domains or r, where the relation between and

" is one-to-one, the use of the same letter, e.g., f, for a function of with values f()
and for the corresponding function of with values f((t)) will not cause confusion.

The quantity 2: as a function of is holomorphic in , except at " (o, where
it becomes infinite and has a branchpoint. In fact, from the property of t2 of having



ADIABATIC INVARIANT 677

a simple zero at o and from formulas (1.6), (1.9) and (2.10) one derives readily
the formula

(2.11) g() --{1 + ( o)2/3( o)},
6( 0)

where ( 0) is a holomorphic function of ( o)/3 in F.
As a solution of an analytic differential equation the function p in formula

(1.8) is analytic. It is not immediately clear, however, where its singularities lie and
what its asymptotic behavior is for small . For the purpose of this paper we need
such information in the whole strip F. The calculations that follow are complicated
by our desire not to introduce hypotheses on the data outside the domain G. This
limits our freedom of operation in the complex plane in comparison with related
work in the literature.

The function Z of " is gentle on the real (-axis (i.e., its derivatives are all in
Li(-, )). This follows immediately from Hypotheses (H) in 1, the definition
(2.10) of Z and formula (2.4). We need a hypothesis which assures that : has
corresponding properties near infinity, uniformly in the whole set F.

Hypothesis (K,d. For every point F let C/() denote the ray from to
infinity parallel to the real axis in the positive direction and C_() the correspond-
ing ray in the negative direction. Then, for n 0, 1,2,

(2.12) lim f ]d’/d(y" da 0- + dc + (0

uniformly for ( F. (Formula (2.12) combines two statements according as the
"+" or "-" sign is taken.)

Hypothesis (K4) could be reformulated in terms of integrals in the t-plane,
and it is likely that in that form it implies Hypothesis (K3). The assumptions as
stated here are simpler to apply and more natural.

By integrating the derivatives of one sees that Hypothesis (K4) implies

(2.13) lim [d"z/d"] O, n O, 1,

uniformly for ( F.

3. Boundedness of p(t, e) inside G $2o Every continuous solution of the
integral equation

(3.1) n(’, e)= e-l f,(o e(2i/)(-)Z(a)da- e f(o e(2’/)(-)Z(a)n2(a)dr’

where (() is some path in the a-plane ending at a ( and starting at some fixed
point, also solves the differential equation (2.9), from which it is derived by use of
the variation of parameter formula. We postpone the question as to which choice
of 7(() yields the solution corresponding to the particular solution of (1.5) called
p(t, e) in 7] and choose as paths of integration curves that start at infinity on Z1
and continue to a in such a way that Im a never decreases on 7(). Since we
must avoid the turning point (o, the point ( must be restricted to the subset F6 of
F whose distance from ’2 is at least 6, where c5 is an arbitrarily small positive
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t-plane -plane

FIG.

1-’

E o E2

constant. Let Go be the preimage of F under the mapping -(t). Figure
illustrates these two domains.

It is possible to extend the study of the Riccati equation as given in [7] from
the real axis to the whole domain Go, and, in particular to continue the asymptotic
power series for the solution p(t, e) into all of Ga. For the purpose of the present
paper it will be sufficient to know that p(t, c). is bounded, and only this fact will now
be proved.

The term

b(, c) _1 [" e(zi/e)(-a)Z(ff da

in (3.1) is bounded, say, [b(C, e)[ __</, for C e F, 0 < c __< c0. To see this it suffices to
perform an integration by parts, which yields

if, e(Zi/)(_)Z,(a)da.

The right member is uniformly bounded, as claimed, because of formulas (2.11)
and (2.13).

The operator T on r defined by the last term of (3.1), i.e., by

(Tv)(’) -cf exp[(’-
()

can be applied to all functions v in the Banach space of bounded continuous
functions of " in F with the maximum modulus norm. The function b((, c) is an
element of this space for each c > 0. One readily verifies that T is a contraction
operator in the ball ]lvl[ __</, provided 0 <c __< Co with

Co < 2/ sup IZ[ da
F6 ()

The supremum in the right member is finite, thanks to Hypothesis (K4).
We conclude that the integral equation (3.1) has a unique bounded and con-

tinuous solution in F6 for each c in 0 < c =< eo. Since our bound,/, for b(t, c) is
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independent of e, it follows that this solution, z((, e), is bounded uniformly in e, for
0<=<0.

The solution re((, e) of the integral equation (3.1) is also a solution of the
differential equation (2.7), and rc((t), e) is a solution of (1.5). In fact, it is the same
solution as the one called p(t, ) before and characterized by the initial condition
(1.7). To show this, assume that ( is real and take as the path of integration ;(() in
the a-plane a ray on Z1 from - to some point a on Z with tr large negative,
followed by the segment Re a aa, qo =< Im a __< 0 and then by the segment
Re a < a < (. Since we know already that t is bounded in F, and because of
Hypothesis (K,0, we can conclude that the contribution to the integrals in the
right-hand member of (3.1) which comes from the portion of 7(() between -and a Re a tends to zero, as a recedes to - on El. The resulting modified
form of (3.1) has a path of integration from - to ( on the real a-axis. Hence
rt((t), e) is identical with the solution p(t, e) of(1.5) that satisfies the initial condition
(1.7).

We have now proved the following theorem.
THeOReM 3.1. The (unique) solution p(t, ) of the Riccati equation (1.5) that

satisfies the initial condition p(-, )= 0 is holomorphic and uniformly bounded
for 0 < <= o in the domain G. Its bound, as well as o, depends on 6.

For later application we need two corollaries of this theorem. We recall that
qS, , k and Z are real on the real axis, and, hence, take on conjugate values in
conjugate complex points. The proof of Theorem 3.1 extends therefore without
difficulty to the larger region G t_J G’, where G’ is obtained by reflecting G in
the real axis. Consequently one has the following corollary.

COROLLARY 3.1. If p(t, e) is the function defined in Theorem 3.1, then the func-
tion p() is likewise holomorphic and uniformly bounded in G.

The whole argument of this section can be repeated by strict analogy with the
boundary condition (1.7) replaced by

(+ ,) 0.

The result is formulated below.
COROLLARY 3.2. Let F be the region obtained from F by removing all points

having at least distance 6 from ,a. Let Gf be the pre-image ofF in the t-plane.
Then the Riccati equation (1.5) has a unique solution p+(t, e) satisfying the initial
condition p+(, e)= 0. This solution is holomorphic and uniformly bounded for
0 < e <= to in the domain -.

4. Three fundamental solutions of the linear differential equation. To carry out
our program of shifting the path of integration into the complex plane, the dif-
ferential equation (1.1) has to be solved asymptotically in all of G. This requires
knowledge of three fundamental systems of solutions, as well as of the connection
formulas between them. In this section we give a description of these fundamental
solutions.

(i) The left outer solution. In [7] a solution of the differential equation (1.1.)
with known asymptotic behavior on the real axis was derived. By Theorem 3.1 and
Corollary 3.1 of this paper, Theorem 3.2 of [7] has been extended to G, except for
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the asymptotic power series for p(t, e). (Actually, this power series is also valid in, but it is not essential for this paper.)
As in [7] the theorem will be stated in terms of the system- 0

z,

which is equivalent to the differential equation in (1.1) through the transformation

(4.2) x= c/)1/2u, y= e-l/2fi, z= (x,y)r.

THEOREM 4.1. The differential equation (4.1) possesses a fundamental matrix

(4.3) Z SPV

with

ep(Y, e)

V V(t, e) exp

(4.5)

(t)

0 i(t) + e /(s)p(s e) ds

+ e q,(s)p( e) as 0

Here, p(t, e) is the function described in Theorem 3.1.
Observe that p(L ) has replaced p(t, ), wherever it occurred in [7, Thm. 3.2].

In [7] the variable was real, therefore eittier notation was correct. The analytic
continuation of p(t, ) into the complex plane is, of course, p(L e).

(ii) The inner solution. The function p(t, e) cannot be expected to preserve its
analytic form at o, where the coefficient in the Riccati equation (1.5) has a
pole. Rather than to study (1.5) directly near that singularity, we base the analysis
on the well-known asymptotic theory of the differential equation (1.1) near the
turning point to. The results stated below are an extension of the work of R.
Langer as developed in [5]. (See also [6].)

Let the function of be defined by

(4.6) i d(s) ds
to

The right member defines three distinct holomorphic functions near to,
depending on the choice of the cube root. The three Stokes curves in the t-plane
are mapped into the rays arg -r/3, re/3, rc(mod 2r0. We make the mapping
(4.6) unique by requiring that $1 be mapped into

(4.7) i(S) c {ilarg i re/3}.
Since the mapping preserves orientation,

(4.8) i($2) {i]arg i }.

solution Z(t, e) with the following properties"
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We leave open the question as to the global properties of the mapping (4.6).
In some neighborhood g" of to the mapping is conformal with a conformal
inverse, because (di/dt)t=to 0 in consequence of the fact that the zero of (D 2 at to
is simple.

The image of g" in the i-plane is sketched in Fig. 2.

($2)
0

’-plane

real

FIG. 2

The transformation

(4.9) [ i(t), Il [ u

e du/d

takes the differential equation (1.1) into the system

(4.10)

where

(4.11) () -The function g(i) is holomorphic in i(V’) if Y is small enough.
While the left outer fundamental matrix Z of Theorem 4.1 was derived in [2]

by a transformation to a system with a diagonal coefficient matrix, the inner
fundamental solution to be described in the next theorem is the result of a trans-
formation to the system form of Airy’s equation, of which (4.10) is a perturbation
(cf. [5] and [6).

THEOREM 4.2. There exists a holomorphic matrix function (:, e) in some
neighborhood i(f) of 0 with a uniformly asymptotic expansion:

(4.12) (i, e) [,(i)e’, as --, 0+,
r=O
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d/}- /2(4.13) o(i) I,

so that the transformation
(4.14) (i,/3)3
takes the differential equation (4.10) into

(4.15) /3)- .
This theorem gives us a complete asymptotic solution of equation (4.10) in

i(X), since (4.15) can be solved in terms of Airy’s function Ai(z). The following
particular fundamental matrix solution will be useful to us:

ei/6Ai(8 2/309/) Ai(/3- 2/3i)
(4.16) ’(i, 8) 81/3 e=i/6coAi,(8-2/3co[) 81/3Ai’(8- 2/3tr)j.

Here, oo e2i/3, and Ai’(z) dAi(z)/dz.
The asymptotic form of I2(,/3), as 8-2/3 c, will be needed shortly: The

standard asymptotic series expansion for Airy’s function implies that

/31/6 [-[- 1/4

0

(4.17)

exp

0

2
i3/2

(4.19)
2

2 cos (- {)3/2

(22 sin (- i)3/2 -- 8{-3/2B2

92 92(8-2/3) being bounded and holomorphic on

(4.20) 18-2/3i[ >= Po > 0, arg i -ft.

In the sector -zc < arg i < -z + fl the entries of B2 are of the same order of
magnitude as the corresponding entries of the leading terms in (4.19), as

where B1 B1(8-2/3[) is a uniformly bounded holomorphic function for

(4.18) 18-2/3il __> Po > 0 -rt + fl =< arg =< z
3’ Po > 0, //> 0, arbitrary.

The fractional powers of in this formula are determined by the rule that
arg (’) m arg .

Near the negative /-axis (i.e., near ($2)) formula (4.17) becomes invalid.
Instead, one has

81/6 F( _{)-1/4 0 1
J
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A third fundamental solution of the differential equation in (1.1) is needed for
the calculation of p(t, ) on $2.

(iii) The right outer solution. This solution can be established in exact analogy
to the way Theorem 4.1 of this paper was proved in [7, but with the function
p+(t, ) of Corollary 3.2 taking the place of p(t, O.

THEOREM 4.3. The differential equation (4.1) possesses a fundamental matrix
solution Z + (t, ) with the following properties:

(4.21) Z+ SP + V +"

ep + (t, e)](4.22) P+ P+(t, e)
eP+(, e)

V + V+(t,

xp (O+e ,(stp / (, e) ds

0

0

exp (t) + gt(s)p + (s, ) ds

Here p + (t, e) is thefunction described in Corollary 3.2.

5. The connection formulas. Let

(5.1) D D(t)=
0

and set

o

1/2
d[

.2 z .
By Theorem 4.2 and formula (4.16) the matrix Z is an inner fundamental solution
of the system (4.10). Formulas (4.2), (4.6) and (5.1) then show that D2 is a solution
matrix of the system (4.1). Since the matrix Z of Theorem 4.1 is also a fundamental
solution of the same system, there must exist a nonsingular matrix C C(e),
independent of t, such that

(5.3) z D2C.
From (5.3), (5.2) and (4.3) it follows that

(5.4) C 7-1p-1D-1SPV.

This formula makes it possible to calculate C asymptotically. The details can
be found in Appendix B. They result in the theorem below.

THEOREM 5.1. The matrix C in the relation (5.3), which connects the left outer
solution Z with the inner solution D2 of the system (4.1), has thefortn

(5.5) C=C(e,)=2x/-e_l/6ei/4(i+e.B3)Ie(i) O]e-(i/K

with B3 B3(; a bounded continuous function for 0 < e <= so.
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The asymptotic calculation of the connection matrix C / -C+(e) in the
formula

(5.6) Z + D2C+

is not quite analogous to that of C, although the formula

(5.7) C + /-P- XD-XSP+ V +

resembles (5.4), because the asymptotic formula to be used for " is now (4.19), not
(4.17). Again the details of the proof are postponed to Appendix B.

THEOREM 5.2. The matrix C+ in the relation which connects the right outer
solution Z+ with the inner solution D2 of the system (4.1) has the form

e- (il,go

with the matrix B,, B,(e) bounded and continuous in 0 < e <= o.
6. Asymptotic calculation of p(t, ) near the turning point. By Theorem 4.1 the

function p(t, ) is related to the entries of the matrix Z {zjk} through the formula

zlz + ep

z22 i(ep- 1)’

1Z12 iz22 1Zlz/Z22(6.1) p e e
Z12 -- iZ22 Z12/Z22 + i"

The right member of (6.1) will now be asymptotically evaluated in the neighbor-
hood V" of to by means of the relation (5.3). From Theorems 4.2 and 5.1 and
formulas (5.1), (B.3) we find that

Z.._DS,rC__2%F,_l/6[i;4 0 1 [ 0 1i[_i/4 (I + eBo)V(I + eB3)
e( )o

e-"m

(6.2)

The matrix Bo Bo(, ) is defined by Bo (P o)e-a(d[/dt)/2. It is bounded
for e /’, 0 < e _<_ eo, and holomorphic in .

We define the matrix M M(t, ) by the relation

(6.3) V + m (I + eBo)V(I + ebb).

Its entries {mj} are linear combinations of the entries of with coefficients that
are bounded for e, 0 < o, and holomorphic in (or [). Formulas (6.2)
and (6.3) imply that

0 e(i/)

and hence,

12 + m12:i-1/2z12
b22 + em.2 z22
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Insertion into (6.1) leads to
{I/21) "Jr" + em12 1)22

p-e 1/21)12 1)22 -" em2’
where

(6.4) m [1/2m12 - m22 m2 [1/2m12 m22.

Now we refer to formula (4.16) and see that the lemma below has been proved.
LEMMA 6.1. Let e (3 -, where is a certain neighborhood of the turning

point o Set

(6.5) p /3-2/3[, --n -< arg p <= -n/3, for e G.

Then the function p(t, e) that solves equation (1.5) subject to the initial condition
(1.7) has in V" fq G the form

lpa/EAi(p) + Ai’(p) + e2/ama
(6.6) p(t, e) e

pl/EAi(p)- Ai’(p) + eE/am2"
The functions ma, mE are linear combinations of the entries Vjk of V with coefficients
that are bounded for ff fq , 0 < e. <= eo, and holomorphic functions of .

At points where pa/EAi(p) Ai’(p) vanishes the formula (6.6) has little value.
The next lemma, proved in Appendix C, is therefore important.

LEMMA 6.2. The function pa/EAi(p)- Ai’(p) has no zeros in the sector
n =< arg p <= n/3 (if arg [91/2 (1/2) arg p).
Our next aim is to expand (6.6) through the two first terms with respect to e.

Lemma 6.3 below gives us information about the size of the quantities in (6.6).
For abbreviation we set

(6.7) pa/EAi(p) + Ai’(p) f(p), pa/2Ai(p) Ai’(p) fE(P).

LEMMA 6.3. Let j, fitj, j 1, 2, be defined by

Then there exist two constants ca, c2 independent of e (bat dependent on eo) such that
fortU f’) G,O < e <__ eo,

(6.8) < c,, < CI’ > c=.
(Remember that Re p3/9. < 0 for G.)

Proof. The upper bounds in (6.8) are an immediate consequence of the
asymptotic properties of Airy’s function. The last inequality in (6.8) is true for
Ipl < po (po arbitrary)because of Lemma 6.2. For IPl > Po a short calculation
based on the two asymptotic representations for Ai(p) in n +/3 _< arg p _<_ /3
and in - =< arg p _< - +/3 shows that, in spite of the difference between these
two representations, the formula

f2(P) -nnPTM e-(2/3)03/2( 1 -+- 0(p-3/2)), p-4 (x3,

remains valid in the combined sectors. Hence, the lower bound for [f2[ is seen to be
correct, provided Po is taken large enough.
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THEOREM 6.1.

(6.9)

where

(6.10)

(6.11)

82p2(t, 8)-- g -q- 2/3h + 84/3bl

g g(p)= [f(p)/f2(p)] 2

h h(p, [, e) 4f(p)f2-3(p)[[1/2Ai’(p)m12 p/2Ai(p)m22],

and bx b(t, ) is bounded for 6 V" FI G, 0 < =< 0, provided o is sufficiently
small.

Proof. Formula (6.9) is the result of a straightforward calculation based on
formulas (6.4), (6.6), (6.7) and Lemma 6.3. It involves an expansion of the denomi-
nator in (6.6) by the formula for a geometric series.

The next two lemmas will be needed for estimates in 8.
LEMMA 6.4.

o(pl/2), as p ---> O,

g(p)= ll + p-3,(p), as p o in -t fl <= argp <= -t/3,

+ iexp {--ip3/2}(1 + p- 3,(p)) as p o in -re <= argp _< --r + /,

with ,(p), (p) remaining bounded in the indicated sectors.
The proof consists in a direct verification from the convergent and asymptotic

series for Airy’s function and is, therefore, omitted. This remark also applies to the
next lemma.

LEMMA 6.5.

0(pl/2), as p O,
h

o(p_ 3/2), as p o in rc + [3 <= argp =< -re/3,

h= qj(p,[)exp {--jip3/2) + O(e), asp o in-re <= argp=< -re +/3
j=l

uniformly for U f’] Cj, 0 < o. The functions qg(p, [) and their derivatives
with respect to [ are unrmly bounded in the indicated region and holomorphic
in [.

7. Asymptotic calculation of p(t, e) on $2. The three fundamental matrix
solutions of the differential equation (4.1), namely Z, D, Z+, are related by the
formulas (5.3) and (5.6)"

(7.1) Z + D2C+ Z D2C
Since

(7.2) Z+ SP + V +, Z= SPV

formulas (4.3)and (4.21), the matrix P satisfies the identity

(7.3) PV P+ V+(C+)-C,
which is convenient for the calculation of p on and near S2 outside of F. The right
member of (7.3) can, in fact, be calculated there by means of Theorems 4.3, 5.1 and
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5.2. If R {rjk is an abbreviated notation for PV in (7.3), it follows from the
structures of P and V, as described in Theorem 4.1, that

(7.4) ep-- r12/r22.
Again the details of the subsequent calculation are relegated to the Appendix
(Appendix D), and only the result is stated below.

THEOREM 7.1.

(7.5) ep(t, e) --i et2i/)t-)(1 + eb2) + eb3,

where b2 and b3 are bounded functions for Gf 0 < e <= eo.
8. Calculation of the adiabatic invariant. We finally have assembled enough

information on the function p(t, e) to begin the asymptotic calculation of the
integral

(8.1) I(e) e-2*(/O(t)[1 ep(t, e)] dt

in formula (1.8). The transformation (2.4) takes (8.1) into

(8.2) I(e) e-2i/*Z(()[1 e2p2(t((), e)] d(

with defined as in (2.10). Our investigation of p has shown that the integrand is
holomorphic in except, possibly, at (o. Thanks to Hypothesis (K3) the path
of integration in (8.2) may be replaced by a path L6 consisting of the line r/= qo in
the -plane except that the point (o is circumvented by a semicircle of radius 6
described in clockwise direction (6 may depend on e here). It will be shown, below,
that this semicircle may be shrunk to a point.

We extract the factor e -(21/K from the integral and get

(8.3) I(e) k() e -(2i/aK

with

P
(8.4) k(e) [ e-t2i/)t-)Z(()[1 eZpZ(t, e)] d(.

,L

LEMMA’8.1. For q qo, 0 < e eo, one has

Z(()(1 e2pZ(t((), e)) Lx(-, )

as a function of Re (.
Proof. Hypothesis (K3), Theorem 3.1 and Theorem 7.1 guarantee that

Z(1- ezp2) is in L(-, o- 6) and in Ll(O + 6, ) for all 6 > 0. In
-6 ( (o 6 the function eZp2 can be appraised with the help of formulas
(6.1) and (6.2). Set

(8.5) (I + eBo)(I + eB3)= W {Wjk
Then

Z12 _i1/2 W12

Z22 W22
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hence,

4W12W22(8.6) 1 /32p2 [1/2
([l/2Wl 2 W22)2"

Now, V is bounded as long as (( (o)e -1 < const., and ]1W vii <_ const.
by (8.5), the constant depending on V" only.. On the other hand, we know from
Lemma 6.2 that [1/212 22, which is equal to e/3f2(p), does not vanish for real
( (o. Therefore the denominator in the right member of (8.6) is also different
from zero, provided 0 < e __< Co, with eo sufficiently small, and [( (o[ < e, say.
Thus, the expression in (8.6) is O(x/z) O(((- (o)/3) if we take 6 e. As
Z(() O((( (o)- x), because of (2.9), we have Z(1 eZp2) O((( (o) -2/3) for
( (o 0, i.e., this function is in Ll((o 6, (o + 6). This completes the proof of
Lemma 8.1.

Thanks to Lemma 8.1 the path ofintegration in (8.4) may be replaced by the line
r/= r/o. However, as the integrability was proved in that lemma for each fixed
only, but not uniformly in e, the asymptotic form of k(e) is not easily recognizable
from (8.4). A method of calculation that circumvents the laborious estimates that
follow would be very desirable.

LEMMA 8.2. Let fl > 0 be a constant independent of e. Denote by ke(e (the "e"
standsfor "’exterior")the contribution to k(e) from the two rays [( (o[ -> fl, r/= r/o.
Then

(8.7) ke(e O(e).

Proof. The contribution to ke(e) from (o =< -fl is

-#e-Zia/eZ((o + a)[1 ;2p2] da

e-2i’r/eZ((o + a)da- F,2 e-2ir/eZ((o + o’)p2 da.

The last integral is O(1), because p is bounded by Theorem 3.1 and Z is integrable.
The first integral in the right member can be subjected to an integration by parts,
because Z’ is also integrable on , -/3]. That integral is therefore of order O(e).
By Theorem 7.1, the contribution to ke(e) from ]2 is

//x
e-2ia/eZ((0 + a)(1 + e4i/ + eb4)da,

where b4 is a uniformly bounded function of a and e. Again we conclude, with the
help of an integration by parts, that the integral is of order O(e,).

LEMMA 8.3. Let
o +

kil(e exp [- 2i(( (o)/e]Z(()g(p) d(.

Then

(8.8) kid(e) ] s
g(p) as +/32/3 ’(0) e

T s---i-g(p ds + O(e5/3).
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In this notation the subscript "1" refers to the fact that g(p), defined in Theorem
6.1, is the first term in the formula (6.9) for 1 eZp2. The "i" stands for "inner,"
since o ae =< __< o + ae, r/= r/o is the inner part of the path of integration
for k(e).

Proof of Lemma 8.3. We set

(8.9)

Then

(8.10)

and

(8.11)

s ( o)/.

[9 (i)2/3S2/3,

kil(e e e-Zisg((o + s/3)g(p)ds

6 s
g(pl ds + s/

The first integral exists as a Lebesgue integral, because g(p) 0(sl/3), as s 0,
by Lemma 6.4. ; was defined in formula (2.11). The proof of formula (8.8) is now
immediate.

LEMMA 8.4. Let

k1(/3) exp [- 2i( o)//3]Z()g(P) d.
o-/

Then

f-a -2is
k’x(/3) - _/ s

g(p) dp

e2iao_ 1/3 f-a+ 36- e-2iSs-4/ads

"+-- e- 2iss-1/3,(p)p 3 ds 0)/32/3

0(/32/3),
with ,(p) bounded, as s --, -oo.

Proof. We substitute formula (2.11) and the formula for g(p) from Lemma
6.4 into the integral for k,a(/3) and get, after the change of variable (o ( es,

kn (/3) - 2is 1/32/3 e- 2iSs- 1/3.(/3S) dsg(p)ds + - -/

1/32/3 e- 2iSs- 1/3(/3S)p- 3(p) ds,+-6
where ,(p) remains bounded as s - oo, because of Lemma 6.4. If the integrand
in the last integral is continued as zero to s -oo, the theorem of bounded
convergence shows that this integral tends to the last integral in (8.10), as/3 --, 0.
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The integral before the last one in (8.11) can be integrated by parts, and in the new
integral one can again let e tend to zero. In this way one obtains formula (8.10).

LEMMA 8.5. Let
o +/

km+l(e) exp [- 2i( o)/e]Z()g(p) d.
"o +

Then

l(e) g, s
g(p) ds + e 1-

5 e2 is)s 4./3

+-f (ie 2is _31_ ds

e2is- 1/3r(p)p- 3 ds ,(0)2/3 @ 0(/32/3)+g
where ,(p) remains bounded as s

Proof. The only difference between the proofs of Lemmas 8.4 and 8.5 is that in
the latter the last part of Lemma 6.4 must be used. The details are straightforward
and therefore omitted.

LEMMA 8.6. Let
o +

kz(e =/32/3 exp [- 2i(" o)//3]Z()h d.
o

Then

k2(/3 0(/32/3 log/3).

Proof. We proceed as in Lemmas 8.3 and 8.4 with Lemma 6.5 taking the
place of Lemma 6.4 in the arguments. Since the last estimate in Lemma 6.5 does
not contain the convenient factor + p-3(p), as in Lemma 6.4, the proof of
Lemma 8.5 cannot be simply repeated by a straightforward analogy. We content
ourselves with the crude appraisal

o +t

f/ e -2is 2/3 / e-2is
hds + S1/3 .(/3s)h ds(8.12)

6

O(log/3),

which proves the lemma.
Remark. A rather elaborate analysis of the function h(p, ,/3) shows that the

preceding lemma can be sharpened to the statement that

/32/3 f e-is
s

h(p,p/32/30)ds+ 0(/32/3

(8.13)
p (-is)2/3

where the integral is uniformly bounded, as /3- 0. Such a refinement will be
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needed if the constant k(/;) is to be approximated beyond its leading term, but this
will not be done in this paper.

LEMMA 8.7. Let

k3(/;) /;4/3 exp [-2i( (o)//;]Z(()b,(t, /;) d(.
"o-#

Then

k3(/; 0(/;4./3 log e).

Proof. The existence of the integral is assured by Lemma 8.1 and by the
existence of the contributions to k(/;) that have already been calculated. For
I" ol -<-/;a the path can be replaced by a semicircle. The corresponding contri-
bution to the integral is O(1). Along the remaining parts of the path the integrand
is O(- 1), for ( --, 0, and the integral is therefore O(log e).

THEOREM 8.1. The quantity k(/;) defined in formula (8.4) has the asymptotic
expression

fm e-2is
g(p) ds + o(1), asgO+.k() g s

Proof. From Lemmas 8.1 to 8.7 and from formulas (6.9), (8.4) it follows that

k(/;) ke(/; + kil(/; + kl(/; + kin+l(/;) + k2(/; + k3(/;

a/ e- 2is

6 _#/, s
--g(p)ds + 0(/;2/3 log

Thanks to Lemma 6.4 the last integral can be extended from - to with an
error that is infinitesimal in/;. Thus, the theorem has been proved.

Remark. With the help of formulas (8.11) and (8.13) the following refinement
of Theorem 8.1 can be proved:

y e- 2is -f 2is

k(/;) - s
g(p) ds + /;2/3..,1 e

s
h(p p/;2/30)ds

_1_ /;2/3 2(0) ;m e-
T S1/3 g(p) ds + 0(/;2/3).

The proof, which is not immediate, is omitted.
We have now completed the asymptotic calculation of the integral ’k(/;) of

(8.4) and, hence, through formula (8.3), the asymptotic calculation of I(/;) as defined
in (8.1). Returning to formula (1.8) we can summarize our results in the Main
Theorem below, where g(p) has been replaced by its explicit expression from (6.10)
and (6.7).

MAIN THEOREM (Thm. 8.2). Let u(t, /;) be the solution of the initial valueproblem
(1.1). Let r2(t,/;) be defined by (1.2). Assume that the Hypotheses (H), (K1), (K2),
(K3), (K4) are satisfied. Let
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Then, as e--, 0+, the quantity Ar2(e)-- r2(09, e)- r2( z, e) has the asymptotic
representation

ArZ(e) ro2 Re Ix exp (- 2i(o/e + 2i0o)] + o(e- 2io/).

Here, ro and Oo are defined by

ro ei q x/2(0)uo + i- 1/2(0)Ul,
and is the constant

with

4f e-Zis Ai(p)Ai’(p)=- s [pl/2Ai(p) Ai,(p)]2
ds

(_ {-n/3’ s < O,
p is)2/3 arg p

-n, s > 0,

arg pl/2 (1/2) arg p. Ai(p) is Airy’s function and Ai’(p) is its derivative.

9. An example. The function (2.3), i.e.,

4
(9.1) t2(t) + + 2e -t 3 tanht

offers a simple illustration for the theory of this paper.
We begin by verifying Hypotheses (H). Clearly, b(t) > 0 for all real t, and the

limits of b at infinity are positive"

lim b(t) 1, lim b(t) x/.

It is a simple exercise to prove that

d%b=O(e-’) ast +,
dt" (O(e’) as ,

for all n >_ 1, so that all these derivatives are indeed in LI(-
For complex one finds that 4)2 is meromorphic with simple zeros at
(2n + 1)hi and simple poles at log 2 + (2n + 1)hi, but no other zeros or

poles.
The function O(t) is elementary in this example" By the change of variable

(9.2) qS(t)

in the indefinite integral

one finds

1+
1 )1/21 +2e-t

=s

F(t) f 1/
1 )1/21 + 2e-i

dr,

$2
F(t)=2

(s2- 1)(2-s2)
1

ds log
s-1

log + const.
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Since s + 2/x/ for 0, it follows that

1 s-1 s-x/ 2-x/(t) log log log + log
2

(9.3)
The branch of the logarithm in this formula is arbitrary as long as it is such that
(0) 0, and provided that is continued as a holomorphic function from 0.
The segment from 0 to ni is mapped onto an arc that goes from s 2/x/
to s 0 in the lower half of the s-plane. From this and formula (9.3) one concludes
that

1 x/-2 2-x/
(9.4) I)(- hi)

n
+ log log

2 ,Z+2 2

Therefore o -ni is the turning point where the inequalities (2.2) and (2.6) are
satisfied.

Next, we investigate $1 and $2. We set # + iv. Then, for # in, # < 0,
one has b2(t) > 0. Hence, this ray is a Stokes line, namely $1. The easily verifiable
formula

+ 2e-" cos v 2e-" sin v
(9.5) b2(t) + +i

+4e-ucosv+4e-2u +4e-ucosv+4e-2u

shows that the complex number bz(t) lies in the fourth quadrant for p > 0,
0 > v > -n. The same is then true of 4(t), which is the branch of (t)2) 1/2 that is
positive on the real t-axis. In Appendix A the differential equations

d# dv
ds =Re’ ds Im

are introduced. It is shown there that the orbit of their solution through a point of
$2 is the Stokes curve $2. From our observation above about the vector field
(Re 4, Im b), it follows that $2, which is known to start with a directional angle of

+ n/3 at hi, remains in the half strip # >0, 0 > v > n, and tends to infinity
with a slope that approaches zero. The curve maintains, however, a positive
distance from the real axis. In fact, if tl Pl + iv1, then

Im O(tl)= Im ok(t) dt Im dp(t)dt lm q(# + iv)dr

Re + + 2e -"1 e -iv dr.

Thus, in terms of the variables Pl, v,, the equation of the curve $2 can be written

n_Re + dv la >02 + 2e -"1 e -iv

Hence, in the limit,

lim Vl
,1-+ +o 2x/-
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The limit relations

(9.6) lim b(t)=, lim b(t)=-1
Re t--* + Ret-

are uniformly valid for all values of Im t. In view of (9.2) and (9.3) this implies that

lim Re(t)= , lim Re(t)= -.
Ret-* + Ret

Therefore, the images of $1 and $2 in the (-plane are the whole half-lines through
( (o parallel to the real axis.

Finally, we show that Hypothesis (K4) is satisfied. By differentiations and
elementary estimates one verifies that

d"
(9.7) dt,(dpE(t)) O(e-IRetl), as Re - _+ ,
for all n, uniformly in Im t.

$1 ri

log2 0

-i+ log 2

FG. 3
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If the integral in formula (2.10) is transformed back into the t-plane, the
inequalities (9.6), (9.7) are seen to guarantee the validity of Hypothesis (K4).

This completes the verification of the assumptions of this paper for the func-
tion (9.1). Figure 3 shows not only the region G but also the pattern of the other
Stokes curves for this particular differential equation, i.e., of all curves
Im 4(t) const, that have one endpoint at a zero or a pole of q2(t). Since this goes
beyond what is needed for the present paper the simple arguments on which that
sketch is based are omitted. The figure is to be continued with period 2rti.

Appendix A.
THEOREM A.1. The mapping (t) defines a homeomorphism between G and

F.
Proof. The real axes of the t- and -planes are homeomorphically related by

( O(t), because qS(t) is positive and bounded away from zero on the real t-axis.
To prove that $1 is mapped homeomorphically onto the ray Z1 we write

l + iv, dp(t) ckr + icki and consider the initial value problem

(A.1) d# dv

(A.2) t(0) 1, v(0) v l,

where g + iv is some fixed arbitrary point on S1. The orbit of the (unique)
solution of this problem lies on S, because

dd Im (I)(t)
c3 Imakt dlds c3 Imav dVds _. dv

=ch +ch=O,
in consequence of (A.1) and the Cauchy-Riemann equations. By the standard
theory of ordinary differential equations, this solution can be continued as a
function of s as long as the right members remain continuous. It is also known that
the endpoints of the orbit, if any, are at critical points (i.e., zeros of both right
members) or at infinity. There are no critical points on the curve S, because those
are the zeros of 4(t). For the same reason the arc length

do

on S is an increasing function of s. Hence, the relation =/(s) + iv(s) establishes
a homeomorphism between some open (finite or infinite) segment L of the real
s-line and S. For the point (t) with -/(s) + iv(s) one finds

d Re tI) d/ t3 Re dv dl dt
/- Re # ds c3v ds

(])r -s ( (D -" --1)12"

This means that Re increases with s, i.e., the relation between s and (t(s))
is one-to-one. Because it is part of Hypothesis (K) that ( (t) maps S onto El,
we can conclude that (t(s)) is a homeomorphism between the segment L and El.
Thus, S and E are each homeomorphic images of L. As points on $1 and E
corresponding to the same value of s are related by (t), the latter function is
a homeomorphism.
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The same is true for 82 and 22, of course. Since o (I3(t0), it has been proved
that the mapping (t), which is continuous in G, establishes a homeomorphism
between the boundary of G and the boundary of F.

The foregoing fact implies that the mapping must be a homeomorphism
between G and F. The proof of this is easy and will be omitted. (See also A. I.
Markushevich, Functions ofa Complex Variable, v. II, 18.)

Appendix B.
Proof of Theorem 5.1. Insertion of the expressions (4.4), (4.5), (4.12), (4.13),

(4.17) and (5.1) into (5.4) produces the lengthy formula

xp -3
C (l -F [- 3/2B4(- 2/3[))

(B.1)
(I + eBs([, ))

0 ba/2(t)dt

(I + e,B6(t, 8))

The matrixes B4 to B6 are bounded for Ga ["1 , 0 < e __< eo. Because, generally,
BN N(N-1BN) for any matrix B and any nonsingular matrix N, the matrices
Bj,j 4, 5, 6, in the product in (B.1) can be interchanged with any matrix that is
nonsingular and bounded, together with its inverse, for 0 < e <= eo and for the
value of at which the matrix C C(e) is to be calculated. This will change the
matrix, but not its bounded character.

We choose for a point on S [") ,/[/’. Then i [[[ e -i/3 and therefore,

(B.2) i/ -ilil 3/.
This means that the first factor in the right member of (B.1) and its inverse are
bounded. The same is true of all the other matrix factors with the exception of the
last. Hence, the three factors of the form (I + 8-3/2B4), (I -+- 8Bs) and (I + 8B6)
can be shifted to the beginning of the product and combined into (1 + B()).

Next, we observe that differentiation of the identity

[3/2
3 f- dp(s) ds,

to

which follows from (4.6), leads to

il/2
di

ida(t),
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and hence to

Now, the factor (dt/di)-1/2 in the product (B.1) originated from the matrix o(i)
in (4.13). Since the matrix (i, ) in Theorem 4.2 can be replaced by its negative
without affecting the conclusion of that theorem, formula (B.3) may be used, with
either sign, to simplify the expression in (B.1). We choose the plus sign and find
that

xp

C 2e-1/6 ei/4(i + B(e))
0

0

2 ly3/2exp -Formula (5.5) follows from this by reference to (4.6), (1.9) and (2.4).
Proof of Theorem 5.2. We insert (4.4), (4.12), (4.13), (4.19), (4.22) and (5.1) into

(5.7) and proceed in analogy with (B.1), i.e., we calculate the product in (5.7) at
some fixed, arbitrary point on $2.

A convenient way to calculate P-1 is from the formula

-1 (det /)-ladj (’),
where adj (I) is the adjugate ofl, i.e., the transpose of the matrix of cofactors of 17".
This adjugate can be asymptotically calculated from (4.19). We recall that
i e-"i for e $2. One finds

adj P(i, e)
sin (IP’ 3/2 --)
exp(lpla/ -i) exp -jilpl /2 +

with/2(e-2/31il) bounded as e-/ll-+ + oo. The quantity det P is independent of
i and is most easily computed at i 0. One obtains

[ e’<’/6Ai(0) Ai(0)-]det V(t, e) det V(0, e) det
el/3 eil6coAi(O) el/3Ai,(0)j.

e"il6ell3Ai(O)Ai’(O)(1 co)= --ell3/2rc.

Therefore the analogue of formula (B. 1)is

C(e)+= _x//-
2sin 7lpl 3/2-

exp -ziip] /2

-2 cos(
exp(iipl

Pl3/2
+ e !1- 312172(e,-213[)

3/2 + - (cont.)
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0 [] /’* (I + BT(, e))
/2 dto 4,’ (t)

1 :)(i+eB8(te))[eti/;*(’ 0 je ti/,)ott)

The matrices 2, BT, B8 are bounded functions of e, as e 0+. Hence, I + eBT,
I + eBs can be replaced by factors of the same form, I + O(e), in front of the
whole product, by the same argument as in the proof of Theorem 5.1. We can also
use (B.3) again and write (remember that [ ]] e -i, for e $2)

lil- TM o O’/2(t)dt
"

The product for C + now simplifies into

C +
2sin p,3/2_ -2cos p,-

i exp ilP] 3/2 + i
0

0 exp (t))
2%//gl/6 (I l’-B4(’g))[10

2 .3/2

:j
xp - +-O(t)e 0

[ 2 [3/2 o(t)0 exp .
The term eB9 is O(e), and its contribution has been combined with eB+(e) in the
last formula. From the last expression, formula (5.8) follows immediately by
means of the definition of in (4.6).

Appendix C.
Proof of Lemma 6.1. This proof follows the method of E. C. Lommel in [3

as outlined in [8]. Letters used in the formulas below do not necessarily designate
the same quantities as in the main part of the paper. Let

f(z) zl/2Ai(z)- Ai’(z),

and

g(z) zl/4f(z).
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For abbreviation we set Ai(z)= y. Using the fact that y"= zy, one finds, after
some calculation, that g(z) is a solution of the differential equation

g"-tz + Az- )g 0.

Let
u g(az), v g(fiz),

a being a complex constant. These functions satisfy the differential equations

U" (a3Z -a3/2z 1/2 _+_ 1.z-2)U O,

V" (a3Z -13/2Z 1/2

__
T36Z-2)U 0.

Now, generally, if

then

u" Pu, v" Qv, P, Q continuous,

d
(P Q)uv -z(UV’ u’v).

Hence, applying this identity and integrating from zero to one, one gets

(C.1) [(aa ga)t -}(a/ g/)t- /]g(at)g(gt) dt g(a)g’() g(8)g’(a),

because g(z) vanishes at zero.
If a is any zero of f(z), it is also a zero of g(z). We now specify the branches

of the multivalued functions f and g by taking the determinations that are real
on the positive real axis and continuing them into the sector larg z =< re. (The
values on arg z r are, of course, different from those on arg z -re.) By the
reflection principle this branch of g(z) assumes conjugate values in conjugate
points. Therefore, if g(a) is zero, so is g(8), i.e., the right member of (C.1) vanishes
if a is a zero of f(z).

Let

Then

As

a [alei.

a3 3 2i[a[3 sin 3,

a3/2 3/2 2ila13/2 sin -.
r 2r 2re

(C.2) sin-.sin3<O in<<--, 3
< <rt’

the integrand in (C.1) is a purely imaginary function of in 0 __< _<_ 1, and its
imaginary part does not change sign there, when is in the sectors indicated in
(C.2). Hence, the branch of f(z) under consideration does not have zeros in these
sectors or their conjugates.

For re/3 and r one of the two terms in brackets in the integrand of
(C.1) vanishes, but not the other one. Therefore, there cannot be any zeros off(z)
on those rays, either.
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There remains the ray e 2n/3. From the structure of the series in ascending
powers of z for f(z) one finds that for z on that ray,

/(Izl eZ/). b(Iz[)+ e’/ac(lzl),
where b(Izl)> o, c(Izl)> 0 for all values of Izl, Hence, f has no zeros on
arg z + (2/3)n, and the proof of Lemma 6.1 is complete.

Appendix D.
Proof of Theorem 7.1. From (7.3) and Theorems 5.1, 5.2, as well as Corollary

3.2 and Theorem 4.3 one finds

PV P+ V+(C+)-IC

{I + eB.z}[e;
e- (i/)o

e- (iltK 0 e(ile)

where BT, B8 designate functions of and bounded for 6 G-, 0 < =< c0. If
the product in the right member is expanded the quotient in the right member of
(7.4) turns out to have the form below"

ep=
--i etil)(-2)(1 + eb) + e-til)b

e-til)(1 + eb) + e, etil)(-2)b

Here the letter b stands for some bounded functions of and e. From this the
formula (7.5) follows immediately.

Observe that Re i( o) < 0 in the interior of G-. Therefore the first right-
hand term in (7.5) is the leading term on $2 only.

REFERENCES

[1] G. KYORR AND D. PFmSCH, The variation of the adiabatic invariant of the harmonic oscillator,

Z. Naturforsch., 21 (1966), pp. 688-693.
[2] J. E. LITTLEWOOD, Lorentz’s pendulum problem, Ann. Physics, 21 (1963), pp. 233-242.
[3] E. C. LOMMEL, Studien fiber die Bessel’schen Funktionen, C. B. Teubner Verlag, Leipzig, 1868.
[4] R. E. MEYER, Adiabatic variation, Part I. Exponential property for the simple oscillator. Rep. 39,

Fluid Mechanics Research Institute, University of Essex, England, 1973.
[5] W. WASOW, Asymptotic Expansions for Ordinary Differential Equations, John Wiley-Interscience,

New York, 1965.
[6] Simple turning point problems in unbounded domains, this Journal, (1970), pp. 153-170.
[7] ., Adiabatic invariance ofa simple oscillator, this Journal, 4 (1973), pp. 78-88.
[8] G. N. WATSON, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press,

Cambridge, England, 1958.



SIAM J. MATH. ANAL.
Vol. 5, No. 4, August 1974

AN ELEMENTARY PROOF OF THE EXISTENCE OF SOLUTIONS TO
SECOND ORDER NONLINEAR BOUNDARY VALUE PROBLEMS*

J. S. MULDOWNEY AND D. WILLETT"

Abstract. An essentially elementary proof of the existence of a solution to the boundary value
problem x"= f(t,x), (x(0),x’(0))6A0, (x(1),-x’(1))A1, provided there exist functions , fl such
that "(t) >_ f(t, (t)) and fl"(t) <= f(t, fl(t)), where A0 and A1 are appropriate sets in R depending
upon and fl, is given. The boundary conditions in this case are sufficiently general to include all the
previous linear and nonlinear boundary conditions known to the authors (cf. the references). A similar
theorem is established for the periodic boundary value problem.

1. Introduction. A proof is given here of the existence of a solution to the
scalar differential equation

(1) x" f(t, x), a.e. e [0, 1],

which satisfies certain boundary conditions. The technique used is elementary
and employs only the Tonelfi procedure for demonstrating the local existence of
solutions to initial value problems and the intermediate value (preservation of
connectedness) theorem for continuous functions. The discussion is also ap-
plicable to equations of the form x" f(t, x’, x) provided some restriction, such
as a Nagumo condition, is irnposed on the growth of the derivatives of solutions.

2. Preliminary lemmas. Suppose

(2) a, fle ACtl)[O, 1], a(t)<= fl(t),

and

a">=f(t,e), fl" <=f(t,fl) a.e. te[0,1].

It is assumed that f(t,x) satisfies the Carath6odory conditions on the set
{(t, x):x [(t), fl(t)], [0, 1]}, i.e., f(t, x) is measurable in for each x, con-
tinuous in x for each and 2, A LI[0, 1], where 2(t) inff(t, x), A(t) sup f(t, x),
(t) <= x <_ fl(t). Define f(t, x)on [0, 1] R by

f(t, fl(t)), x >= fl(t),

(3) f(t, x)= f(t, x), a(t) _<_. x <= fl(t),

f(t, a(t)), x <= a(t).

Evidently 2(0 -<_ f(t, x) <= A(t).
LEMMA 1. If X" f(t, x) and a(i) <= x(i) <= fl(i), O, 1, then a(t) <= x(t) <__ fl(t),

[0, 1], so that x" f(t, x).
Prooj: If Its,t2] c [0, 1] and x(ti)= fl(ti), i= 1,2, x(t) > fl(t), t6(t,t2),

then z(t)= x(t)- fl(t), by (1), (2) and (3), satisfies z"(t)>= 0 for a.e. 6 It ,t2]
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z(ti) 0, 1, 2. Hence,

0 < z(t)

where

g(t, s)z"(s) ds, (t t),

(t2 t)(t S),
0 g(t, S)(t2 tl)--

[(t2 S)(tl t),

which yields a contradiction. Thus x(t)<= B(t), tel0, 1]; similarly x(t) e(t),
te [0, 1].

LEMMA 2. If X e AC(I)[O, 1 satisfies 2 <= x"(t) <= A for a.e. in [0, 1] and

ao e(1)- (1 s)A(s)ds, bo fl(1)- (1 s)2(s)ds,

a o{(0) sA(s) ds, b (0) $2(S) ds,
0

then

x(0) + x’(0) __< ao (_>_bo)= x(1) =< a(1) (>=fl(1))

x(1) x’(1) >__ al (__<b,),,= x(0) >__ a(0) (_<_fl(0)).

Proof. This result follows from the identities

x(1) x(0)+ x’(0) + f0
(1 s)x"(s) ds,

x(O) x(1)- x’(1)+ fo sx"(s) ds,

which imply

x(1) (1 s)A(s) ds __< x(0) + x’(0) __< x(1) (1 s)2(s) ds,
0

x(0)- sA(s) ds <= x(1)- x’(1) =< x(0)-- s2(s) ds,
0

respectively.
In Lemmas 3 and 4, Xo, X Yo, Y1 denote the line segments {(x, 0)’0 __< x

=< 1}, {(x, 1)’0 =< x =< 1}, {(0, y)’0 =< y =< 1}, {(1,y)’0 __< y =< 1} in R2, respec-
tively.

LEMMA 3. Suppose E, f are continua (closed connected sets) in J [0, 1]
x [0, 1] such that E f’l Xo, 52 f’l X, 92 f’l Yo, 92 f’l Y are all nonempty. Then
52 f] 92 is nonempty.

Proof. In the case that 92 is a Jordan arc which, except for its endpoints, lies
in the interior of J, it follows from the Jordan curve theorem that J 92 has two
components which are open (in J) and which would provide a disconnection of
52 if 52 f’l f (cf. [7, Thms. 11.7, 11.8, pp. 118, 119]). In general, since 92 is
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compact, it may be covered by a finite number of balls of radius e with centers
in f. Thus, for each e > 0, there exists a polygonal Jordan arc fc c S(fL e) lying,
except for its endpoints, in the interior of J with fc VI Yo 4: , fc f-) Ya - . By
the preceding remarks there exists a point (Pc, qc)e E 1"1 fc. Evidently, since E
and f are closed, the closure of {(Pc, qc)’e > 0} contains a point (p, q)e 2; f] f.

LEMMA 4. Let la be a real-valued continuous function on J [0, 1] x [0, 1]
such that #(x,O) <=O, #(x, 1) >__O, 0_<x_<_ 1. Then there exists a continuum
2; c/t-a(0) such that 2; VI Yo :/: , 2; VI Y1 :/: .

Proof The following proof is due to J. Timourian. Since the lemma is clearly
true if #(x, 0) -= 0 or #(x, 1) 0 we may assume without loss of generality that
there exist Xo, X [0, 1] such that #(Xo, 0) < 1, #(x a, 1) > 1. For k 1, 2, ...,
let ek > 0 be such that p((x, y), #-1(0)) < ek implies [#(x, y)[ < 1/k. The compact
set #-a(0) is covered by an open set Uk composed of a finite number of balls of
radius ek with centers in #-1(0). Further, ek+a may be chosen smaller than
p(lu- 1(0), c3Uk). Clearly, p(x, y) : 0 if (x, y) e J Uk. It is asserted that there
exist continua 2;k k, J 1,..., nk,nk -->_ 1, such that Ek VI Yo - , 2;k
f"l Ya - , where each 2;k is the union of some of the spheres used to construct
Uk. If this were not the case, since there are only finitely many such spheres, it
would be possible to find a Jordan arc in J Uk with (Xo, 0) and (x a, 1) as end-
points so that #(Xo, 0)< 0, /(Xl, 1)> 0 and the continuity of / contradict
#(x, y) 4:0 if (x, y) J U Each of the sets 2;kj, k > 1, must be a subset of some
member of the sets 2;aj so that at least one of the sets 2;aj contains infinitely many
2;kj as subsets and it is possible to find a nested sequence of continua 2;kj which
intersect Yo and Ya. The intersection of this sequence is a continuum 2; #-1(0)
(cf. [7, Thm. 5.3, p. 81]) and 2; f-) Yo 4: , 2; f-I Y1 4: .

3. Two-point boundary value problems. In Theorem let

Ji {(x,y)’0(i) <= x <= fl(i),ai <- x + y <= bi},

F {((i), y)’y < (- 1)i’(i)} O {(fl(i), y)"y > (- 1)fl’(i)}, 0, 1.

THEOREM 1. Suppose , fl satisfy (2) and, for O, 1, let fi be a continuum in
the set Ji which intersects both of the lines x + y ai, x + y bi. There exists a
solution x(t) of(l) such that

(4) (x(i), (- 1)x’(i)) f F, 0, 1,

and o(t) <= x(t) <= fl(t), [0, 1].
Proof Let e > 0 and consider the integral equation

x(t) p + qt + (t s)f(s,x(s e)) ds, e[O 1],
(5)

x(t) p, t(--e,O),

which is equivalent to the delay differential equation

x"(t) f(t, x(t e)), [0, 1],

x(t) p, x’(O) q, 6 (-- e, O].

Equation (5) has a unique solution x(t) x(t; p, q) for each (p, q) R2 and, for
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each e [0, 1], (x(t; p, q), x’(t; p, q)) is a continuous function from R2 to R2. Let

T(p, q) (x(1;p, q), -x’(1 ;p, q)).

Since T is continuous on Jo and fo is a continuum, T(o) is a continuum. Clearly
2(0 _-< x"(t) <= A(t), so that Lemma 2 implies al _-< x(1) x’(1) __< bl if(p,q)e fo,
and x(1) _< a(1) >__ fl(1)) if (p, q) e fo and p + q ao( bo). Thus T(fo) is a con-
tinuum in the strip a __< x + y =< b which intersects the lines x a(1), x fl(1),
and f is a continuum in the strip a(1)__< x =< fl(1) which intersects the lines
x+y=a, x+y=bl. By Lemma 3, T(fo) f"lf :/=5, i.e., there exists
(P,, q)o such that if x,(t) x(t; p, q,) then (x,(1), x’(1)) f. Sirtce {x,(t)} is
uniformly bounded and equicontinuous, there exists a sequence e(k) -+ 0 (k -+ )
such that Xtk)(t) converges to a solution x(t) of x"(t) f(t, x(t)). The sets fi are
closed so that

(x(i), (- 1)x’(i)) e fi implies (x(i), (- 1)ix’(i)) e fli.

It follows from Lemma 1 that (t) __< x(t) <_ fl(t), and hence

x"(t) f(t, x(t)).

It is not possible that (x(i),(-1)ix’(1))e Fi for i= 0 or i= 1 since (t)_<_ x(t)
=< fl(t)implies

(-1)i(x’(i)- o’(i)) >= 0

(-1)’(x’(i)- if(i)) <= 0

Therefore,

if x(i) a(i),

if x(i) fl(i),

i=0ori=l,

i=0ori= 1.

(x(i), (- 1)’x’(i))e , I-’,, i=O,1.

Generally, in a particular boundary value problem, the set is directly
generated from the ith boundary condition. In case this set fails to intersect the
line y + x a or the line y + x b, it may still be possible to satisfy this con-
dition without changing the conclusion (4) by including in the f of the hypotheses
an appropriate line segment from F. This fact is illustrated in the proof of the
following corollary.

COROLLARY 1. Let # be a real-valued continuousfunction on Ji such that

(6)

where

#i((i), Y)#i(fl(i), z) <_ 0 if y >__ i and z <= fli,

a’i max {(- 1)/’(i), a, a(i)},

fl’i min {(- 1)ifl’(i), b fl(i)},

for O, 1. Then there exists a solution x(t) of (1) such that

#i(x(i), (- 1)ix’(i)) O, O, 1,

and

a(t) <__ x(t) <_ fl(t), 0 <_ <_ 1.
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Proof. The condition (6) ensures that #(x, y) is of constant and opposite
sign on the line segments (or points) {(a(i), y)’y _>_ a’} (q J, and {(fl(i),z)’z <= fl’}
f’) J. Thus, Lemma 4 implies that there is a continuum Y, c #- 1(0) which inter-
sects {(x,y)’x + y a,} U {((i),y)’y <_ a’} and {(x,y)’x + y b,} 13 {(fl(i),z)"
z => fl’}, 0, 1. By taking, as f, the set Zi together with line segments from
the set

F {((i), y)’y < (- 1)i’(i)} (_J {(fl(i), y):y > (- 1)’fl’(i)},
if necessary (i.e., when E does not intersect one or both of the lines x + y a,
x + y b), the conditions of Theorem 1 are satisfied. Thus there exists a solution
x(t) of (1) such that (x(i), (-1)ix’(i)) fi Fi c El, i.e.,

i(x(i), (- 1)ix’(i)) O, O, 1.

COROLLARY 2. Let # be real-valued continuous functions on R2 such that
12i(x, y) is nonincreasing in y for each x. If a’i, fl are as in Corollary 1 and #i(a(i), )
<- ui <= #i(fl(i), fl’i), 0, 1, then there exists a solution x(t) of (1) satisfying

#i(x(i), (- 1)ix’(i)) ui, 0, 1,

and (t) <__ x(t) <_ fl(t), [0, 1].
Proof. Corollary 2 follows from Corollary 1 by replacing #i(x,y) with

#i(x, y)- ui; /,ti((i), t’i)- U --< 0 implies #i(0(i), y) ui <-_ 0 if y _>_ ’i and #i(fl(i),
fl’i) ui >= 0 implies #i(fl(i), y) ui >= 0 if y <_ fl’i, since #i(x, y) is nonincreasing
in y, and the conditions of Corollary 1 hold.

Theorem 1 is a generalization of results of Jackson and Klaasen [4], Bebernes
and Fraker [1 and Bebernes and Wilhelmsen [2] as these results apply to equation
(1). As applied in Corollaries 1 and 2, Theorem 1 also generalizes a result of
Erbe [3] who essentially proved Corollary 2 with the slightly more restrictive
condition

i((i), (-- 1)i’(i)) Ui 12i(fl(i), (-- 1)ifl’(i)).
Erbe’s result also includes as a special case a result of Kaplan, Lasota and Yorke
[5] which dealt with linear boundary conditions, i.e., conditions of the form

ax(i) + bx’(i) ui.

For such a condition, (6) will be satisfied provided b 4:0 and

(-1)liar(i) + b’(i) ui]b -1 >= min (0, (i) + (-1)i’(i)- ai),

(- 1)’[aft(i) + bfl’(i) ui]b- 1.<_ max (0, fl(i) + (- 1)fl’(i) (- 1)’bi),
or b 0 and (i) <= uia-1 <= fl(i), which is a generalization of the result in [5].

If the Kneser-Fukuhara funnel theorem is assumed, then Theorem 1 may be
proved directly by applying that theorem to (1) rather than working with equation
(5). However the argument is basically the same and no greater brevity is brought
to the proof.

4. Periodic boundary value problems. In Theorem 2 conditions are given for
the existence of a solution x(t) of (1) satisfying "periodic" boundary conditions

(7) #o(X(0), x’(0))=/l(x(1),-x’(1)), Vo(X(O),x’(O)) vl(-x(1),x’(1)).
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It is assumed that #i(x, y), vi(x, y) are continuously differentiable real-valued
functions on R2 such that

(//i //i (Vi (Vi > O,(8) cx’ c3y’ cx’ cy

(9)
c3x] +

c3yj
>0’ i=0,1.

For brevity, the notation

#ix =//i(x(i), (- 1)ix’(i)),
is used.

ViX Vi( 1)ix(i), x’(i))

LEMMA 5. Let x, y C1[0, 1], x(t) y(t); then

//iX //iY => (-- 1)ivix <--_ (-- 1)iviY, 0 and/or 1.

Proof. It will suffice to show that =//iY implies (-1)ix’(i) <= (-1)iy’(i),
since the conclusion then follows from (8) by using the mean value theorem. Since

0 //iX //iY -x(Xi, yi)(x(i)- y(i)) + (--1)i63//i
y(Xi, yi)(x’(i) y’(i))

by the mean value theorem, and

c3//i(xi, yi)(x(i) y(i)) < 0
c3x

by (8), we must have (-1)(x’(i) y’(i)) <= 0 in the case that (c3//dc3y)(x, y) < 0;
when(c3//i/c3Y)(Xi, Yi) 0thenx(i) y(i)and x(t) < y(t),t [0, l],implies(- 1)i(x’(i)

y’(i)) <= O.
THEOREM 2. Suppose o, [3 satisfy (2) and

//00 //10 O, // fl O,

VO VlO > O, VO- Vl < 0

and//i <-//ifl, O, 1, where//i, vi satisfy (8), (9). Then there exists a solution x(t)
to the boundary value problem (1), (7) such that (t) <= x(t) <__ fl(t), [0, 1].

Proof. Let H denote the set of solutions x(t)of (1)such that (t)=< x(t)
<= fl(t), //i <= <=//ifl, O, 1,//oX VoX >= V lX. H is not empty since,
by Corollary 2, there exists a solution x(t) of (1) satisfying (t)=< x(t)<= fl(t),
//0X //00, //iX //10 (SO //0X //i X since//06 =//10, by hypothesis). Also, by
Lemma 5, VoX >= Vo, vlx <= vl and therefore VoX >= vlx since VoCt >= vl by
hypothesis. Let

u* =sup{//oX’XH} =sup{//lx’x6H};
clearly//oa =//la =< u* _<_//0/3 =//1ft. Since H is uniformly bounded and equi-
continuous there exists a solution x H such that

(10) //oX //iX /2* > x.YoX Y1

It is asserted that this solution, in fact, satisfies VoX V lX, i.e., x(t) is a solution of
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the problem (1), (7). Suppose VoX > VlX; then u* < #off 1, since #oX #off,
/lx #lfl, by Lemma 5, would imply VoX <= Vo, vlx >= vl, and hence

VoX ])i X VO Vl 0

contradicting VoX > v ix. Replacing the pair 0,/3 in Corollary 2 by the pair x,/3
it is seen that the set lql of solutions y(t) satisfying x(t) _< y(t) <= B(t), u* < #oY

#lY =< ktofl =/lfl, is not empty and each such solution must, by the definition
of u*, satisfy voy < vly. Clearly u* inf {#oY’Y l-I1} inf {lY’Y II1} so there
exists a solution y(t), x(t) y(t) <_ (t),

#oY laly u* voy < vly

But since/oX =/lX u*, by Lemma 5,

VoX < voy, v lx >= v ly,

and hence VoX >= vlx which, by (10), implies VoX vlx.
COROLLARY 3. Let ai, bi, ci, di >-_ O, ai + bi > O, ci + di > O, O, 1, and

lix aix(i) + (-1)i+ lbix’(i), mix (-1)icix(i) + dix’(i).

Suppose

loa <= loft, 11 <-_ lift, Ioo 11, loft lift, moO >= mla, moil <=
then there exists a solution x(t) of (1) such that

lox llX, mox mix.

The case ai di 1, bi ci 0 has been proved by Schmitt [8]. All of the
results of the present paper may be extended to more general functional differential
equations by a technique developed by the authors [6].
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A REPRESENTATION FOR A DISTRIBUTIONAL SOLUTION OF
THE HEAT EQUATION*

H. D. MEYER{"

Abstract. A boundary-integral-boundary-sum representation for certain distributional solutions
of the heat equation in a finite cylinder with n-dimensional rectangular base is derived. The method
employed involves use of a duality principle at the boundary.

1. Introduction. In this paper we derive a boundary-integral-boundary-sum
representation for certain distributional solutions of the heat equation in a finite
cylinder with n-dimensional rectangular base. To do this we show that the
boundary trace, tr (u), of our solution u falls in the dual ’ of a space and that
the "Green’s" function which we use falls in . Since C solutions take the form
u(x, t) (tr (u), (x, t, .,. )), where ( .,. ) stands for the duality relation between

’ and , we extend both sides of this expression by continuity and obtain our
result.

In the literature there are various boundary-integral representations for
solutions of Laplace’s equation in R2--for instance, Herglotz (see [7, p. 323) and
Johnson [8]. Saylor [13], [14] has found similar results for more general elliptic
equations in bounded domains of R". He has used methods suggested by Cimmino
[1] and Lions and Magenes [10]. For the heat equation treated below, the ap-
proach is similar to Saylor’s. The procedure was suggested by results in another
paper by Lions and Magenes [11].

In addition to providing a characterization for distributional solutions, our
result is useful in that it can be employed in continuation procedures similar to
those in [2], [3], [4], [13]. These procedures are numerical in nature and can be
programmed. The possibility of using the representation in this way is what
motivated the present work.

In a future paper the author expects to extend the result of this paper to
parabolic equations with variable coefficients where the region considered is a
cylinder with an analytic manifold as base.

2. Preliminaries. In this and the next two sections, we carry over some
results of Lions and Magenes [11] for one dimension in the space variable to n
dimensions.

This is done to provide the framework for deriving our representation. This
work is included for the sake of completeness and because it is slightly different
from the work in [8].

Let H be the heat operator A c/c3t in R Rt, the Cartesian product of the
real n-dimensional and one-dimensional Euclidean spaces R and Rt. A typical
point in this space is (x, t)= (xl, ".., x,, t), with x representing the space co-
ordinate, the time. The operator H has adjoint H* A + /tt. Let fl be the
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based on part of the author’s doctoral thesis under Professor Jim Douglas, Jr. at the University of
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open subset C x (0, T), where C X-- 1(0, L), and the Lfs and T are positive.
The rectangle C has boundary cC and closure . We shall be interested in dis-
tributional solutions of the problem

Hu O inf,,

u u on ( x {0})LI (cC x (0, T)),
where the space to which belongs will be made more explicit later.

Let (f), (), and (C) be the usual spaces of infinitely differentiable
functions provided with the usual Schwartz topologies [16]. A similar definition
holds when f, , and are replaced by other spaces. Let ’() be the strong dual
of (C). By _(()) (see Schwartz [15], [17]), we mean the space of functions,
infinitely differentiable in t, taking values in (C) for each (0, T), and zero in
some neighborhood of T. This space has Schwartz inductive limit topology, and
by a proof similar to that in [11, p. 315], is reflexive. Let (_((C))’ be the strong
dual of _(@()). By a proof similar to that in [11, p. 3141, this dual can be seen
to be the same as ’+(’(C’)) (see Schwartz [15], [17]), the space of distributions
with values in ’(C), with support for contained in (T1, T) for some T1 > 0.
The functions and functionals of all the spaces above are complex.

We now define the spaces

(2.1)

(2.2)
’* {g[g 9_(9()), H*g 9(fl), g 0 on cC (0, T)},

f[f ’(fl), Hf 09’+(’(C))}.

The former is equipped with the weakest locally convex topology for which the
mappings g --+ g of ocg* into 9_(9(t)), and g H*g of Jg* into 9(Q) are con-
tinuous, and the latter with the weakest locally convex topology which makes
the maps f --+ f of into 9’(D), and f Hf of a into 9’+(9’(C)) continuous.
A proof similar to that on p. 311 of [11] shows that if* is an LF space in the
sense of Tr6ves [20, p. 126], i.e., a countable strict inductive limit of an increasing
sequence of Fr6chet spaces.

Further, let us define the linear boundary operator on * given by

(2.3) bn (g) (g(x O)cg(O’Xz’"’’Xn’t) Og(xl Xn- Ln’ t))X

g o/{’*,

with values in 9(C-’) Xj= 19-(9({’j)) )< Xj= 19-(9(Cj)) 9, where

Cj

This in turn leads to a linear operator bno given by bno(go) bn (g), go ,
with g any member of go, N the null space {g ff*lbn (g) 0}, and )(f the
quotient space */N.

We now set out to define a space c 9, which will turn out to be the image
of bno in 9. Let o be the space of infinitely differentiable complex-valued
functions, go(x), on C" such that there are positive constants A and B, varying
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with each go, for which

(2.4) ]Akgo(X) < ABk (2k)
k!

forxC,k 0,1,....
Supposing B to be fixed, take as the subspace of those functions which

satisfy (2.4) for this B. A norm on this space is given by

(2.5) gollo SUPx, k)!BlAg(x)l

which makes N a Banach space.
Let M, j 1, ..., n, be the space of infinitely differentiable complex-valued

functions, gj(x,..., xj_,x+,..., x,, t), on Cj x [0, T], such that the gj’s
are real analytic in all variables in a neighborhood of 0, are zero in a neigh-
borhood of T, and satisfy for positive constants A and B, depending on gj,
the relation

(2.6) + A ga(x,a, t)

for (x,a, t) 6 C [0, T], k 0, 1, where

and

<= AB2k(2k)

X,j (X1, Xj_ 1, X’j+I,’’’’ Xn)"

Fixing B, we define 3f to be the space of all functions ga in a, which for this
fixed Bsatisfy (2.6) and the additional requirements

(2.7) IgtJ’)(x , t)l -< ABIKta)l +’K(j)! k!

for (x,j, t)e a x [0, 1/B], all K(j), k O, 1,...,

and

(2.8) ga(x,a, t) 0

on C (T- I/B, T]. The standard conventions for multi-indices are used here
and in what follows. If K (K1, K2, "., K,) and N (N 1, N2,’", Nn) are
multi-indices, then Ku KUlK... KnNn, K! K .lK2 I.... Knl., ]KI K1 + K2

+... + K,, and o o o In (2.7)IK1-0 K =0 K2=0 Kn=O

_) kgj,
where K(j) (K 1, Ka- 1, Kj+ 1, K,). Condition (2.7) brings into account
the analyticity of our functions in the vicinity of a x [0}. In condition (2.8) we
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have assumed T large enough so that T 1/B is positive (if this were not so we
could use T- limb instead, with m a sufficiently large positive integer). We
make a Banach space with the norm

I I(g SUkP s_up B + A
Ix,j.,)cto,rl (2k)! gJ

(2.9)

+ sup sup
(, ,,oGo,/ j)kB

Take as the subspace of o x Xj=I(j x j) made up of vectors
(go, g l, g’, "’", g, g’) which satisfy the conditions

(2.10)
32kgo(X,j, O) 32kgo(X,j Lj)
xy x]

O, x,; C;,

32k+ gO(X,j, 0 (3 )k(2.11)
cxj2,k+ (- 1) + A gs(x,, 0), x, e C,

c32k + go(X,j, Lj) 1)k +(2.12)
Xk+

(2.13)

i + a g)(x,, o), , c,

/ Aj gj(x,j,l t) / Aj gj(x,j,l t) 0, x,j,l e Cjl

(2.14) - + Aj gj(x,j,l t) - / Aj gj(x,j,l x,j,l

t; glI,X,l,j t) --,(2.16) 2kgl(X’,l,j, t) -2k

xyk xyk
--0, Xt, l,j. flj, # j,

k( t )kgj(X,j,l’g) 2k+lgl(X,l,J’g)_
(2.17)

(- 1) / Aj cxt Oxyk+l
l# j, X,j, eCjl X,l,jeClj (X,j,l)m--(X,l,j)m m--1,...,n, m

(2.18)
(- 1)k - / Aj) kgj(x’j’t’t)-32k+1g’t(x’l’j’t)Xtxk+

l# j, X,j,lCjl X,l,jClj (X,j,l)m--(X,l,j)m m= 1,...,n, m=/=j,l,

l=/=j,

(2.19)

(2.20) - / Aj) g(X,j,l,xl t) 2k +xkl gl(X:l,j,+ t)

X,j,l e Cjl Xl, l,je Cflj, (X,j,l)m (X1,l,j)m m 1,..., n, m # j, 1,

(- 1) -t / aj) 3g)(x:j,l,xl t) t02k+Xk+11g’l(x:l’j’ t)

--! --Ix’,j,e Cjt, x,,je Ctj, (x ,j,l),, (X’,,j)m, m 1,..., n, m # j, l,
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where in the above j, 1, ..., n, k 0, 1, Also, we have written x (x1,
.., x,) as (x,j, xj) on the left side of (2.10), (2.11) and (2.12), and have taken

X,j,l (X1, Xj_ 1, Xj+I’ XI-1, O, XI+I, Xn) X,j,I’ (X1, Xj_ 1,

xj+ ,..., x_ 1, L, x+ 1, ""., x,), Cj [0, L1] x... x [0, Lj_I [0, Lj+ ]
x [0, L_J {0} x [0, L+] x... x [0, L,, and Cj= [0, L] x

[0,Lj_I] [0,Lj+I [0, L_] {Ll} [0, L+] [0, Ln]. The
quantity (.)m is the ruth component of the designated vector.

Topologize M by considering those functions belonging to

j=l

and satisfying (2.10)-(2.20), for fixed B. These functions comprise a Banach space
since they form a closed subset of ’g x X=I(Y x ) which is a Banach space
when provided with the product topology. Now ’* c for B =< B2, and the
injection from ’ into is continuous. We write U= ’, and give ’the inductive limit topology [20, pp. 514-515J which makes it an LF space.

The elements of ’, the dual of , have no simple description. However,
following the lead of [11, p. 334], we can give a representation which does not
include all functionals in ", but which is sufficiently general to be worthwhile.

o!Take (j [0, L,J x... x [0, Lj_I] x {0} X [0, Lj+ 1] X X [0, L,] and Ca
[O, L1] x x [O, Lj_ x {Lj} x [O, Lj+x] x x [O, LnJ.
LEMMA 2.1. Let {,}, {,/}, {,}, {’r,i)} and {,tg)} be sequences qf Borel

measures on C, C x [0, T], Cj x [0, T], C, and Cj, respectively, withj 1,..., n,
satisfying

k
for all B > Ovar(g) O

Ba(2k)

var (g), var (g) O
Ba(2k) e(r_ /m for all B > O,

var ((), var () O
BIIK(j) for all B > O,

for all O, 1,..., all K(j). Let {M} and {M}, j 1,..., n, be sequences of
complex numbers which make the sums =oMz and =o M2z entire functions.
If g (go, g, g’, "’", g,, g’,) is any element in , then L as given by

k=0 j= /=0 =0 [0,T]
+ Aj gj d{

+ e

(2.21)

j IKtj 0 k= 0 k dK(J)

i fci M’j"’(K(j)’k)’xO)
+ J ,j,

= )1=o =o k d)

is a continuous linear functional on



SOLUTION OF THE HEAT EQUATION 713

The symbol j in #l, M, etc., is a superscript, not an exponent. The lemma is
easily verified and will not be proved here.

3. A trace theorem. Let the boundary trace, tr (u), of a function u in @(f),
be the map from @() into @(C) X.= x(@(Cj [0, T]) (Cj 0, T]))
given by

(3.1) tr (u) (u(x, 0), u(x,1,0, t), u(x,1, El, t), ..., u(x,,, L,, t)).

If duality is defined by

(tr (u), g) u(x, 0)go(x) dx + u(x,, 0, t)g dx(j) dt
j= (0,T)

,/C"j (0,T)

for any g (go,gl,g’l,’", g,,g’,), with dx(j) dxl dx_ dx+ dx,,
then tr (u), for any u e @(f), is seen to be a continuous linear functional on

THZORZM 3.1.The map tr of @() into (C) x Xj=(@(C x [0, T])
x [0, T])) can be extended by continuity to a continuous linear map of gzf into ’,
where )of has the weak a(vd’, )of’) topology, and ’ the weak a(’, ) topology.

We omit the proof of this. It is the same as the proof of Theorem 4.1, [11,
p. 318]. However, we do present several results which are used in place of
analogous results in [11]. For the proof of Theorem 3.1, the quantities bno and
f must be substituted in place of . and Y which appear in

LEMMA 3.1. Let Uo(X satisfy

(2k)!
(3.2) IAu(x)l =< ABk k!

x D, k 0, 1, ..., for positive A and B, D any compact subset of R. Then for
some r/ > 0, there exists a unique analytic solution to the heat equation, Hu 0, in
D (-r/, r/), which satisfies u(x, O)= Uo(X) on D. Conversely, if there exists an
analytic solution u(x, t) of the heat equation in D (-rl, rl) for some r/ > 0, then
u(x, O) satisfies (3.2)for x D.

Proof This is suggested by work of Goursat 5, 541]. Pick 0 < r/=< 1/(4B).
The function

(3.3) u(x, t) o= Aku(x)k! t’ x C, -r/ < < r/,

is a solution of Hu 0 in D (-r/, r/), and satisfies u(x, O) Uo(X) on D {0}.
Convergence of the sum is a consequence of (2.18) and the bound on r/. A C,
infinitely differentiable, function f is analytic in D if and only if for some positive
constants A and B it satisfies the relation

(3.4) IAUf(x)l =< ZB(2k)!
for x D, k 0, 1, (this is easily derived with the help of Theorem of Kotake
and Narasimhan 9, p. 451]). By (3.2), u0 fulfills condition (3.4) in D, and is thus
analytic. This means that u(x, t), as given by (3.3), is also analytic. The solution is
unique by Holmgren’s theorem.
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Next let us assume that u(x, t) is an analytic solution in D x (-r/, r/) for some
r/ > 0. Then

ck (2k)!IAu(x, 0)1- --u(x, O) <= ABkk <= AB k

for x e D, and positive constants A and B, where the second line above results
from the analyticity in of u. The lemma is now proved.

Of the three lemmas that follow, the first two are needed only to prove the
third. Proofs of these are either essentially the same (Lemmas 3.3 and 3.4), or
suggested (Lemma 3.2) by proofs in [111 for the one-dimensional situation.

LEMMA 3.2. The operator bnt? maps onto .
Proof. It suffices for the demonstration of our result to prove that bn maps

o* onto . First let us show that bn maps Yf* onto .
For any g *, we can take g(x, T) 0, x C, since g is zero in a neighbor-

hood of T, and we also have H*g g* in fl where g* (f). Let us take g*’(x, t)
as the function defined for all x R, which is periodic in each x with period 2L,
j 1, ..., n, and which satisfies

g*’(x, t) g*(x, t), x (,

g*’(X t) g*(X1, Xj_ 1’ Xj, Xj + 1’’’" Xn t)
for 0 _--< x <= Lk, k v j, -Lj <_ xj <- O, j 1, ..., n. Consider the solution

(3.5) g’(x,t)=- rf f_o exp {_[ xl2/[4(z
"/2 g*’(, z) d dz

of

H*g’ g*’, g’(x, T) O,

in x e R", < T, which is antisymmetric in x about x 0, and in L + x about
xj L. It fulfills the requirement g’ 0 on c3C x (0, T), and thus satisfies, by
uniqueness, the relation

g’(x, t) g(x, t), (x, t)e n.

We shall now consider the function g’ in place of g. Note that g’ is C since
g*’ is C. Also, it is equal to zero in a neighborhood in of t7 T}. Thus on

!each tj [0, T] and Cj [0, T], j 0, ..., n, g’ is C and it is zero in a neigh-.,
borhood of T for x in j and Cj.

In some neighborhood of Cj [0, T], t3g’/c3xj, j 1, ..., n, satisfies
H*(c3g’/3x) O. Thus,

(3.6)
2k g,
(X X,j =< ABZk(2k) I.,

for positive constants A and B, depending on 3g’/dxj. The inequality follows from
the fact that such solutions satisfy

c3g’ (K,k)

<= AB2k+ 2lKl(2k)
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in ffj [0, T] for all K, k 0, 1, ..., where (2k)! (2kl)! (2k,)! (see [19,
!Thm. 7.9, p. 446]).A similar result holds on Cj IO, T],j 1, ..., n, for -c3g’/3xj.

In some neighborhood R, (-q, r/), r/ > 0, of R, {0}, g’ is a solution of
H*g’ 0, and such a solution is analytic for all points (x, t) in the region. Thus, in
respective neighborhoods of 0, Og’/c3xj is analytic on j [0, T], and.,
-c3g’/cxj is analytic on Cj 0, T], for j 1, ..., n. From this and remarks in
preceding paragraphs, we see that for (x, t) 7 x [0, T], g’/cx belongs to ;

"!similarly for -8g’/&j, (x, t) e C x [0, T].
Further, by virtue of Lemma 3.1, analyticity in R" (-r/, r/) implies that g’

satisfies

Bk(2k)(3.7) IAkg’(x, 0)l =< A k!

for x C, k 0, 1, ..., and positive constants A and B. Thus, g’(x, 0), x C,
belongs to M0.

Next note that since g’ satisfies the equation H*g’ 0 in all the pertinent
regions,

(3.8)
2kg, k( )kg,cx (-1) +Aj -0

2k+ lg,
(3.9)

xk+l
(-- 1)k+l

on (j x {0})O (7 x {0}),

(2k’+ lg,
(3.10)

axk+
(- 1)k+x

(3.11) (t cg’
)k
t2k + lg’

0

on Ca {0},

-axjl onC; {0},

on Djl U Djl
[,.J Dlj U Djl, j 4: l,-- -t- A ax a.j-g-’- --g aX on D [,J D [J D [_J D j g 1,

for j,l 1, .-., n, k 0,1, ..., where we have taken Dig--[0, L1]
X [0, Lj_ 1 x {0} x [0, Lj+ 13 x x [0, Zl_ 1] x {0} x E0, El+ 1] x x E0, Ln]
x [0, W], DSl- [0, L1] x x [0, Lj_I] x {Lj} x [0, Lj+ 1] x x 0, LI_I]
x {0} E0, LI+ 1 x x 0, L.] x [0, T], D)’ E0, L13 x x E0, Lj_I]
x {Lj} x E0, Lj+ 11 E0, L/-1] x {LI} E0, L/+ 1] x x EO, Ln] E0, W
Furthermore, since 8g’/8x is antisymmetric in xj about xj 0, and antisymmetric
in L + xa about xj Lj, j 4= 1, we have that

I.l) ax Ux,/ 0 on , , , ,, j # ,
forj, 1,..., n.

Comparing (3.8)3.13) with (2.10)2.20), we then see that bn (g’), and thus
bn (g), belongs to . Hence, bn (*) c .

Next, we show that bn(*)= , or in other words, that given any
(go, g i, g’, "’", g,, g’,) e , there is a g(x, t) * such that

(3.14) g(x, 0) go(X),
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(3.15)
g(x1, "’’,Xj_I,0, Xj+I, Xn’ t)

gj(x1, Xj_ 1, Xj+ 1, Xn, t),

--g(x1, Xj_ 1, L, x+ 1, Xn, t)
(3.16) c3x

g(x1,""’ Xj_ 1, Xj+ 1, "’"’ Xn, t), j 1, ..., n.

Let us construct such a g(x, t). Assume each g e M, g} e N’). Set

(3.17) Gl(X, t) (- 1)(?/?t t)x21+ 1,+ A1)/gl(x,1,
=o (2k + 1)!

for (x, t) e [0, 1/B) x [0, L2] x x [0, L3 x [0, T], and

(3.18) G2(x,t) 2 (--1)k(c3/tt t)xk+l+ A2)g2(x,2
=o (2k + 1)!

for (x, t)e[0, L1] x [0, l/B2) x [0, L3] ... X [0, Ln] X [0, T]. These are each
solutions of H*g 0 in their respective regions, with the first also satisfying
GI(0, x2, .", x,, t) 0, (OG1/3x)(O, x2, .", x,, t) gl(x,, t), and the second
satisfying G2(x 1, O, x3, .’., x,, t) O, (c3G2/C3Xl)(Xl, 0, x3, ..-, x,, t) g2(x,2, t).
Note that since g is analytic in some neighborhood of 0, as is g2, there exist
rll,rl2,0 < rll <= 1/B,O < 12 <= 1/B2, such that G1 is analytic in [0, 1/B)
x [0, L2] x... x [0, L,I x [0, r/1 ), and G2 is analytic in [0, L1] x [0, l/B2)
x [0, L31 x x [0, L,] x [0, r/2).

In [0, 1/B) x {0} x [0, L31 x... x [0, L,] x [0, rl, using (2.13), we have

GI(X1,0, x3, x,, t) O,

and using (2.17) and (2.15), we have

G
Xx(X1,0, X3, "’, Xn, t)

=o
(- 1)(a/c3t

(2k + 1)! x21+’+ A1)kgl(X,l,2, t)/cqx 2

k (2k+ lg2(X,2,1, t) xk+
=0 (2k + 1)! -1 g2(x,2, t).

Similarly, we have G2(0, x2, x 3, x, t) O, (t3G2/C3Xl)(O, x2, x3, x, t)
--gl(X,l,t), in {0} x [0, 1/B2)x [0, g3 ... [0, L,] x [0, W1.

We can also write, using (2.10) and (2.11),

ck+ lgo(X,1 0) X,2/(3.19) Gl(X, 0)
=o (2k + 1)I. ?-vi

+ go(x),

for x in [0, 1/B) x [0, L2 x x [0, Ln], and

2+ 1go(X,2,0)X2(3.20) G2(x’0)
(2k + 1)’ 3-22-f

+ go(x),
k-=O

for x in [0, L] [0, 1/B2) [0, L3] x [0, Ln]. Thus, by uniqueness, G and
G2 match up in [0, 1/B) x [0, 1/B2) x [0, L31 x x [0, L,I x [0, T].
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n th other sides of our domain, we construct similar solutions, G3,
G,, G1, G’,, which match up with each other in their common regions. Cor-
responding to these solutions are r/j s and r/j s of the same nature as r/1 and
above.

By Lemma 3.1, there also exists an analytic solution Go(X, t) in C [0, r/o),
for some r/o > 0, which satisfies Go(X, t) go(X). There exists an such that all
the Gj and G), j 1, ..., n, are analytic for [0, ). Recalling (3.19) and (3.20),
using the uniqueness of our analytic solutions, and now defining Go only for

[0,0), with 0 min (r/o,0), we have that Go and G, G match up in their
common regions.

Define ((x, t), (x, t) e , as some C function which is zero in Jr/l, L r/’l]
x... x Jr/,, L,- r/’,] x [0, T], and one in f- (r/1/2, L -r/’1/2) .." (r/,/2,
L, r/’,/2) x (0/2, T). The function

(6 in[0, L1] x x [0, Lj_I] x [0,1/Bj) x [0, Lj+]

g(x, t)

x... x E0, L,] x [0, T],

(G) in [0, L] x x [0, Lj_ 1] (Lj 1/Bj,
X [0, Lj+I] X X [0, L.] x [0, T],

in C x [0,

0, elsewhere in f,

belongs to Yf* and satisfies (3.14)-(3.16). Thus, the map bn is onto, and the lemma
is proved.

LEMMA 3.3. The operator bnQ is continuous.

Proof. By Theorem B.2 of [6, p. 17], the closed graph theorem holds for
maps of J* into N. The map bn’o* C(C’) Xj_-l(C(0j x [0, T]) C(0

[0, T])) is continuous by the definition of ,*. This leads to the result that
the graph of bn is closed in J* x N, and it then follows that bn, and hence bnQ,
is continuous.

LEMMA 3.4. The map bn is continuous.

Proof. This follows directly from [6, Thm. B.1, p. 17] by virtue of the results
in the last two lemmas.

In proving Theorem 3.1, we use the final result above, i.e., Lemma 3.4, and
the following two additional pieces of information. The first is the fact that @(f)
is dense in Jr. This follows by virtually the same proof as for [11, Prop. 4.1, p. 3161.
The second is the Green’s relation,

dx(j) dt
j= (O,T) cXj

g

(3.21)

cf dx(j)dt
j= (O,T) 63Xj

g

fd c3g x(j) dt
j= tO,T) Xj

j= (O,T)
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where f e (f), g e _((f)).

4. The function f#. The solution u(x, t) of the heat equation for f can be
represented in the form

u(x, t) G Uo() d + uj(,j, z) d(j) dz
r=0 j= j:0(4.)

G
u(, r) d(j) dr,

where

Uo() u(, 0),

blj(,j, 75) U(I, j_ 1’ 0, j+l’ n,
LjIAj(,j,75) /A(l, "’’, j-l’ j+l’ ,n,75),

for Uo, uj, u continuous, and Uo(,j, O) uj(,j, 0), Uo(,j, Lj) u(,j, 0), uj u
on Djl [0, T], blj bltl on Djl [0, T], L/j L/l on Djl j :/: l, j, 1, ..., n. (See
18, p. 528], for the discussion of this in the one-dimensional x-space case.)

In this expression, G is the Green’s function

(4.2) G(x, t; , z) (- 1)ltlF(x, t; {M, K), 75),
M,"’,Mn=O K

where F is the fundamental solution

[ 2=l(Xj-j)2]4(t 75)
(4.3) F(x, t; , 75) 12,/1" (t 75)-,/2 exp

and ’(m, K) (.1(M1, K1), ..., ,(m,,K,)),for mj O, 1, Kj -, ..., +v,
and j(O, Kj)- 2KjLj + j, j(1, Kj)= 2KjLj- j, j 1,..., n. The series
defining G is seen to be convergent, when one uses the inequality

(4.4) e < p !/xp,

p 0, 1, 2,.-., x > 0, with p 1. Indication of how this is done appears in the
course of remarks below.

Let us make several comments about G. The first is that for fixed (x, t)
G is a solution, as a function of and 75, of H*g 0, for R", 75 < t. To see this,
we note that it can be verified by direct substitution that each of the F(x, (M, K),
75) is such a solution for all M and K. We define

A(o, r/, to) {(, 75)[1,- (o),l < r/, l: 1,..., n, 75 < o < t},
where 0 < r/__< mint L, and o is any point in R" with (o) its /th component.
Using (4.4) with p 1, each F(x, t; (M,K),75) can be seen to have bound
o/K’(M)2. The quantity K’(M) is the multi-index which has components K’ K,
except when K 0, or when K is an integer equaling (x )/(2L,) ifM 0, or
equaling (x + )/(2L) if M 1, for some l in our region (at most, one such K
will exist for each of the values of Mr). In these latter cases, we take K’ 1. By
K’(M)2 we mean (K’. K... K’,)2. Also in the above, is a constant which
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depends on r/and o. Because of the above bounds, the sum for G converges uni-
formly in any of the open sets A(o, r/, to). Similarly, the sums of each of the
derivatives c3/c3, c32/c, l= 1,..., n, (3/(3t of F(x, t; (m, K), r) using (4.4) with
appropriate choices of p, can be seen to converge uniformly in these sameregions.
Thus, G is a solution of H*g 0 in any A(o,rl, to), and hence in all of
{(, )1 < t}.

This solution is obviously C, and clearly all of its derivatives (8/8)u(8/Sr)G
(8/)u‘... (8/8,)"(8/Sr,)G, all K, k O, 1, are also solutions, and C.

Furthermore, these derivatives are represented by the sums of the respective
derivatives of the terms of the series (4.2), since they can be shown to be uniformly
convergent.

Next, let us show that G, for a fixed (x, t)
and < t. To see this, let us consider for a moment that and z are complex,
writing r + ii, "c "c -+- i’c i, and l 7 "- i, 1, ..., n. Define A(o, r/,
0, to) as the open subset of C"+ 1, complex (n + 1)-dimensional space, given by

A(o q, to)= {(
where r/, o and to are as before, and min {min/(x/t- to/2)Ll, mint 1/2LI}.
Looking upon F(x, t; ((M, K), r), now, as a function of complex rather than real
and z, we see that IF(x, t; [(M, K),

e A(o, r/, , to). In the preceding, fl is a positive constant depending on r/, and
to, and K’(M) and K’(M)2 are the same as before, only with l there replaced by. Thus, in each of the open sets A(o, r/, , to), the series for G is uniformly con-
vergent. Further, each of the F(x, t; ((M, K), r) is complex analytic. As a uniformly
convergent sum of analytic functions, G is a complex analytic function in each of
the A(o, r/, , to). Taking 0, r 0, we see that for and r now considered
real, G is analytic in {(, )Il (o)/[ < r/, 1,.-., n, r < to} for all o, and
hence G is analytic for all e R", < t. This further implies that all derivatives
(c/c3)(c3/r)G, all K, k 0, 1, ..., are also analytic for such

Lastly, let us take C(r/) IJ
j= l(Cj(r/) IJ C(q)), where

c/) (-

x (-r],Lj+ -+- 11) X x (-rI, L, + rl),
and

C)(r/) (--t/, L 4- r/) x (-r/, Ls_ + r/)

x (Lj- r/,Lj + r/) x (-r/, Lj+ q- r/) x x (-r/, L, r/).

For fixed (x, t)e f and any r/ such that 0 < r/< max/{max (Ix/I, ILl- x/I)}, we
have that (C3/C)K(C3/C3r)kG 0, uniformly in C(r/), for all K, k 0, 1, ..., as r T t.
This is easily seen by looking at each (c/c):(O/c3r)kG and bounding the individual
terms in the sums that represent these functions. Using (4.4) for appropriate
choices of p, for any pair of (K, k), there will be some positive exponent m(K, k),
depending on K and k, such that (t/)K(c3/r)kG O((t- T)m(K’k)), uniformly in
C(r/) {r < t}, and this goes to zero as z T t. Hence, the function given by G in
C(r/) {z < t}, and by zero in C(r/) {z __> t}, and all derivatives of this function,
are solutions of H*g 0 in C(r/) R.
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(4.5)

If we define the function a (o, 1, eft1, ..., ,, ,,) by specifying

(4.6)

o(X, t; ) G(x, t; , 0),

cG(x, t; ,j, O, z)

(x, t; ,, r)
O,

cG(x, t;

(4.7) )(x, t;

0,
j 1, ..., n, then (4.1) takes the form

(4.8)

0__<r<t,

t<=r<=T,

0=<r<t,

t<=r<=T,

u(x, t) oUo() d + uj({,j, r)&(j)dr
j=l

(}u’j(,j, r) g(j) dr.

By the remarks of the past several pages for G and its derivatives, employing
Lemma 3.1, and making use of properties of solutions of H*g 0 in the pertinent
regions, it is not hard to verify that we have the following lemma.

LEMMA 4.1. For each fixed (x, t) efL ((o, if1, if’l, ,, ’,) is a member
of.

5. The representation theorem. Particularized to our situation, Malgrange
[12, pp. 292-294], has proved the following theorem.

THFOREM 5.1. The space of polynomial solutions of Hu 0 in f is dense in

{u (t2)lHu 0} provided with the g() topology.
In the above g(t2) is the space of complex-valued infinitely differentiable

functions in f with the usual Schwartz topology.
Let us define

(5.) o (ulu e ’(n), Hu 0}.
Since all such distributional solutions of Hu 0 in f are C in this region,
elements of oo can be considered as C functions in f. Further, the polynomial
solutions in the theorem can be considered as @(f) solutions of the equation. We
thus have the following lemma.

LEMMA 5.1. o (-I () is dense in o provided with the g() topology.
By (4.8), any u(x, t)in o iq @(), (x, t)e t2, can be written

u(x, t) oU({) d{ + %u({,j, O, r){(j)dr
j=l

(5.2)

+ ()u(,j, Lj, r)g(j)dr,
j=l

or alternatively,

(5.3) u(x, t) <tr (u), CS(x, t;.,. )>,
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with tr (u) (u(, 0), u(,l, 0, z), u(,l, L1, r), u(,,, L,, r)) considered a con-
tinuous linear functional on M, and the brackets representing the duality relation
between ’ and M. Let u be any member of Jfo that has trace tr (u)e ’ of form
(2.21). By Lemma 5.1, corresponding to each such u, there is a sequence {uk}
c Yfo fl (f), such that uk(x, t) -+ u(x, t) in o(), and

(5.4) uu(x, t) (tr (u0, C(x, t;.,. )).

Further, the fact that u --, u in g(f), implies that u u in the a(W, 2,f’) topology.
Thus, by Theorem 3.1, the right-hand side of(5.4)converges to (tr (u), a(x, t;., .)),
where tr(u) now has the form (2.21), and does not necessarily belong to
@(() x Xj--I((Cj x [0, T]) x @(Cj x [0, T])), as does uk. Since the left-hand
side of this same relation goes to u(x, t), we then have

u(x, t) (tr (u), if(x, t;.,. ))

for (x, t) e f. By a result analogous to that given at the top of [11, p. 333], for any
e N’ of form (2.21), we have that there is a unique u in 4,0 for which tr (u) ti.

We have proved the following theorem.
THEOREM 5.2. Let u @’(f) be the unique solution of Hu O, with the initial-

boundary condition prescribed by requiring that tr (u) be a particular functional in

’ ofform (2.21)for some choice of (u}, {M,"}. Then u can be represented as

u(x, t) o ACo(X, t; ) dp()
k=

j=l l= k=O [O,T]

/
j= l= [O,T]

j= IK(j)I 0 0 k

+ do)({,j)
j=l ]K(j)I=0 k=O k

where the notation is that defined previously, and the operations A, Aj, etc., are
performed with respect to , , and r.

The above is the boundary-integral-boundary-sum representation we set
out to derive.
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THE REDUCED WAVE EQUATION
WITH A DIFFERENT RADIATION CONDITION*

CHIN-HUNG CHING"

Abstract. An existence and uniqueness theorem is presented for an exterior Dirichlet problem
for the reduced wave equation with a radiation condition different from the usual one. The techniques
involve an inequality of Morawetz-Ludwig used in appropriate function spaces along with spherical
harmonics.

1. Introduction. Let E be the domain in R3 exterior to a finite smooth
boundary c3E which is star shaped with respect to the origin, i.e., for some fl > 0,
x. n >_ fl for any point x on c3E and the normal n from c3E to E at x. As usual,
(r, 0, b) denotes the spherical coordinate of a point x. We define

c3u u
Du iu 4--

The following lemrna follows from Lemma 5 of [4].
LEMMA A. Suppose u has continuous derivatives in F E [_J c3E, vanishes on

c3E, and satisfies

(1) lim f RIDul 2 ds O.
R dlxl =R

Here ds is the surface element on the sphere xl R. Then

ferule- fi -finn ds + IVul 2 lull 2 4- lVu[2 dx =< 2 r2lAu 4- u[ 2 dx.
E

We remark that with a slight modification of the proof of Lemma A in [4],
we can replace (1) by the weaker condition,

(2) lim f RmIDul 2 ds 0
R,.-o dlx]

for some sequence R,, tending to infinity. In view of Lemma A, we introduce the
function spaces A and R. A is the completion of the space of all infinitely differ-
entiable functions u with compact support in E under the norm

(3) ull- f (IVul 2 -lurl 2 4-IOul 2) dx.

R is the space of all functions f in E which satisfy

f I r2lf[ 2 dx < oo.
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724 CHIN-HUNG CHING

It is clear from the definition of A that the functions u in A satisfy the radiation
condition (2). In this paper we use Lemma A, the projection theorem and the
spherical harmonics to obtain the following theorem.

THEOREM. For each f in R, there exists a unique function u in A such that

Lu Au + u= f.
There is a vast literature about solutions of the reduced wave equation with

some other radiation conditions. For example, existence and uniqueness of
solutions satisfying

lim r iu 0

can be found in [5, [6] and [7]. Recently, Levine [3 extended Rellich’s unique-
ness theorem to functions satisfying

(4) lim
cu

iu ds 0

in a region exterior to a regular closed surface; however, the sufficiency of the
integral form (4) was made clear in Rellich’s proof. Previously Wilcox explicitly
used this integral form in [8] with stronger regularity conditions. Using Levine’s
result and the Fredholm’s theorem, P. Wolfe [9] proved the existence of the
solution with the radiation condition (4) in the two-dimensional case. The result
of the paper is stated in three-dimensional space, but the proofs can be easily
modified to work in R" for n _> 2.

2. Characterizations of wave functions in R3 and outgoing wave functions. In
this note, we call u a wave function in a region G if u is infinitely differentiable and
satisfies Lu Au + u 0 in G. Let w be a continuously differentiable function
in a neighborhood of infinity, w is defined to be outgoing if w satisfies (1).

LEMMA 1. If U is outgoing and continuously differentiable in Ix] >= ro, then u

satisfies
lul 2 ds o(R logR).

=R

Proof. Letting x and x0 lie on the same ray from the origin, r Ixl and
ro Xo, we have

ru(x) e -i roU(Xo) e-i (tu e-it)t dr.

Application of the Schwarz inequality and the triangle inequality yields

2r3 r2lu(x)12 - IDul z dt + 2r2olU(Xo)[ 2

so that for R tending to infinity,

lul 2 ds <= R
=R -<lxol

IDul 2 dx + 8rlu(x)l 2

o(R log R)
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since

Yr IDul z dx o(log R)
o-<lxl__<R

because u is outgoing.
LEMMA 2. Every wave function u defined in ]x] >__ a for some a > 0 can be de-

composed uniquely into a sum u u + u2 such that u is a wave jnction in R3

and u2 is an outgoing wave function.
Proof. Let k(x, y) eilX-yl/4nlx Yl. We can obtain from Green’s identity

that, for any given x such that [x[ > a, and b chosen so that Ix[ < b,

uu - uu -
---U --U2

It is easy to see that u is a wave function in the whole space since u is in-
dependent of b and u2 is outgoing. To prove the uniqueness of the decomposition,
we let u be an outgoing wave function in R3. Then we have, for any p > 0,

(5)

u--- k ds

(uDk kDu) ds.

By virtue of Lemma 1, we conclude that u vanishes identically by letting p tend
to infinity in (5).

The following lemma can be regarded as a version of the Appendix in [2].
LEMMA 3. Let u be a wave jnction defined in Ixl >-_ a >= O. Then"
(i) u is outgoing if and only if

(6) x/u= 2 2
m=Oj=-m

y_or(1)
,n,j",n+ /2(r) Ym,j(O,

where Hk(r) is the Hankel function of the k-th order of first kind, {Ym,j(O, 4)} are
the spherical harmonics.

(ii) u can be defined as a wave function in R if and only if

(7) x/ u b,,,jJm+ /2(r)Y,,,j(O, qS),
m=Oj=-m

where Jk(r) is the Bessel junction of order k.
Proof. We begin by proving the "if" part of (i) and (ii). As u is smooth in

Ixl => a, we can expand u in terms of spherical harmonics there"

U= Cm,j(r)Ym,j(O,d/)).
m=Oj=-m

It is easy to verify that c,,,j(r) satisfies Bessel’s equation of order m + 1/2.
Hence we have

(8) N//- Cm,j(r .(1) bm,jJm /2(r) r > aUm,j’’m+ 1/2(/’) + +
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for some constants am, and b,,,j. If u is outgoing, we have from the orthogonality
of Y,,,j that

lim r3 IDcm,j(r)l 2 <= lira r3 [Dcm,j(r)[ 2

lim rlDu[ 2 ds O.
Jlx[

As Htm+ 1/2 is outgoing and Jm+ 1/2(r) behaves like [sin (m + 1/2)r]/r near infinity,
we can conclude from (8) that b,,,j(r) vanishes. On the other hand, if u is smooth
everywhere, we can similarly conclude that am,j 0 since H )

m+ /2(r) is singular at
the origin. To prove the "only if" part, we use Lemma 2 to decompose u into a
sum ofu and u2 such that Ul is a wave function in R3 and u2 is an outgoing wave
function. From the "if" part of this lemma, we have

N Ul 2 2 flm,JJm+ /z(r)Y,,,j(O,
m=0 j=-m

and

m,j"m+ 1/2(r) r,,,(O, 4)).
m=O j=-m

Now if (6) holds, we can conclude for r >_ a that

L/( __]r( flm,jjm,j,.+ /(r) (r) + /(r)m,jaam+ 1/ +

By comparing the behavior of the Bessel function J+ /2 and the Hankel function
m+ 1/e near infinity, we obtain m,j 0 and hence u u2 is outgoing. Using a

similar argument, we can prove (ii). The proof is complete.

3. Proof of the theorem. Let u belong to A and satisfy Lu = 0. As L is elliptic,
u belongs to c(E) (cf. 1, Thm. 82]). In view of the definition of A we can find a
sequence R, tending to infinity such that

lim f R,[Dul z ds O.

Hence it follows from Lemma A that u vanishes identically. This completes the
proof of the "uniqueness" part.

To prove the existence of the solution, we let A {ulu c(E) A} and
L(A) {Lulu A x}. We assert that L(Ax) R is dense in R. Otherwise there
exists g 0 in R such that

(9) fe rZg(Lu) 0

for all u coo(E) f’l A with IIAu + ull finite. In particular, (9) holds for all u coo(E)
such that u equals zero on c3E and vanishes for large Ixl. It follows again from the
theory of elliptic equations (cf. [1, Thm. 8.2]) that r2g c(E) and

(10) L(r2g) A(r2g) + rZg O.
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Thus we can expand rZg in terms of spherical harmonics in r >= a for some a"

(11) rZg a,.,j(r) Ym,j(O, dp).
m=Oj=-m

Let h.,(r) equal "’m+4() /2(r)/ and U,j(r, 0, ) equal h(r)Y,j(O, ). Since L(r2g)
L(U,j) 0, we can conclude by using Green’s identity that, for a R R:,

0 [U,jL(r2g)- r2gL(Ud)] dx

U rg ds
1= r r

(12)

[. r2g OUmj
I=R:

Um,--r2g Or jds
[am,j(R2)h(R2)- hm(R2)a,j(R2)

[am,j(R )h(R 1) hm(R2)a,j(R 1)].

Next let Wm,j(r O, ) h(r)Um,j, with h(r) in c and vanishing in a neighborhood
of E and equal to one in a neighborhood of infinity. From (9) and (10) we can
obtain, by using Green’s identity,

(13)
0 fE [r2g(Lwm’j) Wm’jL(r2g)] dx

lim [a,.d(R)h’m(R h,,(R)a’m,(R)].
R-

Combining (12) and (13), we have

am,j(R bm,jhm(R) for R >_ a.

By virtue of Lemma 3, we can conclude that r2g is an outgoing wave function.
Finally, letting u be any smooth function in E such that u is equal to zero on cE
and vanishes near infinity, we have from (9) and (10) that

[r2g(Lu) uL(r2g)] dx

which implies that r2g 0 on c3E. By virtue of Lemma A, rZg must be identically
zero. This contradicts our choice of g. So L(A1) f’l R is dense in R and for any f
in R we can find a sequence u, in A such that Lu, tends to f in R. We can then
apply Lemma A to conclude that u, converges to some u in D such that Lu f.
The proof is complete.
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AN EXISTENCE THEOREM FOR ABEL INTEGRAL EQUATIONS*

KENDALL E. ATKINSON$

Abstract. An existence and smoothness theorem is given for the Abel integral equation

o K(s, t)f(t)(s tP) dt g(s), 0 < =< T, with given p > 0 and 0< a < 1. Particular attention is
given to the behavior of g(s) andf(s) about 0.

1. Introduction. Consider the Abel integral equation

; K(s, t)f(t) dt
(1.1)

(sp- tp)
g(s), O < s <= T,

with given p > 0 and 0 < e < 1. To avoid degeneracy, we shall assume K(s, s) 4:0
for 0 __< s =< T. This is a classical equation, and it is obtained from a variety of
mathematical and physical problems;see the bibliography of Noble [7].

In the past this equation has been examined case by case (for example, see
Schmeidler [8] and the references in [7]). The methods of analysis were usually
constructive or explicit, and the numerical analysis of (1.1) was usually based on
these methods. Within the last few years, direct numerical methods for (1.1) have
been proposed and studied (see [1]-[6], [10], [11]). These are general numerical
methods which depend only on the smoothness of K(s, t) and f(t). As a com-
plementary study to the numerical analysis of(1.1), we give a result on the existence
and smoothness of solutions.

We shall need some special function spaces. For 7 > 1, let us define

f {sf(s)l f e C[0, T]},
u

7> -1

It can easily be seen that if 7 < , then c . The space is much, but not all,
of L(O, T) VI C(0, T].

THEOREM. Let g(s) have theform
(1.2) g(s) st,(s), 0 < s <= T, , e Cn+ 110, T],

for some integer n >_ O. Let fl satisfy

(1.3) pe +/3 > O.

Assume K(s, t) is n / 2 times continuously differentiable for 0 <= <__ s <__ T, and
furthermore,

(1.4) K(s, s) :/: O, 0 <- s <_ T.

Then there is a unique solution f e of (1.1), and its form is

(1.5) f(s) sp+a- X[a + sl(s)] sP+a-lf(s), s > O,

* Received by the editors August 29, 1972, and in revised form March 9, 1973.
f Department of Mathematics, University of Iowa, Iowa City, Iowa 52240. This work was sup-

ported in part by the National Science Foundation under Grant GP-33584.
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with e C"[0, T]. The constant a 0 if and only if (0) 0. (Note that the special
form of f(s) implies the existence of fl"+ 1)(0).) Finally, there is a constant d, > O,
independent of, C"[0, T], for which

(1.6) max {llfll, "’, If") } -_< d, max{ll’ll, ..., II’"+ 1)1 }.
The norm is the max norm on [0, T].

In 2 we give some standard results for K(s, t) =- 1. In 3, we introduce a
decomposition of (1.1) and prove some preliminary results about it. The proof of
the theorem is given in 4.

The theorem is true for systems as well. Let K(s, t) be an m x m matrix, and
let f and g be m-component column vectors. Condition (1.4) is replaced by

det K(s, s) 4: O, 0 <= s <= T;

all smoothness statements generalize immediately. The proof given in 3 and 4
generalizes by merely replacing absolute values by appropriate vector and matrix
norms.

2. The Abel transform. Define the Abel transform by

h(t) dt
n(s)

(sp tp),
0 < s <__ T, h LI(O, T) fl C(O, T].

(See Sneddon [9] for some properties and uses of the transform.) We give the
needed properties of sO’ in the following lemma.

LEMMA. Consider the equation

f(t) dt
(2.1)

(sp tpY
s,(s), 0 < s <= T,

with , C" + 110, 7], for some n >= 0 and pa + fl > O. Then there is a unique solution

f L1(0, T) f’] C(O, T] and its form is

(2.2) f(s) sp+I- l[a + sk(s)] =- s

with k C"[O, T] and a =- const. Moreover, for some constant d,

(2.3) IIf")ll <__ d max

Proof The inverse of is given by

(2.4) s- h(s)
p sin (an) d f rp- h(r) dr

s>0.

Using this and a change of the variable of integration, we obtain (2.2) with

(2.5)

a
p sin up + du
--(p +/)(o) (i 2-),

k(s)
p sin (arc) f] uP+ [rc (1 uP)a-

,’(us) + (pa + fl)
(us) us- ’()1 du.
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The remaining results follow from the formula for k(s).

3. Preliminary definitions and results. Define

f K(s, t)f(t) dt
sfh(s)

(sp- tPY
0 < s <__ T, hLX(O, T) f’] C(0, T].

To simplify some formulas, we assume, without loss of generality, that

K(s, s) 1,

Assuming K2(s, s) cK(s, t)/&lt=s exists, let us define

K(s, s) K(s, t),
s>t,

st
U(s,t)

OK(s, t)
c3t

s= t,

O<_s<_T.

f H(s, t)(s t) -h(t) dt
fh(s) [(ff tp)/(s )3

0<s<T.

Then

(3.1) f s’ ..
To solve ’f g, equation (1.1), we solve the problem

(3.2) s’z g, f- sO-ocgf z.

To examine the existence and smoothness off, we shall need a formula for- An especially useful one is

-h(s) spsin(=){f u- fo h(ws)(u-w)-(2 ,- [(u w)/(u 3[p(us, ws)
(3.3)

+ usH(us, ws)] dw du

+ (1 u") (u" w")

Up Wp

which is valid for all h . To obtain it, we take a specific form for h, say h(s)
s(s), for some 7 > -1,/ e C[0, T]. Substituting this into ,h(s), we make a

change of variable, and note the behavior of )fh(s) about s 0. We substitute this
into (2.4), and then perform much algebraic manipulation to obtain (3.3). Note
that we need the existence of the partial derivative H(s, t), which follows from the
fact that K(s, t) is twice continuously differentiable.

We also need a number of special inequalities. From the identity

1 Sp

p [1 -(1 s)r]p- dr, 0=<s<l, p>0,
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we obtain

Sp

(3.4) min {1 p} < _< max {1,p}, 0 _< s < p > O.

From the estimate

we obtain

F(x + 1) x/xX+ 1/2 x>O, 0<0<1,

r(x) (x)< x>0, 0<2<1(3.5)
r(x + ,)= (x + ,)

with

7(x) (1 + ) e1+1/12’,

a monotone decreasing function of x on (0,
Define

A(l)
(1 _2 il-a w(u- w)1-a

wV
dw du,

(3.6)

fo U fo w’dw
B(l)

(1 u)- (u wy clu’ 1>

We use the change of variable w uv, 0 __< v =< 1, the bounds (3.4), and some
manipulation to reduce (3.6) to new formulas involving beta functions. We evalu-
ate these and then bound them, using (3.5), to obtain eventually

Ca(l) C(l)
> 1,(3.7) A(1) =< (I + 2 )2, B(l) <_

(l + 2

with Ca(l) and CB(I) monotone decreasing functions on (- 1,

4. Proof of theorem. The proof is divided into several parts.
(i) Existence and uniqueness of solution f e . Recall the statement of the

theorem. It is easily seen that if either 3ff g or formulation (3.2) has a unique
solution for a g of form (1.2), then so does the other. We shall use (3.2).

Let s’z g. By the lemma,

(4.1) z(s) S
pa+- l[a + sk(s)] =_ spa+- 1(s), k, e C"[0, T].

To show the unique solvability in Y" of (I s’- l)f z, we shall show that

This will be shown by proving that

1-1
(4.2) I z’- ,t.,’ onto

for ally> -1.
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From (4.2) and (4.1), we shall also have

(4.3) f(s) sp+E- if(s), f C[0, T].

To prove that (4.2) holds, we begin by looking at (3.3) with h(s)= s(s).
Then

dg-’h(s)
uP- flrt (1 _5 x-= E(up_ wp)/(u_ -w-)

[pH(us, ws) + usH(us, ws)] dw du
(4.4)

f uP fi’H(us, ws)w’ft(ws) I oPW’-l(u-w)ldwdu}/
(1-up)- (u>_ wp)=

1-
up-wp

Thus

and this proves that I /- 3f maps into 5ft.
Let z e 5f for some 7 > -1, z(s)= sr(s). We shall show the existence of

f e Y’ with (I 1-15/f)f z by looking at the Neumann series for the equation.
Define

fj--[1-1]Jz, S>0,__ j= 0,1,2,

By induction, using (4.5), we have fj e f for all j __> 0, and thus fje C[0, T]. We
shall show that

(4.6) f(s) Z L(s)
0

converges uniformly on [0, T]. It will follow by standard arguments for Neumann
series that f(s)=_ sf(s) is a solution of (1- -)f z. We shall discuss
uniqueness later.

Let m be a bound on IH(s, t)] and IH(s, t)l for 0 __< s =< T. As an induction
hypothesis, assume that for j,

(4.7) If(s)l =< D,s’, 0 <__ s <__ T.

This is easily seen to be true for j 0 since fo ; use Do Il. Assuming the
hypothesis for a general j, we shall use (4.4) to prove it for j + 1. Since fj+ (s)

s-r[a/- fj](s), from (4.4), (4.7), (3.4), and (3.6) it follows that

Ifj+ l(S)l sj+x
p sin (art)

MDj l(pz + T)A(j + )

+ 1 +pmax 1,
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From (3.7), with r 7 + 2 > 0, we obtain

CoDj(4.8) Ifj+ l(s)l <- Dj+ is
j+ 1, Dj+ J + r’

{ Ca(7)
+ (1 + pmax { 1 1/p})C(7)}.Co=

psi Z)M (p+T)l_
The constant Co is independent ofj >= 0. Also, the induction is completed.

Using (4.8) and Do we obtain

(4.9) If(s)l-< F(r)15 Cjs-----j
F(r+j)’ j>=0, 0<=s_<_ T.

For the series (4.6),

Cos(4.10) If(s)l _<- r(r) 11 o r(r + j)"

This converges uniformly on [0, T], and thus f(s) is continuous.
To prove the uniqueness in 5f of the previously constructed f, let us assume

that

y_ -ly= 0, y(s) s37(s), 37eCI0, T].

Then

Applying the same kind of derivation as that used to obtain (4.8), with 5 replaced
by )7, we obtain

F(r + j)’
O=<s__< T, j>=0.

It follows that 37 0, and thus y _= 0.
We combine (4.9) with (2.3) of the lemma to obtain the stability result (1.6)

for the case n 0. The proof of the remaining part of (1.5) is given later.
(ii) Case n 1. We shall show that eachfje C [0, T] and that

(4.11)

converges uniformly on [0, T]. It then follows by standard arguments that
fe C1[0, T] and that f’(s) equals the series (4.11).

From fo 5o and (4.1), we have that foe C1[0, T]. By induction on j using
(4.4), it follows that fj e C1[0, T] for all j. For a second induction, assume that for
l<=i<=j,

If’(s)l DI1)si-1 0 < S < Y.

This is true for j since f’l(S) is continuous. Let us assume it for general j, and
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use (4.8) and the derivativef)+ l(s) from (4.4) to obtain

(4.12) If}+ l(S)l-< C, Lr- +
r+j+l

with C const., C >_ Co. The induction is completed. Also choose C large
enough to ensure that

If(s)l =< C max lie
From (4.12), it follows that

C{-sJ-If)(s)l =< TI(J)F(r -t-j- 1)max {llffll, Ilff’ll},

with , (j) a linear polynomial in j, for j _> 1, 0 =< s _< T. From this it follows that
the series of (4.11) converges uniformly, concluding the proof. The stability result
(1.6) follows as with n 0.

(iii) A brief sketch of the general case. Let us assume that the result has been
proven for n =< m 1 and let us prove it for n m. As part of the induction, we
assume that

C{ -"ss-"
(4.13) If}")(s)l < ’"(J)F(r + j n)max {1111, ".’,

for j >_ n, 0 =< n < m 1, 0 <= s =< T, with 7,(J) a polynomial in j of degree =<n.
To prove the theorem for n m, let us form the ruth derivative offs + l(s) using (4.4)
and Leibniz’s rule. Then we proceed exactly as with the case n 1. The many
details are omitted.

(iv) The special form of (1.5). Since fe C"[0, T], we use f(s) spa+a- Xf(s)
and (4.4) to obtain

s’- 13f(s) S
pa+ at(s), e C"[0, T].

Using f z + .’- xf, formula (4.1), and the preceding equality we obtain

f(s) spa+a- [a + s(k(s) +/(s))],

the desired form. From (2.5), it is seen that the constant a 0 if and only if ,(0) 0.
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ANALYTIC REPRESENTATION OF THE
DISTRIBUTIONAL FINITE FOURIER TRANSFORM*

RICHARD D. CARMICHAEL"

Abstract. We define n-dimensional finite Fourier transforms for functions and distributions
which are mappings from (A) to r(2n) and "(A) to (’(2n), respectively, where A is an arbitrary
n-tuple of positive real numbers. Representation theorems are obtained for the distributional finite
Fourier transform in which we relate this transform to entire analytic functions in C". A finite con-
volution is defined, and we construct from it the finite regularization of an element of f’(A) which is
used to give another representation of the distributional finite Fourier transform. We show that the
Fourier transform mapping of to ’ can be obtained as the limit of a sequence of distributional
finite Fourier transforms. Further, we give necessary and sufficient conditions for the distributional
finite Fourier transform to be represented as the boundary value of a function which is analytic in
the tubular radial domain Tc " + iC, C being an open connected cone" and we use these results
to obtain the analytic decomposition of the distributional finite Fourier transform.

1. Introduction. In this paper we shall define an n-dimensional distributional
finite Fourier transform, n being an arbitrary positive integer, which has as a
special case a similar transform of Warmbrod [-10] and we shall study properties
and representations of it. In particular we are interested in representing this
transform as the boundary value of a function which is analytic in a subset of
C". More precisely we shall obtain necessary and sufficient conditions on a
function which is analytic in a tubular radial domain of C" such that the analytic
function has the distributional finite Fourier transform as a boundary value in
the distributional sense on the distinguished boundary of the tube domain. Using
the necessary condition we then obtain the analytic decomposition of the dis-
tributional finite Fourier transform.

In 2 we shall introduce the notation and definitions to be used in this
paper. We shall define the n-dimensional distributional finite Fourier transform
in 3 and discuss its properties and some representations of it. We define the
finite convolution of distributions in 4 and use it to introduce the notion of
finite regularization, which we in turn use to obtain a representation theorem of
the distributional finite Fourier transform. In 5 we shall show that the dis-
tributional Fourier transform on og" can be represented as a limit of the dis-
tributional finite Fourier transform, while 6 will be devoted to the analytic
representation results.

2. Notation and definitions. The notation to be used in this paper will be
similar to that used in Carmichael [2], [3]. x, y, t, u will be points of n-dimensional
Euclidean space E, while z will be a point of n-dimensional complex space C". We
dfine (x, t) Xlt -k q- Xnt with a similar definition for (t, z), E", z C".
Let 0 denote an n-tuple of nonnegative integers. We define 10[ 01 + + 0,,
and 0! 01! 0, !. The differential operator D is defined by D
where Di (1/2ni)c3/t3t or D (1/2ni)c3/c3z, j 1,..., n. We put D’ or D to
distinguish between differentiating with respect to E" or z C" whenever there
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is a possibility of confusion. We similarly define x= x’ x" and z
z,, x and z We adopt the convention that for b 6 1 b will denote

the n-tuple (b, ..., b). If A (a, ..., a,) is an n-tuple of positive real numbers,
SA will denote the set Sa {t " "]tj] =< aj, j 1, ..., n} throughout the paper.

The Fourier transform for L functions b(t) is

(x) [(t); x] f b(t) exp [2ni(x, t)] dt.

The inverse Fourier transform of 4 L, denoted -[4,(t); x], is similarly de-
fined with -2hi(x, t) replacing 27i(x, t) as the exponent of the exponential
function.

We assume familiarity on the part of the reader with the test spaces of
functions , 9ff (called by L. Schwartz [7]), and and their dual spaces of
generalized functions ’, C’ (i.e., ’), 9’ and ’. (See Gel’fand and Shilov [4]
and Schwartz [7].) In particular we call the readers attention to the notion of
convergence in 9if, which can be found in Schwartz [7, p. 25] or Gel’fand and
Shilov [4, p. 2], and in , which can be found in Gel’land and Shilov [4, p. 158].
Further we recall that the Fourier transform is a continuous one-to-one mapping
of U onto , and this fact permits us to define the Fourier transform of U
as that element Ve ’ for which

v,q,> (v,4>, +,
(See Gel’land and Shilov [4, Chap. 2].) We then write the Fourier transform of
U e gf’ as V [U]. The Fourier and inverse Fourier transforms are both
continuous linear one-to-one mappings of e onto 9 with the same being true
of ’ under the definitions given by Schwartz [7, Chap. 7]. For all terminology
concerning generalized functions, such as support, and all definitions of oper-
ations on generalized functions, such as differentiation and convolution, we
refer to Schwartz [7]. Throughout this paper the support of a function (t) or of
a generalized function U will be denoted by supp () or supp (U), respectively.

In 6 of this paper we shall need the following information concerning cones
and tube domains. A set C [" is a cone with vertex at the.origin if y e C implies
2y e C for all positive scalars 2. The intersection of a cone C with the unit sphere
JYl 1 is called the projection of C and is denoted pr (C). A cone C’ for which
pr (C’) pr (C) will be called a compact subcone of C. The function

Uc(t) sup (-(t,y))
y pr(C)

is the indicatrix of the cone C. O(C) will denote the convex envelope of C.
Tc " + iC, where C is an open connected cone, will be called a tubular radial
domain.

Let C be an open connected cone. Let f(z) be a function of z Tc, and let
U be a generalized function. By f(z) U in the topology (i.e., weak topology) of
the generalized function space as y Im (z) 0 (i.e., yj 0, j 1, ..., n),
y e C, we mean (f(z), (x)) (U, (x)) as y --, 0, y e C, where is an element
of the appropriate function space. U is then called the generalized function
boundary value off(z). We note that this boundary value is attained on the
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distinguished boundary of Tc, {z x + iy :x e ", y (0, ..., 0)}, which is not
necessarily the topological boundary of Tc.

The exponential type of an entire analytic function f(z), z e C", is defined in
Gel’fand and Shilov [5, p. 80]or Schwartz [7, p. 271]. We recall that the character-
istic function 2(0 of a set S c " is defined to be (t) 1, S, and 2(0 0, q} S.

3. Distributional finite Fourier transform. Let A (a, ..., a,) be a fixed
n-tuple of real numbers such that aj > 0, j 1, ..., n. J(A) is the space of all
infinitely differentiable complex-valued functions which have support in

SA {t ":ltjI < ai,j= 1, ,n}.
We define the finite Fourier transform of an element b c/f(A), denoted
a[qS(t) X], by

(1) oa[4fft), x] fs4)(t)exp[2rcixt+ + dr.
a a al a

Because of the compact support of b, we see immediately that O(x) A[b(t) x]
is an infinitely differentiable complex-valued function which can be extended to
C" to be the entire analytic function

1 fsdP(t)exp[2nizt z,t,I ] C"+ +-,1 dt, ze(2) 0(z)
a..a, al

Let a be an arbitrary n-tuple of nonnegative integers. Integrating by parts in (2)
we obtain

(3) O(z) A-i(2rti)-Ilz- D4)(t) exp 2ti + + a. dr.

From (3) we obtain the existence of a constant K such that

IzN,(z)l =< Ks exp [27z(lyxl / / ly.I)], y Im (z).

Now let B (b l, "’, b,). (B) is the space of infinitely differentiable com-
plex-valued functions O(x), x e R", which can be extended to be entire analytic
functions O(z), z e C", such that for every n-tuple 0 of nonnegative integers there
exists a constant K for which

(4) [z’O(z)[ =< K exp [bllYl[ + bzlyz[ + + b,ly,[], y Im (z), z e C".

We thus have shown above that the finite Fourier transform defined in (1)
maps oVf(A) into (2r), where, as we noted in 2, 2re denotes the___n-tuple
(2re, ..., 2z0. Let us now show that this mapping is onto. Let e Y’(2zc), and
consider

(5) f=  ,(x)exp[. 2rri’xxtX--+al +--la,X"t"]] dx.

With z restricted to R" we have from (4) that the function b(t) defined in (5) exists
and is an infinitely differentiable function of e R". Changing the variable of
integration in (5) we obtain
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(6)
qS(t)

(2n)_n fa a 2re "’ -fn ]
e dx

Now ff(x) e(2n). Thus p(alxl/(2n),..., a,x,/(2n)) (A), and by a result of
Gel’fand and Shilov [4, pp. 153-158], we have from (6) that supp () Sa. Thus
(t) defined by (5) is an element of (A). Since (A) L L2 and

(2n) L L2, then from (5) or (6) and the Plancherel theory of Fourier
transforms we further have that @(x)= [(t);x]. We thus have shown that
the finite Fourier transform maps (A) onto (2n), and it is easily seen that
this mapping is also one-to-one and linear. We note that if if(x) [(t);x],

(A), then @ has the representation (5) in terms of if, and (5) can be thought
of as the inverse finite Fourier transform mapping (2n) onto (A).

We now introduce notions of convergence on the spaces (A) and (B).
A topology may be defined on (A) by the countable set of norms

[m sup IO(x)l, m 0, 1,2, 3,...

under which (A) becomes a locally convex topological vector space. With this
topology, we say that a sequence {}, (A), converges to zero in (A) as
v vo if {D} converges to zero uniformly on Sa as v
of nonnegative integers. (See [5, pp. 77-78] .)

We define a topology on the space (B) by using the countable set of norms

1@ sup Iz=O(x)l exp [-blyal bzlYzl b,lY,I], y Im (z),
IlNm

m 0, 1,2, 3,..., under which (B) becomes a locally convex topological
vector space. With this topology we say a sequence {}, e (B), converges
to zero in (B) as v vo if for any n-tuple e of nonnegative integers

Iz=(z)l K= exp [btlYl + + blYl]

for all z e C" and all v (i.e., B (b,..., b,) and K are independent of v) and if
the sequence {O(x)} converges uniformly to zero as v Vo on every bounded
set in ". (See [5, p. 81].)

Under these topologies, (A) and (B) are complete. Further, we now
easily see that the finite Fourier transform defined in (1) is a topological vector
space isomorphism mapping (A) to (2n).

We now denote the spaces of continuous linear functionals defined on (A)
and (B) by ’(A) and ’(B), respectively. We define the distributional finite
Fourier transform of U e ,’(A), denoted [U], to be that element Ve ’(2n
such that

(7) (v, ) (u,), 4 e (A), [4(t); x] e (2n),
a a

for all e (2n). We see that (7) is motivated by a Parseval relation using (1)
and (5) in exactly the same way that Gel’fand and Shilov motivated their defi-
nition of Fourier transform on ’ (see [4, p. 166].) Further, it follows from the
properties of the finite Fourier transform mapping (A) to (2n) (i.e., it is an
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isomorphism) and (7) that the distributional finite Fourier transform is a con-
tinuous linear one-to-one mapping of oCf’(A) onto ’(2rc).

Let us note that there is a slight difference in the distributional finite Fourier
transform defined by Warmbrod [10] and the restriction of (7) above to one
dimension in that Warmbrod’s transform is defined on a slightly larger space of
generalized functions. This difference follows from the fact that the test space on
which Warmbrod defines the function finite Fourier transform [10, p. 931] is the
space of infinitely differentiable functions which have support in the open interval
(-a, a); whereas in the restriction of the space grg(A) of the present paper to one
dimension, the elements have support in the closed interval I-a, a]. The tech-
niques we have used in this section ( 3) to obtain our distributional finite Fourier
transform could be applied in exactly the same way to obtain an exact general-
ization to n dimensions of the transform defined by Warmbrod. However, for
the results we wish to obtain in this paper, the difference is inconsequential; the
results we obtain and the techniques involved in proving them are essentially
the same for either. Taking gC(A) as the test space of the distributions whose
finite Fourier transform we have defined in (7) in no way restricts the results we
obtain, and we shall study the distributional finite Fourier transform as we have
defined it here.

We.shall now obtain some representations of the distributional finite Fourier
transform. If U 3f"(A), a result of Schwartz [8, p. 82] (see also Gel’fand and
Shilov [5, pp. 111-114]) states that U Df(t), wheref(t) is a continuous function.
Using this fact we can prove the following representation theorem.

THEOREM 1. Let U gg"(A). Then A[U] g(x), where g(x) is a continuous

function which increases as some power of Ixl and which can be extended to be an
entire analytic function of exponential type <= 2re.

Proof. If U oCf’(A), then from (7) there exists an element V e’(2zc) such
that V [U]. Let b (A) and ,(x) a[b(t); x]. Using the representation
of U ’(A) as noted in the paragraph preceding this theorem, (5), and a change
of order of integration we have

(8)

(v, ,>
a a al .?-a, f(t)Ddp(t)dt

A

f(t) p(x)
al "an

j=ll ()] exp I--2rti Xltl Xngn
-+- ooo-t-
al an

dx dt

=A--ifn, O(x)xfs., f(t)expl-2rci X Xntnq_ _+_
al an

dt dx.

Now it is easily seen that the function

F(x) fs f(t) exp l- 2rci
X 1151 Xntnl 1+ + dt
al an
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can be extended to C" to be the entire analytic function

F(z)= f(t) exp -2ni(zlalt + +-,! dt

which is of exponential type =< 2n, and F(x) is a bounded function over [". Thus

(9) g(x) A ix’F(x)
can also be extended to C" as an entire analytic function having the same ex-
ponential type as the extension, F(z), of F(x) and for x ", there exists a constant
K, such that

Ig(x)l-< K=lx=l.
Thus from (8) and (9) we see that V A[U] g(x), where g(x) has the desired
properties.

COROLLARY 1. Let U o,’(A). Then

a a,
r[X(t)f(t)],exp -2rti + +

a,

where U Df(t) is the representation of U and 2(0 is the characteristic function
of Sa.

Proof. We obtain from (9) that

g(x):A--ixf
R. 2(t)f(t)exp[-2xi(xx+ +x"t"lldta,

__1 [2(t)f(t)], exp 2ri + +
a an an

and D[2(t)f(t)]e g’ with compact support SA. Applying Theorem we im-
mediately have the desired result.

We note that Theorem and Corollary 1 generalize results of Warmbrod
[10, Thm. 1, p. 937, Thm. 3, p. 941; and Cor. 1, p. 939], respectively.

Theorem and Corollary suggest the following result which is a Paley-
Wiener-Schwartz theorem for the distributional finite Fourier transform. In the
sufficiency ofthis result we shall need the notion ofchange ofvariable of a distribu-
tion. Let T ’ and 05 g. We define the change of variable - (t/a,..., t,/a,)
in (T, qS(t)) by

(T, d(t))
al a. tl/al,’",tn/an),

al

Under this definition it is evident that T(t,[a,,...,tn/an t since T g’. This defini-
tion is obviously motivated by the usual change of variables in integrals.

THEOREM 2. V e’(2rt) is the distributional finite Fourier transform of an
element U ’ with supp (U)

_
Sa if and only if V is a continuous function f(x)

which grows as some power of [xl, and which can be extended to be an entire analytic
function of exponential type <_ 2t.
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Proof. Let U do’ with supp (U)
_

SA. By Schwartz [7, Thm. XXVI, p. 91],
U II<=,,D f(t), ,where the f,(t) are continuous functions and m is a fixed
finite positive real number; and for all , supp (f) is contained in an arbitrary
neighborhood of SA. But Sa is a regular set [7, pp. 98-99], so that in fact supp (f)
c_ SA for all , Il =< m. We note that ’ c oug’(A). Using the stated representation
of U, we have by exactly the same type of computation as in (8) and the proof of
Corollary that

+"" +Ia a, al

where we recall that each f,(t) in the representation of U has its support in SA.
Put

exp -2hi xlt---- -k- -Jr"--nlf(x)
al .-. a. al

Then by hypothesis V A[U] f(x), and using the representation of U e d it
is easily seen that f(x) is a continuous function which can be extended to be an
entire analytic function

1 + expl 2rci zlt z"t" 1) C",+...+ zf(z)
al a, al a,

and

f(z) 1)’l(f(t),D, __+... +z,t,II)a a, IlNm a a,

Il=<m a
since supp (f)

___
SA, I1 m. Thus

If(z)l exp [27(lYal + + lY,I)] Iz=l | If(t)l dr,
Il-<m .s

where y Im (z), and m is a finite positive real number. From this bound it
follows that f(z) is of exponential type _< 2rt, and its restriction to " grows as
some power of Ixl, This proves the necessity.

Now let V be a continuous function f(x) which grows as some power of Ixl
and which can be extended to be an entire analytic function of exponential type
=< 2ft. Then f(x) 5’ and applying the Paley-Wiener-Schwartz theorem [7,
Thm. XVI, p. 272], we obtain the existence ofan element T do’ with supp (T) Si
such that f(x) --[T], the inverse Fourier transform in 6e’. It is well known
that for such a distribution T,

(10) f(x) -- I[T] (T, exp [- 2ri (x, t)]).

(This follows from the inverse Fourier transform of functions as defined in this
paper and a proof similar to that in HSrmander [6, Thm. 1.7.5, pp. 20-21].) Now
let A (a 1,..., a,) be an n-tuple such that aj > 0,j 1,..., n. By a change of
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variable we have (recall the discussion in the paragraph preceding the statement
of Theorem 2)

(T, exp [- 27:i(x,

(11) 1
a a

exp I- 2hi Xltl Xntn-+- -F
al an

Putting U, T(,,/al,...,,./,.), we have from (11) that Ug’ and supp(U)_ S.
Further by exactly the same type of computation as in (8) and Corollary we
have

+ expl-27:i,A[U]
ax a.

(Recall this same equality in the proof of the sufficiency of this theorem.) Com-
bining this with (10) and (11), we have V f(x) A[U] as desired. This com-
pletes the proof.

We let f/, 9 and 3 denote the n-tuples (r/,..., r/),(v,..., v) and (6,..., 6),
respectively, where rt, v and 6 are fixed positive real numbers. For each fixed
r/ > 0 such that r/< 6, let (t)g such that ,(t)= 1, tSA+-o, (t)= O,

Sa++o and 0 __< ,(t) <_ 1.
Now let 6 and v be fixed positive real numbers and let r/be chosen such that

6>r/>0andv>r/>0. LetUexf’(A+3+9),andput

1 +, ,(t) exp [- 27:i(12) f,(x) ax a. al an
From the definition of,(t) we have that (,(t) exp [- 27:i(xxt1/a
e JU(A + 3 + 0) c cU(A + 3 + 9). Thus f,(x) defined in (12) exists for each fixed
r/> 0 restricted as above; and using the representation of U
and an argument similar to that in the sufficiency of Theorem 2, we see that
f,(x) is a continuous function which grows as some power of ]xl and can be ex-
tended to be an entire analytic function. Since 2U’(A + 3 + 9)

_
(V’(A), then the

distributional finite Fourier transform, ffA[U], of U e f’(A + 6 + 9) exists. In
the following result we show that it can be represented as the limit of the sequence
{f,(x)} as r/--* 0.

TI-IEORFM 3. Let 6 and v be fixed positive real numbers. Let q be a real number
such that 6 > > 0 and v > ri > O. Let U e V’(A + 3 + 9). Then lim,_, of.(x)

oa[U in "(2n), where f,(x) is defined as in (12)for any fixed rl > 0 restricted
as above.

Proof. Let r/> 0 be fixed and restricted as above. As we have noted in the
paragraph preceding this theorem, f,(x) is continuous and grows as some pow__er
of [x[. It is known that such a function is an element of Y", and Y"

_
2"(27:).

Thus j(x)e 2"(27:). Let e 2’(27:) and 4)e iV(A) such that O(x)= a[4)(t);x].
Since U e f’(A + 6 + 9), then U Df(t), where f(t) is continuous. Using this
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representation of U, a change of order of integration, and (5) we have

Xltl Xntn-+- +
al an
Xltl Xntn
al an

dtdx

dxdt

Now b e C(A) thus we have that (,(t)qS(t)) qS(t) in o(A + c5 + q)(and in fact
in cOg’(A)) as/7 0. Since U ’(A + i5 + ) c cCg"(A), then

(14) lim <U, ,(t)qS(t)> <U, b(t)>.

Combining (13) and (14) and recalling (7), we thus have

1
lim <f,(x), ip(x)> <U, qS> <V,
/--,o a a

where V o[U], and the proof is complete.
We note that Theorem 3 generalizes a result of Warmbrod [10, Thm. 5,

p. 943], for if we restrict U in Theorem 3 to be an element of c,’, then Theorem 3
concludes that f,(x) [U] in ’(2rc) as /7--, 0 since o3f’ SC’(A + + )

2,’(A). We note further that if U ’, we could let the functions ,(t) g be
,(t) 1, SA+o, ,(t) 0 outside some neighborhood of SA+ o, and 0 __< ,(t)
__< 1. With U cog", we could then define j,(x) as in (12). A similarly constructed
proof as in Theorem 3 shows that the sequence {f,(x)} has as limit ff[U] in the
topology of f’(2rc) as/7 0.

4. Finite convolution. Let U and V be elements of ’(A); then by the rep-
resentation of :X’(A) we have U Df(t) and V Dg(t), where f and g are con-
tinuous functions and 0 and fl are n-tuples of nonnegative integers. Throughout
this section 2(0 will denote the characteristic function of S {t’ltjl < aj,
j= 1,...,n}.

We define the finite convolution of U and V as

U A V D(2(t)f(t)), D(2(t)g(t)),

where * denotes the ordinary distributional convolution. Since D(2(t)f(t)) and
D(A(t)g(t)) both have compact support in S as distributions, then they are both
elements of W. Hence (U A V) exists and is an element of ’ c ’(A). (In fact
(U A V) d cCf’ c’(A). This follows from the fact that (U A V) oeg"; and
by Schwartz [7, Thm. II, p. 156], supp (U A V)= supp (D(2(t)f(t))* Da(2(t)g(t)))

S2A. Thus (U A V) has compact support in S2A, and (U A V) g’.) We note
also that by a property of distributional convolution, this definition of (U A V)
is equivalent to

U A V D+a((2(t)f(t))* (2(t)g(t))).
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Further, we immediately see that if U1,..., U,, is a finite set of elements of
’(A), then (U1 A U2 A... A U,,) exists and is an element of 3U’c 3f’(A).
Using properties of the distributional convolution and the definition of finite
convolution, the following theorem is easily proved. The proof is left to the
interested reader.

THEOREM 4. Let U, V and W be elements of 2,T’(A). Then U A V) V A U),
((U A V) A W) (U A (V A W)), and D(U A V) (DU A V) (U A DV).

The following theorem shows that the distributional finite Fourier transform
maps the finite convolution into the product of the respective transforms; hence
this result shows that this transform operates on finite convolution as the Fourier
transform operates on ordinary distributional convolution. (See Schwartz [7,
pp. 268-270].) We note also that the following result generalizes Warmbrod
[10, Thm. 9, p. 948].

THEOREM 5. Let U and V be elements of 3r’(A). Then

A[U A V] (a, a.)[U]A[V]

in ’(2n).
Proof. Using Corollary and the definition of the distributional convolution

we have

a ...1 a, @(2(t)f(t)),
(15) @(2(u)g(u)), exp [-2i x(ta+ u) + +

=a ...al D(2(t)f(t))’exp[-2i( + +/])x,t
,a an

where U Df(t) and V Dg(t). Using Corollary again, we have from (15)
that ffa[U A V] (a a,)[U]A[V] as desired.

From (15) and the proof of Corollary 1, we see that Theorem 5 also states
ffa[U A V] (ax a,)(h(x)q(x)), where from Theorem 1, h(x) ffa[U] and

Regularization of a distribution (H6rmander [6, p. 15] is an important tool
in distribution theory and can be used, for example, in proving the Paley-Wiener-
Schwartz theorem [6, pp. 21-22]. In the following we introduce finite regularization
and show that it can be used to represent the distributional finite Fourier trans-
form of elements in f’(A).

It is known that there exists a function Z , such that Z(t)
S {t’[t 1, j 1, .-., n}, and

x(t) dt 1.
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(A function having these properties can be constructed similarly to the function
constructed in H6rmander [6, pp. 2-3] or Schwartz [7, p. 21].) With the above
function Z, we now put Z,(t)= (q)-"Z(tl/tl,’.., t./tl), r/> 0. Then Z,(t)e g/f,
Z,(t) >-_ O, and supp(z,)= S0. Let U e 3F’(A). Then (U A Z,(t)) exists for each
fixed r/> 0 and as we have seen before is an element of g’ c of’ 3C’(A). We
call (U A z,(t)) the finite regularization of U e 3"(A). In the following two
theorems Z,(t) is the function defined immediately above.

THEOREM 6. Let U SU’(A). There exists a sequence {U,} of elements in do’
with supp (U,)

_
SA+VI for each fixed tl > 0 such that lim,_, o U, D(2(t)f(t)) in

5;/{"(A), where U--Df(t) is the representation of U in ’(A), and 2(0 is the
characteristic function of SA.

Proof. We put U, (U A Z,(t)), q > 0, which exists for each fixed q > 0.
Since supp (O(2(t)f(t))) c_ SA and supp (Z,) S0, the result of Schwartz [7, Thm.
II, p. 156] yields supp(U AZ,)= supp(D(2(t)f(t)) * (2(t)Z,(t))) SA+O. Thus
(U A Z,) of’ and has compact support in SA+ for each fixed q > 0; hence
(U A Z,) d for each fixed r/> 0. Now let q5 og((A). From the definition of
distributional convolution we have

(16) ((U,), qS(t))= (-1)ll(2(t)f(t), (2(u)z,(u),Ddp(t + u))).

Now supp (2) SA. Using this, the definition of Z,, and a change of variable, we
have

(17)
(2(u)z,(u),Ddp(t + u))= fs Z,(u)Ddp(t + u)du

fs Z(u)DcD(t + flu) du,
(1/)A

where as usual S(1/q)A {t’ltjI (1/r/)aj, j 1,... n}. We now show that

(18) lim [ Z(u)Ddp(t + flu) du Ddp(t)
t/--- 0 ]S(1/o)A

uniformly in on all compact sets of R". First let us restrict r/> 0 such that
r/=< rain {al,..-, a,}. For this choice of tl, Si - S(1/,)A. Recalling that supp

Si, we have for any r/of this choice that

Z(u)Ddp(t + flU du-- fs Z(u)Ddp(t + qu)du.
(1/rI)A

Thus for any q _<_ min {a l, "", a,}, we have by the properties of) that

(19) fs(
1/n)A

Z(u)Ddp(t + rlu)du Ddp(t)= fs, Z(u)(Ddp(t + qu)- Ddp(t)) du.

Now recall that q5 e 3(A). Thus q5 and any derivative Ddp(t) are continuous
functions, and if is restricted to an arbitrary compact set in R", then q5 and
Dck(t) are uniformly continuous there. Using this fact and the Lebesgue domi-
nated convergence theorem in (19), we see that if we now let r/ 0, the desired
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convergence in (18) is obtained. Since supp(2(t)f(t))= SA, the convergence in
(18) and another use of the Lebesgue dominated convergence theorem give

(20) ,-.olim(2(t)f(t)’fs,/,Z(u)Dc(t+qu)du)=(2(t)f(t),D%])(t)).
Combining (16), (17) and (20) we thus have

lim ((U,), b(t)) (- 1)l(2(t)f(t), D(t)) (D(2(t)f(t)), ),
0

where is an arbitrary element of (A). This proves the desired result.
THEOREM 7. Let U ’(A). There exists a sequence U,} ofelements in g’ with

supp (Un) Sa+ofor eachfixed q > 0 such that lim,0 AU,] U] in ’(2n).
Proof. Putting Un (U Zn(t)), q > 0, we have as in Therem 6 that U,

with supp (Un) SA+ for each q > 0. Now [U,] ’(2n) for any fixed q > 0
since U,g’= ’= ’(A). By the proofs of Theorem 5 (i.e., see (15)) and
Corollary 1, we have

(al) a[un] g(x) (t)zn(t), exp -2hi + +
an

in ’(2n), where g(x) is the function from Theorem such that g(x)
Letting ff e (2n) and recalling that 2(0 is the characteristic function of Sa, we
have from (21) that

(22) (a[U] (x))’ =(g(X)fs Z"(t)exp[ --+a +]x"t"dt’O(x"
Recalling the definition of Z,(t) and using a change of variable, we obtain

Z,(t)exp -2hi Xtt + +- dt
al an

(23)

Let us now restrict q so that q min {a, ..., a,}. Then S S/,)A. Since
supp (Z) S, then for this choice of q,

Z(t) exp 2i xt + + dt

24)

Letting 0 now in (24), we have by the Lebesgue dominated convergence
theorem that

(25) lim fsq 0
(/n)A an

Recalling that the function g(x) A[U] from Theorem is a continuous function
which increases as some finite power of Ixl, and using (23) and (25), we have by
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another application of the Lebesgue dominated convergence theorem that

(26)
lim(g(X)fs Z,(t)exp[-2nirt"+ O A

+ + clt, q,(x)
al an

(g(x), qt(x)> (a[U],

Combining (22) and (26), we obtain lim,_, o -a[U,] -a[U] in ’(2z) as desired.
This completes the proof.

5. Limit of the finite Fourier transform. In this section we shall show that the
Fourier transform of an element in 3g’ can be represented as the limit of the
finite Fourier transform. Let 05 3(A), and let U oU’ c ’(A); then the Fourier
transform of U restricted to 3g(A) is (recall the definition of Fourier transform on
3t given in 2)

([U], [(t); x]5 (U, 5, 6 (A).

From (7) we have

(al a,)([U],a[(t);x]5 (U,5, (A).

Thus if U ’, then its Fourier transform and finite Fourier transform are con-
nected by

(27) ([U], [(t);x]5 (al a,)(a[U], A[(t);x]5, (A).

In the following we shall make use of the concept of change of variable in
a distribution. Let if(x) (2uA) where A is an arbitrary n-tuple of positive real
numbers, and let V ’(2). We define the generalized function ,,...,a,,,
’(2A) by

(28) <,,,,...,,, 0(x))
a a a’

Here x,...,, denotes as usual that the generalized function V is acting on
the variable (ax, ..., ax) where A (a, ..., a,) is a fixed n-tuple of positive
real numbers. The definition in (28) is meaningful, for if 0(x)e (2A), then
O(x/a,..., x/a)e (2). It is obvious that the definition of distributional
change of variable in (28) is suggested by the usual change of variable in integrals.

We are now ready to represent the Fourier transform of an element U e ’as the limit of a sequence of finite Fourier transforms. By A (a, ..., a)
in the following two theorems, we mean a ,j 1,..., n.

THEOREM 8. Let U e ’. Then

(29) lim (a... a)[U](,,..,,, [U]

in ’.
Proof. Let 0 e . Then there exists an n-tuple B of positive real numbers

such that 0 e (2B). Hence for all n-tuples A of positive real numbers such that
A B, 0 e (2A). For the present let A be arbitrary but fixed such that A B.
By Gel’Nnd and Shilov [4, pp. 154-155 for 1 dimension, p. 158 for n dimensions]
there exists an element 4 e (A) such that 0(x) [4(t);x] e (2A). By (27)
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we have

(30)

It is obvious that

[4)( xl[4,(t);x] - t);
a a al

for 4 e 3g(A). Using this fact and (28), we have

(ol a,)(,[U], ,A[dp(t) x]) (A[U],/qb(t);
\ L

<-[u], 0(x)> (a, a.)<-[u], -[4(t); x]>.

Xl

(3)

Combining (30) and (31) we have

(32)

(a, a,)(ff[U],,x,,...,a.,.), 0(x)>.

<-[u], 0(x)> (a, a,)<-[uL,,,...,o.o,,
and (32) holds for A being any n-tuple of positive real numbers such that A _>_ B.
Hence (29) follows from (32), and the proof is complete.

Let Ua denote an element of cg"(A) for any fixed A, and let OA[UA] denote
the finite Fourier transform of UA for this fixed A. The following theorem relates
the limit of {UA} in g(’ with the limit of {(al an)’a[Ua](a,x,,...,a,x,) } in Y" as

THEOREM 9. lima.oo (al an)A[OA](alxl,...,a,,x,)= V in the ’ topology,
where V’, if and only if lima-oo UA U in the gtr’ topology, where
U -[V] J{".

Proof. We establish the sufficiency here. Similar arguments will establish the
necessity, ap.d the details will be left to the interested reader. To prove the sufficiency
we let qeJ and assume that there exists an element UeJf’ such that

limA- < UA, D> < U, >. Since th e then there exists an n-tuple B of posi-
tive real numbers such that b e of(B). Let A be an arbitrary n-tuple of positive
real numbers such that A >__ B. Then the of(A), and qt(x) [th(t); x] e (2rA)
c . Using the definition of finite Fourier transform and a calculation similar to
that in (31), we have

(Ua, c/)> (al a,)<A[UA], A[dP(t) x]>

(al a,)<a[Ua]a,x,,....a,x,),
where (x) -[qS(t); x]. This equality holds for all A _> B. Thus

(U, b> lim (UA, b> lim ((a, a,)A[Ua](,,x,,...,,..), #>.
Ao A-*oo

(33)

Since Ue off’, there exists an element Ve Y" such that V -[U] and U - [V].
From (33) and the definition of the distributional Fourier transform on J{", we
thus obtain

<V,O> (U,qS> lira ((a

and the proof of the sufficiency is complete.
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6. Representation of the finite Fourier transform as the boundary value of
analytic functions. In this section we shall obtain necessary and sufficient con-
ditions on a function which is analytic in a tubular radial domain such that the
function attains the distributional finite Fourier transform as boundary value on
the distinguished boundary of the tube domain. We then use these results to
obtain the analytic decomposition of the finite Fourier transform and a rep-
resentation theorem for the analytic functions which have this transform as the
boundary value.

Throughout this section, C will denote an open connected cone, C’ will denote
an arbitrary compact subcone of C, and Tc n + iC is a tubular radial domain.
We consider functions f(z), z Tc, which satisfy

(34) If(z)l < P(C’)(1 + Izl)N exp [2t(b + r)lyll, z x + iy e Tc’, C’ c C,

for all real numbers r > 0, where b is a nonnegative real number, N is a real
number, and P(C’) is a constant depending on C’.

THEOREM 10. Let A (a1,’" a,) be a fixed n-tuple of positive real numbers.
Let f(z) be analytic in Tc and satisfy (34), where C is an open connected cone. Then
there exists an element U J’(A) having support in {t: Uc(tl/al,... tn/a,) <_ b}
such that f(z) --, ,,4[U] in e’(2rt) as y Im (z) --+ 0, y e C’ C.

Proof. Since f(z) satisfies (34), we may choose an n-tuple K (k, k,)
of nonnegative integers such that

(35) Iz-*Cf(z)l
_

P(C’)(1 + Izl) exp [2rt(b + )lYl3, z6Tc’, C’cC,

where n is the dimension and e is any fixed positive real number. Put

(36) gr(t)fR z Kf(z)exp [-2rti zlt znt" I Tc’ C’+ + dx z C.
a an

Because of (35), gr(t) exists and is a continuous function of " for any fixed
y C’ C. By a similar argument as in the proof of [2, Thm. 1, p. 846, first para-
graph of proofS, we have that in fact the function in (36) is independent of
y s C’ C. Hence we now denote the function in (36) as g(t). Using the same
method of proof as in [2, Thm. 1, pp. 846-847, second paragraph of proofq, we
have that supp (g) c_ {t :Uc(t/a, t,/a,) < b}. From (36) we have

al an

fR z Kf(z)exp[-2rci xt+ + dx
a an

---,
al

z x + iys Tc’, C’ C. By (35), (z-:f(z))s L f] L2 as a function of x s "for y C’ = C, z x + iy. We thus have by Plancherel’s theory that
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and

(37) z-rf(z)--ff exp -2r
yltl + +- g(t); --, ...,
al an al

x + iy Tc’, C’ C, where this Fourier transform is in the L sense.
Now let e cg’(A) and O(x) o[4(t); x]. By a change of variable,

(38) t(x) A[d(t) x] -[qS(alt ,... a,t,) x].

Since (z-rf(z)) L 71 L2 as a function of x for y e C’ c C, then it is an element
of Y" as a function of x e ". Hence from (37) and a change of variable,

(z- Kf(z) /(X))

(39)
0(X) exp 2 Y t_____!_ + + g(t)

+ + d ,..., dx
al an al

(exp [--2(y, t)]g(atx,..., a,t,);x], (x)),

and [exp[-2(y,t)]g(at, ..., a,t,);x] is well-defined as an element of
since (exp [-2(y,t)g(at,..., a,t,)) L2 ’. We now have from (38), (39),
and the distributional Fourier transform on ’ that

(40) (z-rf(z),ff(x)) (exp [-2(y,t)]g(atl,...

z Tc’, C’ C. It is straightforward to show that (exp [-2(y,t](altx,...,
(at,.... a,t,) in as y 0, y C’ C. Since g(altl,.’. a,t,) is a con-

tinuous function, it is an element of’ ’(A). Thus

(exp [-2(y, t)]g(altl, a,t,), (at,

(41) (g(atx,... a,t,), exp [- 2(y,

(g(a t,..., a,t,), (aa t,..., a,t

as y 0, y C’ = C. By a change of variable and (7) we have

(42) (g(axt, a,t,), (at ,..., a,t,)) (g(t),
a a

Combining (40), (41) and (42) we have shown that

lim (z-rf(z), (x)) (a], (x)), (2).
yO

yC’ C

It now follows immediately that

(43) (f(z), (x)) (z-rf(z),zr(x)) A],Xr(X)) (Xr], (X))

as y Im(z) 0, y C’ = C. We now define the differential operator as
follows"

Ar(2i)
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where K (k l, "", k,) is the n-tuple of nonnegative integers chosen at the be-
ginning of the proof. We now put U fg(t). Then U Jg"(A) since g(t) is a
continuous function, and supp (U)= supp (g)

_
{t’Uc(tl/al,..., t,/a,) <= b}.Fur-

ther, from (7) and (5) we obtain

a a

(44)
a a

a a

g, (x) exp -2rci + +

xC(x) exp -2rti + +

Since s e(2-), (xKO(x)) e (2ff). By our work at the beginning of {} 3 (see (5)),
we have that

co(t) f x,(x) exp [- 2zci xlt x"t" 1+ + dx
a an

is an element of J(A), and a[CO(t); x] (xKO(x)). Thus from (7) we have

{g(t), co(t))
(45) a a,

a ...1 (g(t’ fR --+ Xntnll+and
Combining (44) and (45) gives

(46) (A[U], 0(x)} (A[g], X/(IP(X)} (X/-a[g], 0(X)}.

By (43) and (46) we obtain the desired result

lim (f(z), 0(x)} (A[U], 0(X)},
y-0

yeC’C

and the proof is complete.
We note that by our proof, the element U 3(’(A), whose existence is claimed

in the statement of Theorem 10, is a distributional derivative of the continuous
function g(t) defined in (36) which has support in {t’Uc(t/a,..., t,/a,)<= b}.
From (35) we see further that g(t) satisfies the growth condition

(47) [g(t)l <= M(C’)exp [2rc((b + a)[Yl + (Y, (tl/aa + ..., t,/a,)))]

for all er > 0, where M(C’) is a constant depending on C’. It is important to note
that the bound in (47) holds for all y e C’ c C.

Also we note the one-dimensional corollary to Theorem 10. Let a > 0 be
given, and let C {y e "y > 0} in Theorem 10. Consider a function f(z) which
is analytic in the upper half-plane Tc [ + iC and which satisfies

If(z)l < Pa(1 + Iz[)N exp [2rtblYl], y Im (z) > c5 > 0.
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(For the one-dimensional case we do not need the a in this boundedness condition
as we did in (34).) The proof of Theorem 10 concludes the existence of an element
U ’(a) having support in {t 1 "t >= -ab} such that f(z) --, [U] in e’(2n)
as y Im (z) 0. A similar result holds for the lower half-plane in which case
the cone C {y [l"y < 0}.

We now obtain a converse result to Theorem 10. Letting C be an open con-
nected cone, we recall that O(C) denotes the convex envelope of C. If U cU’(A),
we define " by (,b)= U,), 4cU(A), where 4)(t)= 4(-t), and it is
evident that U e of’(A) under this definition. We let N(0, R) denote a neighbor-
hood ofthe origin in [" with radius R, and we put Qc {t "Uc(t/a, ..., t,/a,)NO}.
C’ O(C) will denote that C’ is an arbitrary compact subcone of O(C).

THeOReM 11. Let A (a, a,) be a fixed n-tuple of positive real numbers.
Let U 11__<, Dg(t), m < o, where each g(t) is a continuous function on
and has the growth condition

(48) [g(t)[ __< Mexp [2nA, atX t,))1
for all A O(C), where M is a constant depending on . Let supp (g) Qc for
each , [[ <_ m. Then there exists a function f(z) which is analytic in Ttc) such that

(49) If(z)] =< P(m; C’)(1 + Iz[)N z Tc’\tc’m’R)) C’ = O(C)

where P(m C’) is a constant depending on m and C’ and N is a positive real number,
and f(z) --, a[] in ’(-) as y Im (z) O, y O(C).

Proof. We consider the function

+ I ),exp 2hi--+ +-a-,f(z)
al a, a

(50)

1)l.lA_zfe g(t)exp[2zi(ztt
_

--+ +--z"t" ]dtal an ]e]_<m al an

for z Ttc). To prove the desired existence and analyticity of f(z) it suffices to
consider

c +a +-,l dt, ze

for any fixed e, lel _<- m. Let Zo be an arbitrary but fixed point of Tc), and let
N(zo, r) T(c) be an arbitrary neighborhood of zo with radius r whose closure
is in Tc). Let z e N(zo r), and let 7 be an arbitrary n-tuple of nonnegative integers.
From Vladimirov [9, Lem. 2, p. 223] we obtain the existence of a real number
d > 0 such that

,..., ,y d z x + iyN(zo r)
al al

for all e R" such that Uc(t/a,..., t,/a,) O. Since (48) holds for all A e O(C),
we now choose A y, z x + iy 6 N(zo, r). (Obviously A y O(C), z x
+ iy N(zo, r) Tc), since O(C) is a cone; hence (48) holds by assumption for
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this choice of A.) With this choice of A in (48) and using (52), we obtain a constant
M depending on 0 such that

fo. ga(t)t exp I2ni Zltl--+ +-- dt
al an

(53)

<= Ma foc ItVl exp [- n(y
<=Mafoc Itlexpl-dn
<= MaA+ i(S,) rill+,- exp [-dnr] dr

where z x + iy N(zo, r) and S, is the area of the unit sphere in " (See [8,
Thm. 32, p. 39].) From (53) we conclude that the integral defining ha(z in (51) and
any derivative Drha(z) of it converges uniformly for z N(zo, r). Since zo is an
arbitrary point in Tw), we thus have that ha(z exists and is analytic for z Tw)

for any a, I1 _-< m. From (50) it thus follows that f(z) is analytic in Ttc).
Now let C’ be an arbitrary compact subcone of O(C). Since (48) holds for

all A O(C) we choose A C’ C’-y, y c O(C) (Obviously A y O(C)if
y C’ O(C) since C’ is a cone.) Again applying Vladimirov [9, Lem. 2, p. 223],
we obtain a real number d > 0 such that

,", ,y dlyl --,’", y = O(C),
al al

for all t Qc. Using this inequality and the above noted choice of A
y C’ O(C), in (48), we have by an estimate as in (53) that

fcg(t)exp[2ni-Zltlal + + lz"t"]] dt

N M exp -dlyl
a

MA(S) r exp [- dlylr] dr,

y C’c O(C), where again S is the area of the unit sphere in R and M is a
constant depending on e. From this estimate and (50) we obtain

I/(z)l (X) M-Izl r- exp [-dllr] dr
(54)

(S) MA-(n 1)t(dll)-

z Tc’, C’ O(C), where we have integrated by parts n times on the integral
in (54). The boundedness condition (49) follows immediately from (54).
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It remains to prove that f(z) - A[U] in Y"(2n) as y Im (z) -, O, y O(C).
Let e e(2n), and for the present let y be a fixed point of O(C). From (54) we see
that f(z) e’(2n), z x + iy, as a function of x e ". By (50) and a change of
order of integration we obtain

(f(z), p(x))

(55)

(-1)IIA z(x) g(t)exp 2hi zltl + +
al a. Il_m c L a a.

dtdx

(- 1)IIA g(t) z(x)exp 2hi zxt----L + +
al an ll <-m c al an

dxdt

al fo.cg(t)(fR (Z (- 1) D (x)exp 2ni zt + +an I1 <=m [_ ax an dx) dt.

Since qt e e(2n), then qS(t) defined in (5) is an element of (A) such that qt(x)
A[C(t);x]. Recalling that (t) b(-t), we thus have from (5) that

Putting this in (55) we obtain

(f(z), p(x))

(1)llfog(t)(D(56) al a,ll_<m c

(U,expl 2ny t
a a al

Zltl Zntnl 1-+- -k----a-n dx.

dt

where z x + iy Tc). Until now yvis an a,rbitrary but fixed point in O(C).
Now (exp [-2n(y, (tl/a,’.., t,/a,))](t)) (t) in (A) as y Im (z) 0,
y O(C), and U ovf’(A). Thus from (56) and (7),

1
if(z), (x)) (U, (t)5 --(U, b) (A[U], )

a a al a

as y 0, y O(C), and the proof is complete.
We note the following more general setting for Theorem 11. Let

U Dg(t), m < oo,

where each g(t) is continuous on [" and bounded as

[ (( + tl
[g(t)[ =<Mexp 2n b + a)[A[ + ,...,

for all a > 0 and all A O(C) (recall (47);) and supp (g)
_

{t "Uc(tl/al,...
=< b}, [a] <= m, b >= 0. If the cone C is such that {t’0 < Uc(tl/a,..., t,/a,) <= b}
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is a bounded set in R", then using essentially the same proof as in Theorem 11,
we have that

(U,expI2ri zlt z,t, 1)_t_ ooo_t_f(z)
al a, al

is an analytic function in TtC);f(z) satisfies

[f(z)l _-< P(m; C’)(1 + Izl)N exp [r(b + a)lYl], z x + iye Tc’x(c’ut’R)),

C’ c O(C), and f(z) A[U] in ’(2n) as y Im (z) O, y O(C). The method
of proof for this more general setting is essentially the same as that in Theorem
11 further, we are interested in applying this type of result in the form given in
Theorem 11 to obtain the analytic decomposition of the distributional finite
Fourier transform. Thus we leave the details of the above more general setting
for Theorem 11 to the interested reader, for we will not use this in the remainder
of this paper.

We now show that the distributional finite Fourier transform can be de-
composed into a finite sum ofelements each ofwhich is the distributional boundary
value of a function which is analytic in a tubular radial domain. From Theorems
10 and 11 we know that any element in ’(A) whose finite Fourier transform
can be so represented must be the distributional derivative of a continuous
function which has growth as we have studied.

Let A (a l, "", a,) be a fixed n-tuple of positive real numbers. Let C be
an open cone such that C U}= Cj, where Cj,j 1, ..., r, are open connected
cones such that

and
tl tn < 0 t’Uckl < 0(58) t’Ucj
al al

jvk, j=l,...,r, k=l,...,r,

are sets of Lebesgue measure zero. Let the C} denote arbitrary compact subcones
of O(Cj),j 1, r.

THEOREM 12. Let C [,_lj= Cj be an open cone such that the properties in the
preceding paragraph are satisfied for the open connected cones Cj, j 1,..., r.

Let U ll<=,,Dg(t), m < , where the g(t) are continuous functions on "which satisfy (48)for all A O(C). Then A[] Z}= where each ’(2
is the ’(2) boundary value as y Im (z) O, y O(Cj), of a function (z) which
is analyti in T(c) and satisfies (49)for z e Tc)x(c)u(’m), C) O(Cj). Also

a[Uj],whereeach Uje ’(A)andsupp(Uj) {t’Uc(tl/a,.", t,/a,) 0},
j=l,...,r.

Proof. Put Uj llm D(2J(t)g(t)) where 2j(t) is the characteristic function
of the set

Qc Uc al

(57) " U "Ucj
--j an
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We have that Uj vt’(A) and supp (Uj)
_

Qcj,J 1,..., r. Further, we have by
hypothesis that

g(t)l < M exp I27z(A, tl tn
a a

for all A O(C) and hence for all A e O(Cj), j 1, r. We now put

Uj, exp 2ri zxt---51 + + --a-, zfj(z)
al a, a

j- 1,...,r.

Then

1)llA-zfe 2j(t)g(t)expI2rcifj(z)
a a, tl-<,,

Z Zntn] 1--+ +-- dt
al an

al animism cj

Z Zngn
al an

dt.

From the proof of Theorem 11 we obtain that j)(z) is analy,,tic in Tcj), satisfies
(49) for z e Tc’\(c;N(’R)), C) O(Cj), and Jj(z) A[__Uj] VVSe’(Zz)as
y Im (z) O, y e O(Cj), j 1,..., r. Now let e(2rc) and 4) SU(A) such
that O(x) ’a[4)(t);x]. Using (7) and the assumptions (57) and (58) we have

Thus A[’] j= I/Vj, and the proof is complete.
It is interesting to note the restriction of Theorem 12 to one dimension. Let

C {y:y >0} and C2 {y:y <0} be the open connected cones. Then
C C1 U C2 Nl\{0},andO(C)= R1. Since{t:Ucl(t/a) <= 0} {t:t > 0}and
{t:Uc2(t/a) <= 0} {t:t <__ 0}, the hypotheses (57)and (58)in Theorem 12 hold for
these cones C and C2, where a is an arbitrary positive real number. Now let
U = Dg(t) where the g(t) are continuous functions on [1. The assump-
tion (48) for all A e O(C) in Theorem 12 becomes

g(t)l<-_MexpI2rcA) 1
for all A e O(C) . Theorem 12 concludes the existence ofelements W
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and W2 [2] such that a[/)] W + W2 Here W is the ’(2rt) boundary
value of a function fl(z) which is analytic in the upper half-plane and satisfies

Ifa(z)l P(m; 6)(1 + Izl), Im(z)>6 >0,

and U1 e(f’(a) such that supp(U)_ {t’t >= 0}. Further W2 is the ’(2rt)
boundary value of a function fz(Z) which is analytic in the lower half-plane and
satisfies the above boundedness condition in Im(z)<= 6 < 0, and U2 e ’(a)
such that supp (U2)

_
{t’t <= 0}.

Let us note that the preceding paragraph describes a Hilbert decomposition
problem for the distributional finite Fourier transform in one dimension; that is
this transform is represented as the sum of two boundary values of functions
analytic in the upper and lower half-planes, respectively. Theorem 12 may thus
be considered to be a generalization of the Hilbert decomposition problem to
functions analytic in tubular radial domains. In Theorem 12 we have decomposed
the distributional finite Fourier transform into the sum of a finite number of
generalized functions each of which is the boundary value of an analytic function
in a tubular radial domain.

Using Theorem 10 and part of the proof of Theorem 11, we now prove a
representation theorem for the analytic functions which attain the distributional
finite Fourier transform as boundary value. This result shows that the choice of
the function f(z) in the proof of Theorem 11 is the necessary choice.

THEOREM 13. Let C be an open connected cone, and let C’ be an arbitrary
compact subcone of C. Let f(z) be analytic in Tc and satisfy (34)jbr b O. Then
there exists an element VeSU’(A) with supp(V)___ Qc {t’Uc(tl/aa, "",

=< 0} such that

1 V, exp 2rci ztl + +-a--,) ze C C.f(z)
al an L a

Proof. From Theorem 10 we obtain the existence of an element U
such that f(z)- A[U] in ’(2rt) as y Im (z)- 0, y eC’c C, and supp(U)
Qc- {t’Uc(t/a,"’, t,/a,) <= 0}. From the proof of Theorem 10, we know

that this element U fg(t), where g(t) is the continuous function defined in
(36) which has support in Qc, and f is the differential operator defined in the
proof of Theorem 10. Further, from (47) we have that

(59) Ig(t)l < M(C’)exp[27z(alAI +A,
for all a > 0 and all A e C’c C. Now let y be an arbitrary but fixed point of
C’ C. We have again by Vladimirov [9, Lemma 2, p. 223] that there exists a
real number d > 0 such that

+,(tla,..., t)) >d’yl= tl tnal
yeC’C,

for all Qc. Using this inequality and choosing A C’y, y = C, in (59)
(this is a suitable choice of A since C’ is a cone and 1/2y C’ = C if y C’ c C, and
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(59) holds for all choices of A e C’ c C) we have

,-,
al

(6o)

al

y C’ C, for all Qc. Now let N p < . Since supp(g)c Qc, then the
estimate in (60) and integration by parts as in (54) show that

exp 2n t t. g(t) dt
a

exp -2 t, t. g(t) dt
al

(61) (M(C’))p exp [py] exp -dpy , ., dt

N (M(C’)) exp [plyl](S) r exp [- dplylr] dr

(M(C’))P(S,)(A ) exp [pll](n 1)(

for all a > 0, where (S,) is the area of the unit sphere in ". Thus for y arbitrary
but fixed in C’ c C, (61) shows in particular that

Recalling the definition of the differential operator f in the proof of Theorem 10
and using a straightforward calculation, we have

(62)

g(t),exp + + !a ...a, L al

=zK[expl-2rc(y,(-l."’,)lg(t); a

z e Tc’, C’= C. The Fourier transform here can be interpreted in both the L
and L2 sense. Recalling that U g(t) and combining (62) and (37), we thus
have

f(z)
a

_
1)I/Iu, exp I2rcia,,

Zltl znt
al O

z e TC’,

We now put V (- 1)IIU. Then Ve U’(A) and supp (V)
_
Qc since U has these

properties, and the proof is complete.
When b 0 in Theorem 10, the proof of Theorem 13 shows that the Fourier
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transform in (37) can in fact be interpreted in both the L and L2 sense. Also the
equality

f(z)
a a

in Theorem 13 is immediately seen to hold for z T(c’), C’ C. This is true be-
cause bythe proof ofTheorem 11, (V, exp [2rci(zltl/a + + z,t,/a,)]) is analytic
in Tc’, C’ C; hence by Bochner’s analytic extension theorem [1, Chap. V-I,
it is analytic in T(c’), C’ c C. By this same theorem of Bochner, f(z) is analytic
in T(c) since by assumption in Theorem 13 it is analytic in Tc. Hence f(z) is
analytic in T(c’), C’ C, since O(C’) O(C). Thus the identity theorem for
analytic functions gives the equality in Theorem 13 in T(c’), C’ C.
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EXTENDED CHEBYSHEV SYSTEMS ON (-- o, )*

ELI PASSOW"

Abstract. Let 0 =< < < < be a sequence of integers. Necessary and sufficient con-

ditions are obtained for {xt, xt’, xt"} to form an extended Chebyshev system of order n + on

(-, ).

A system of functions #i - C[a, hi, 0, 1, ..., m, is said to be a Chebyshev
system (TS) on [a, b], if ,im=o ai#i(x) has at most rn zeros in [a, b], for any non-
trivial choice of real {ai}.

A sequence of integers 0 __< to < < < tm is said to have the alternating
parity property (APP), if, for all i, t2i is even and t2i+l is odd.

In [3] the following theorem was proved.
THEOREM 1. {xt}, O, 1, m, is a TS on (- , ) if and only if o 0

and { ti}, O, 1,... m, has APP.
It is well known [2, p. 24] that the following are equivalent:
(i) {/ti}, 0, 1,..., m, is a TS on [a,b];
(ii) for any a=<xo<x< <x,,=<b; YO,Yl,’’’,Ym, there exists a

unique p(x) im=o Cilai(x) satisfying p(xs) Ys, J O, 1,... m.
If the functions {#} are differentiable, then we can attempt to solve inter-

polation problems of a more general nature than in (ii). In particular, suppose
lt C"[a, b], O, 1,..., m. We consider the problem of Hermite interpolation
i.e., let a <= xo < x < < x b; y}O), 2}1),..., y.aj-1), j 0, 1,..-, k, be
arbitrary, with =o as m + and max (a 1) __< n. We ask the following"
Does there exist a unique

p(x)-- Ci].li(X
i=0

such that

p")(Xs)=y), j=0,1,.-.,k, r=0,1,...,as- 19.

If a unique solution exists for every choice of the parameters (with the given re-
strictions) then {/} is said to be an extended Chebyshev system (ETS) of order
n + 1 (cf. [1, p. 6] for an equivalent formulation). Note that if {#} is an ETS of
order n + 1 then it is an ETS of any lower order, and that a TS is an ETS of order
1. If n m then {#} will be referred to simply as an extended Chebyshev system,
with no mention of the order.

Since we are only concerned with a unique solution it follows that {#} is
an ETS of order n + if and only if the following holds: Let

p(x) Z Cili(X)
i=O

* Received by the editors March 19, 1973, and in revised form August 17, 1973.
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be a solution to

pr)(xj) O, j O, 1, k, r O, 1, aj 1,

where =0 a m + and max(a 1) =< n. Then p(x) =_ O.
In this paper we let 0 __< o < < < t,, be a sequence of integers, set

#i(x) xti, i= O, 1,..., m, and seek necessary and sufficient conditions on {ti}
for {xti} to be an ETS of order n + 1 on (- o, o).

THEOREM 2. Let 0 <= o < < < t,, be a sequence of integers. Then
{xt’}, O, 1, m, is an ETS of order n + on (- o, o) if and only if i,

O, 1,..., n, and {ti} has APP.
Proof. If {ti} does not have APP, then {xt’} is not a TS, hence not an ETS

of any order. Now suppose that there exists i, 0 =< _< n, such that > i. Let j
be the smallest such index. We shall construct a Hermite interpolation problem
which has no solution. Let Xo 0; y) :/: 0. The remaining parameters may be
chosen arbitrarily. Let

p(x) cix".
i=0

Then

pJ)(x) ti(t 1)... (t j + 1)cix"-J,
i=j

so that p(J)(0)= 0. Since/9 was arbitrary, interpolation is impossible. Thus the
conditions are necessary.

Now suppose that {ti} satisfies the conditions of the theorem and p(x)
o cix" satisfies p(r)(xj) 0,j 0, 1,..., k; r 0, 1,... a 1. Without

loss of generality we can assume that maxj (aj 1) n. The theorem is true for
n 0. Assume the result is true for n- 1. Applying Rolle’s theorem to p, we
obtain points zj, xj_ < zj < x, j= 1, 2,..., k, such that p’(z) 0. Applying
the induction hypothesis to

m-1

p’(x) Z t,cix’’-l= 2 bix’,
i=1 i=0

where si i, 0, 1,..., n 1, and {si} has APP, we obtain if(x) =- O. There-
fore, p(x) =- 0, and the theorem is proved.

COROLLARY. Let 0 <= to < < < tm be a sequence of integers. Then
{x"}, O, 1,..., m, is an extended Chebyshev system on (-oe, oe) if and only if
ti=i,i=O, 1,...,m.
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INVERSION OF GENERAL INTEGRAL TRANSFORMS*

WILLIAM L. PERRY?

Abstract. Following the terminology of Titchmarsh, we call an integral transform with a kernel
depending on the product of its arguments

fD k(Xy)d(y) dy f(x), D,x

a general integral transform. In this paper, the transform is inverted with D (-oe, oe), by means
of the ordinary and generalized Mellin transforms.

1. Introduction. A common characteristic of many integral transforms, such
as the Fourier (sine, cosine and exponential) transforms, the Laplace transform,
and the Hankel transform is that their kernels depend upon the product of their
arguments. Because of this, it is of interest to study an integral transform of the
general form

(1.1) k(xy)d(y) dy f(x), x e R.

Indeed the transforms mentioned above are all of the form (1.1), with k(xy)
replaced by the appropriate kernel. Of course, this has been known for some time,
and Titchmarsh [11] considered the inversion of integral transforms

i0(1.2) k(xy)dp(y) dy f(x), x

Considered as an integral equation of the first kind with given free term
f(x), (1.2) arises in certain inverse problems in the theory of light scattering [6],
[10] and has been investigated in this connection by Perelman and others 7],
[8], [10]. More generally, Fox [4 has shown how the Laplace transform can be
used to solve a variety of integral equations of the form (1.2).

While work has been done on the inversion of (1.2) and equations of the form

fo k(xy)(y) f(x) x D,dy

where D is a finite interval [9], we have seen no work on the inversion of (1.1).
Hence, we consider (1.1) in this paper. First, the ordinary Mellin transform is used
to invert (1.1) and, second, a generalized Mellin transform [5] is used so that the
inversion can be accomplished for a larger class of kernels and free terms than is
possible with the ordinary Mellin transform.

The Mellin transform, F(s), of a complex-valued function f(x) defined for
almost all x > 0, is defined by

F(s) f(x)x- dx,

Received by the editors March 5, 1973, and in revised form July 9, 1973.
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where s is in C, the complex plane, whenever the integral exists. When the integral
exists, it exists on a vertical line, in a vertical strip, or in a right or left half-plane
in C. We shall always denote the Mellin transform of a function f(x) by its upper-
case F(s). The inverse Mellin transform f(x), x > 0, of F(s) a complex-valued
function of the complex variable s, is defined by

fc+ ioo

F(s)x ds,f(x) -i ioo

where c is a real number, whenever the integral exists. Theorems concerning the
Mellin transform may be found in Titchmarsh [11]. The theorems to be used
here are listed in 6. Let R + and R- denote (0, oo) and (- oo, 0), respectively. Let
LP(S), where S

_
R or S is a vertical line in C, be the Banach space of complex-

valued, measurable functions f(x) defined on S such that the norm ofJ

f (yslf(x)l’dx lip

<=p< +,

is finite. The letter s will always represent a complex variable, s cr + it, and we
denote the real and imaginary parts of s by Re (s) and Im (s), respectively. Through-
out, E will denote the vertical line {s CI Re (s) 1/2}.

2. L2 ease. The first problem under consideration is to find, for a given
kernel k(u) in Lz(R) and a given free term f(x) in Lz(R), a function qS(y) in LZ(R)
which satisfies for almost all x in R, the integral equation

(2.1) k(xy)dp(y) dy f(x).

More precisely, we seek a function b(y) in L2(R), such that for almost all x in R,
the limit

lim k(xy)c(y) dy
a’-*-F
b---* +

exists and defines a function equal to f(x) for almost all x in R.
Define functions f(x) and fz(x) as

[f(x), x>O, 0, x>O

(2.2)
Ji (x) -= f-(x) ,[0, x<0, f(x), x<0,

ji(x) f-(- x),

and in a similar way, define bl(x), kl(X), iD2(x), k2(x), k-(x) and q-(x).
With these definitions and conditions it is not difficult to show that the

problem of solving (2.1) is equivalent to the problem of solving the system of integral
equations

(2.3)

kz(xy)qbz(y) dy + k(xy)dp(y) dy f(x),

kl(Xy)qb2(y) dy + k2(xy)dl(y dy f2(x),

x>0,

x>0.
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If (2.3)is solved for 4) l(X) and b2(x)in L2(R +) then b(x)= )l(X) + 2(-x) is a
solution for (2.1) in Li(R).

The use of the Mellin transform to solve system (2.3) is contained in the
proof of the following theorem.

THEOREM 2.1. Ij’ k(x) and f(x) are in L2(R),/f KI(S and K2(s are multipliers
of L2(1/2 ioo, 1/2 + ioo) and if the quotients

Fi(1 s)K2(1-s)- Fj(1 -S)Kl(1 s)
(i,j)=(1 2) (2 1),(2.4) Gj(s) =_

K(1 s)- K2(1 s)

are in L2(1/2 ioo, 1/2 + ioo) then the equation

f

_
k(xy)g)(y) dy f(x), x R,

has a unique solution in L2(R), obtainable by application of the Mellin transform
to the system (2.3).

Proof. Since Gl(S) and G2(s are in LZ(E), we may define the inverse Mellin
transforms

(/)1(x) / GI(S)X as, x > o,

0, x<0,
(2.5)

(D2(X) / G2(S)X as, x > o,

0, x<0.

Both of these functions belong to Lg(R +) and have Mellin transforms Gl(S) and
G2(s), respectively, for all s with .Re (s) 1/2. We claim that the functions defined
in (2.5) solve the system (2.3). To this end, we replace s by s in Gl(S) and G2(s)
as in (2.4). Algebraic manipulation shows that

(2.6)
K2(s)G2(1 s).qt_ Kl(S)Gl( s)--- Fl(s),

KI(s)G2(1 s) + K2(S)Gl(1 s)-- F2(s),

where Re (s) 1/2. Since K,(s) and K2(s are multipliers of LZ(E), all the terms
on the left-hand side of (2.6) are in LZ(E). Plancherel’s theorem for Mellin trans-
forms (Theorem 6.1, 6) implies that F(s) and Fz(S) are also in LZ(E), so that
every term in (2.6) has an inverse Mellin transform.

Multiplying the equations in (2.6) by (1/2rti)x and integrating over E, we
obtain for almost all x > 0,

(2.7)
2rti

K2(s)G2(1 s)x ds -+- KI(S)GI(1 s)x-

KI(S)6(1 s)x ds +-i K.(s)61(1 s)x-

ds j;(x),

ds
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An application of Corollary 6.1 shows that

Ki(s)G(1 s)x ds ki(xy)dp(y) dy
2rci

for all x > 0, and i, j 1, 2. Therefore, we conclude that for almost all x > 0,
b l(x) and qSz(X as defined in (2.5) satisfy (2.3). Furthermore, qS(x) b l(x) + b2(- x)
solves equation (2.1). The solution is unique in LZ(R) by virtue of the uniqueness
theorem for the Mellin transform.

Remark. It may be noted that the quotients Gj(s) in (2.4) are obtainable from
(2.6) by a formal application of Cramer’s rule. That is, the system of integral
equations in (2.3) is transformed via the Mellin transform to the algebraic equations
in (2.6), then Cramer’s rule is applied to the algebraic equations to obtain the
quotients in (2.4). Finally, the inverse Mellin transform transforms the Gj’s back
to the solution pair of the system of integral equations.

3. Example. Consider the kernel

J (x -t- 1)log Ixl,
k(x)

O,

and the right-hand side

(log Ixl)2 Ixl <
f(x)

0, Ixl > 1.

Then the respective Mellin transforms are 1, with (14), p. 315, corrected]

-1
K (S)

(S 4- 1)2 s2,
Re (s) > 0,

K2(s)
(s + 1)2 s2’

Re(s) > 0,

+2
FI(S)- F2(s $3

Re (s) > 0.

Therefore, the quotients Gl(S) and G2(S are both equal to

Re (s) < 1,

and so

1/x,
I(X)--- (/)2(X)--

0,

Hence the solution to (2.1) is

1/Ixl,
4,(x) o,

This can be verified by direct integration.

x>l,

otherwise.

Ixl> 1,

IxI =< 1.
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4. Application of generalized Mellin transforms. Although the exponential
Fourier transform is of the form (1.1), Theorem 2.1 cannot be used for its inversion.
In order to obtain an inversion for this important case as well as for other trans-
forms which do not yield to the result in 2, we turn to a generalized Mellin
transform 5]. The reader is now referred to 6.1, where the definitions that we
need from 5] are listed.

Let P- be defined the same as P+, with R + replaced by R-. Extending the
functions in P+ and P- to all of R by defining the functions to be zero on R- and
R +, respectively, we define P as the space of all functions

Ix) + -Ix),

where 05 + e P+ and - e P-. A sequence {qS,(x)} converges to zero in P if and
only if {b,+(x)} and {2(x)} converge to zero in P+ and P-, respectively.

The relationship among P, P/ and P- is easy to see. The expected con-
nection among P’, (P+)’, and (P-)’ is proved in the following lemma.

LEMMA 4.1. The space of continuous linear functionals on P, denoted by P’,
is identical to

(P+)’ + (P-)’.

Proof. For J’e P’ denote by f+ and f- the restrictions of f to P+ and P-,
respectively. Then for every 4 in P we have

4,-5 <J, 4,+5 + <j, 4,-5 <J+, 4,+5 + <J-, 4,-5.

On the other hand, f+ given in (P+)’ and g- given in (P-)’
continuous linear functionals on all of P by setting

may be extended to

(j+, 45 (f+, qS+), (g-, qS) (g-,

b e P. These equalities, combined with the inclusions

P+ c P c P’c (P+)’,

P- c P c P’ c (P-)’,

P+ + P- P c P’=(P+ + P)’,

give the desired conclusion.
Now, knowing the structure of P and P’, we turn to defining the generalized

analogue of the transform

k(xy)c(y) dy

To this end we state the following definition.
DEFINITION 4.1. The reflection, d?-, of dp- in P- is defined by

q(x) -(-x), x > 0.

Similarly, the reflection, c)-, of d? + in P+ is defined by

4,(x) +(-x), x < o.
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/ (P-)’, off- and f respectively,The reflections, f, (P +)’, f, (P-)’ + (P +)’,
are defined by

+ +

(4.1)
(f*’ ) (f ’qS;)’ b P-,

<f,,qS> <f ,>, +P+.
The generalized analogue of the standard convolution

fo k(xy)4(y) dy

is contained in Definition 6.6. Let k + and g+ be elements of (P+)’ such that
k + A g+ is defined and in (P+)’. Then (k + A g+), is in (P-)’ and furthermore

(4.2) (+ A g+), + A g A g+.
Indeed, from the definitions of reflection and convolution we obtain

+ + g+ +

<g+(x),x-’<+(),@+(x-’)))

<g+(-x), -x-’<+(), e(-x-
+

for the first equality, and the second equality follows similarly. We define the
generalized analogue for the convolution

o
k(xY)4(Y) dy

in the obvious way, and note that if k- A g- is well-defined, then

(4.3) (k- A g-), k- A g k A g-, k-,g-e(P-)’,

is a P+ distribution. Equalities (4.2) and (4.3) show that if the convolutions of k +

with all elements of (P+)’ and k- with all elements in (P-)’ are defined then so
are their convolutions with all elements of (P-)’ and (P+)’ respectively.

With this information about the reflection of convolution on (P+)’ and
(P-)’, we formulate the next definition.

DEFINITION 4.2. Let k and g in P’ be such that k k + + k- and g g+ + g-.
Then k A g in P’ is defined by

(4.4) k A g=(k+ A g+)+(k + A g-) +(k- A g+)+(k- A g-)

provided all the convolutions on the right-hand side of (4.4) exist.
Having defined this convolution on P’ we turn to the solution of (1.1) under

the following conditions upon k(x) and f(x)"

K(s) and K2(s), the ordinary Mellin transforms
(4.5) of k and k2, exist and are analytic in a vertical

strip containing the line Re (s) 1/2.
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f/(x) is an ordinary function such that .l/2f/(x)
(4.6) is in (P+ S)’, 1, 2. Note that f e L2(R +) is

sufficient for xl/Zfi(x) to be in (P+ S)’ (see [5, Thin. 3]).

(4.7)
Gj(s) is an ordinary function which is locally integrable
and of finite order on (1/2 Joe, 1/2 + ioo), j 1, 2.

Our result concerning (1.1) is stated as the following theorem.
THEOREM 4.1. /f conditions (4.5) through (4.7) hold, then (1.1) has a solution

d? P’ which is unique among all d/) dpl + )2, such that X1/2l and X1/2(2 are in

(P+S)’.
Proof. The argument is patterned after the proof of the previous theorem. We

shall define and (2 in (P+)’ as the generalized inverse Mellin transforms of
Gl(s) and G2(s), and then show that 4 and q52 satisfy a system of equations
analogous to (2.3). Then 4) -= 4)1 + 4)2, will be a solution to (1.1) in the sense that

for all 0 in P.
Since G(s) and G2(s) are only required to be of finite order as Izl--* oe on

E, the ordinary inverse Mellin transforms of G1 and Gz need not exist. However,
the finite order and local integrability of G and G2 imply that the generalized
inverse Mellin transforms of G1 and G (considered as elements of Q’) exist, so
we define two P/ distributions

b,(x) _= (M-’(G,)), i= 1,2,

where the inversion is taken along E. Furthermore, x/2dpa(x) and x/2dp2(x) are
in (P+ S)’.

Considering (2.6) again, we see, in view of condition (4.5), that all the terms
on the left-hand side of (2.6) are locally integrable and of finite order on E. Hence,
all these terms can be considered as elements of Q’ and we have for all , Z e Q,

(K2(s)G2(1 s), tP(s)) + (KI(s)GI(1 s), tP(s)) (Fl(S), tP(s)),

(KI(s)G2(1 s),Z(s)) + (K2(s)G(1 s),Z(s)) (F2(s),Z(s))

s e E. By (4.6), F(s) and F2(s are Q distributions.
Taking generalized inverse Mellin transforms in these equations, we get

[5, Thm. 4] with M- +, M-Z +,

<k2 A 2,+) + (k, A 4,,0 +)
(4.8)

<k, A 2,+) + <k2 A ,+) <f2,+)

for all +, + e P+, which means that the generalized analogue of (2.3) holds.
Now a straightforward application of the equalities (4.2) and (4.3), followed by
the addition of the corresponding sides of (4.8), gives for all + e P% - 2 eP

(k2, A b2,, 0 +) + (k, A ,, 0 +) + (k A (2,, 0-) -k- (k2, A 4,,

<1;, 0 +) + <Ji,, 0-> <1; +/i,, 0 + +
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which means that

(k A qS, ) ((k + k2, A (q5 + b2,), O) (f, t)

for all 0 e P. That is, q5 1 q- 2, solves (1.1) in the P distribution sense. The
solution is unique among all q5 qSx + 42, with x/2dp and x/242 in (P+S)’, by
virtue of the uniqueness theorem for the generalized Mellin transform.

5. Examples. Consider the equation

(5.1) e-X’4(y dy e -x, x e R,

so that k(x) e-i,, k2(x) eix, fl(x) e-ix, f2(x) eix. Hence [1,
Kx(s) Fl(s) F(s) exp (-is
ge(s) Fe(s F(s)exp i-s

and we have

Gl(s) 1, G2(s) 0,

so that the solution to (5.1) is

M-1(1) + (M-1(0)), 6(y 1).

For another example consider the equation

(5.2) e-ixrdp(y) dy e -Ixl,

In this case we have Kl(s) and K2(s as before and

Therefore,

-1 < Re(s)< 1,

0< Re(s)< 1,

xR.

F(s) Fe(s)= F(s), Re (s) > O.

0< Re(s)< 1,

a (S) G2(S -F 0< Re(s)< 1,

is a solution in the ordinary sense also.

4(x)
7 I+X2

Since G I(S and G2(s are of exponential decrease as It[ o, the ordinary con-
volution theorem may be used and

bl(x) bz(x) fo e -xy e -y dy
c cl+x2

and since G1 and G2 are analytic in a strip of positive width an application of the
convolution theorem gives
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6. Theorems about Mellin transforms and definitions from [5].
6.1. Mellin transforms.
THEOREM 6.1. [11, p. 94, k 1/2]. Let f(x) belong to Lz(R+). Then

’j’(x)x
s-1 (Re(s) 1/2)dx,

/a

Converges in mean square over (1/2 oo, 1/2 + oo) to a jhnction F(s);

;1/2+ia F(s)x ds
2rci 1/2-ia

converges in mean to f(x) and

If(x)l 2 dx - IF(l/2 + it)l 2 dr.

THEOREM 6.2. [11, p. 95, k 1/2]. Let f(x) and g(x) belong to L2(R+). Then

0 (1/2+i

F(s)G(1 s) ds.f(x)g(x) dx . /2 ioo

COROLLARY 6.1. Let f(x) and g(x) belong to LZ(R +). Then for x > O,

fl/2+i F(s)G(1 s)x- ds.f(xy)g(y) dy i d 1/2-i

6.2. Generalized Mellin transforms.
DEFINITION 6.1. P* is the vector space of all complex-valued, infinitely

differentiable functions defined on R + with compact support in R +. P + is equipped
with the usual Schwartz topology.

DEFINITION 6.2. (P+)’ is the vector space of all continuous linear functionals
defined on P+. A sequence {f+} converges to zero in (P+)’ if (fj+, b+ 0 for
all b + in P+. The symbol (f, qS) denotes the value off at b.

DEFINITION 6.3. P / S is the vector space of all infinitely differentiable functions
qS(x) such that for all polynomials p(x),

p(log x)x(O,x)kqb(x)

is bounded for all integers k >= 0. A sequence {bj} converges to zero in P+S if

p(log x)x(Dxx)kdp(x) 0

uniformly on R + for any polynomial p and any integer k >= 0.
DEFINITION 6.4. (P/ S)’ is the vector space of all elements of (P/)’ that can be

extended to continuous linear functionals on P+S.
DEFINITION 6.5. Q is the vector space of all complex-valued entire functions

q(s), s e C, such that

IW( + iz)l a eBIll,
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where A and B are fixed positive constants, and such that for every fixed a R,
tP(r + i7) is a rapidly decreasing function of 7. Q is equipped with the usual
Schwartz topology.

DEFINITION 6.6. The convolution,f + A g+, off + and g+ in (P+)’ is an element
of (P+)’ defined by

(f+ A g+,q5 +7 (g+(x), (f+(y),x-ldp+(x-ly))), q5 + P+,
provided (f+(y),x-Ic+(x ly)) defines a function in P+.

DEFINIVION 6.7. F’C - C is offinite order on the line Re (s) k if for some
integer n, F(s) O(171") as 171 on this line. F is said to be of finite order in
the closed strip {sic <= Re (s) _< d; c, d e R} if the order relation holds uniformly in
this strip. F is said to be offinite order in the open strip {s]c < Re (s) < d c, d R}
if F is of finite order in every closed substrip of the open strip.

DEFINITION 6.8. The generalized Mellin transform, Mf +, off + in (P+)’ is an
element of Q’ defined by the equality

<Mf+ q.,> <f+ W(s)x- ds>,i.,c_i
tp in Q, c R. The generalized inverse Mellin transform, M-F, ofF in Q’ is an
element of (P+)’ defined by the equality

;o<M- 1F, qS> <F, x f(X) dx>
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GENERATING FUNCTIONS FOR SPHERICAL HARMONICS.
PART I: THREE-DIMENSIONAL HARMONICS*

R. A. SACK

Abstract. A new approach to the theory of spherical harmonics and Legendre functions of integer
degree and order is presented, based on a generating function

eimd
((r) exp (z iy) rP’(cos0)

(I + m)!

and modifications thereof. The analytic properties of the harmonics, their recurrence relations and
addition theorems under translation are derived in a simple and consistent way; the mathematical
apparatus required is minimal. Integrals of products of surface harmonics over the unit sphere can be
studied by integrating products of generating functions; with two factors this yields the orthogonality
relations and normalizatioia constants. The case of three factors is best discussed in terms of coefficients,
closely related to Wigner’s 3j-symbols, but which are integers of moderate size and satisfy a 3-term
recurrence relation analogous to that of the binomial coefficients. The Regge symmetries are obtained
for modified coefficients which are rational, but not integer.

1. Introtluetion. The theory of Legendre functions and spherical harmonics
has been established for many generations, and it may appear pointless to try
and base this theory on yet another new approach. However, during work on a
series of papers [24]-[27] dealing with the expansion of scalar functions of 3-
dimensional vector sums in spherical harmonics, the writer has become aware of
a major difficulty connected with the existing methods. The elementary theory is
most easily presented on an analytic basis, whereas the more refined properties
of the harmonics, such as their transformations under rotations of the coordinate
system or the re-expansion of their products, have been almost exclusively treated
by algebraic or group-theoretical methods. Yet these latter properties are ex-
tensively used in theoretical physics, and in consequence even such comprehensive
works based on an analytic approach as Hobson’s [10] are inadequate for present-
day needs as they only cover part of the required theorems. For a complete under-
standing of the properties of spherical harmonics one first has to relearn even
their elementary theory in an algebraic description. One indication of the draw-
back of this dichotomy is that the almost trivial addition theorems of the solid
spherical harmonics appear to have been found only within the last two decades
[21], [25], [6], [7], [29], [30].

In [24]-[27] the radial coefficients multiplying the spherical harmonics in
the spatial expansions were derived and their properties studied from the differ-
ential equations which they satisfy and from the analytic theory of hypergeometric
functions. The writer found himself in the paradoxical situation of having to
apply several algebraically and group-theoretically derived properties of the
spherical harmonics in an otherwise completely analytic context. He therefore
felt the need for a simple new approach which would lead to the establishment of
the usual analytic theory of Legendre functions (at least for integral orders and
degrees), but could easily be extended to cover also those properties which have
hitherto been dealt with essentially on an algebraic or group-theoretical basis.
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Such an approach has presented itself through an exponential generating
function (G.F.) in which the associated Legendre functions P’(u) are defined as
the expansion coefficients of the harmonic function

(1.1) (r) exp (z iy) exp [r(u ia sin b)],

(1.2) r (x, y, z) (r, O, b), u=cosO, a=sinO.

If we define the P’(u) by the expansion

(1.3) if(r)=
l=Om=-I

r eim4p’[’(u)
(1 + m)!

all their properties can be derived from those of (r) and certain generalizations
thereof. The only mathematical knowledge required are Taylor’s series, series
solutions of linear ordinary differential equations and their singular points, the
form of the Laplacean operator in Cartesian and polar coordinates.

(2 2 (2
V2- -[-

(1.4)

63r2
q- q- if- cot 0

r 5 sin20 -2
the solution of the two-dimensional Laplace equation

VZ(F(z- iy) + G(z + iy))= 0

with its generalization to three dimensions

(1.6) V2F(z iy cos ix sin O) 0

and the elementary theory of Fourier series. For the discussion of the irregular
solid spherical harmonics some elementary knowledge of the exponential integral
and asymptotic series is also required.

The standard theory of spherical harmonics usually starts with the G.F. for
the Legendre polynomials

(1.7) (1 2ru + r2) 1/2 .= 2Pl(U)r

from which their differential equation is deduced, and Rodrigues’ formula ap-
pears as the solution of this equation. The associated Legendre functions P’(u)
are introduced as angular factors in the solution of Laplace’s equation by sep-
aration of variables; at each stage new concepts have to be introduced. An
alternative approach is based on a definition of the form (cf. [3,(3.7.25)])

(1.8)
eimg’pT(u

(z iy)t rtl! m (l + m)’.

or a similar expansion of (z- iy) -l-1. Here all the Legendre functions with
m or 0 occur at the same level. It is clear that (1.1)-(1.3) is obtained from
(1.8) merely by summation over l, and it is surprising that this further system-
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atization has not been employed hitherto. Yet an extensive search of the literature
[1], [10], [11], [15], [19], [33], [12], [14], [17], [32] failed to reveal any G.F. re-
sembling (1.1)-(1.3); the last four works especially deal extensively with generating
functions. The Bateman Manuscript Project [3] gives a G.F., apparently due to
Herglotz [3, (11.5.21)

k

(1.9) [I stu 1/2str(l t2)] Z Z l’ k-.P l(u)sl
k k!’

where the summation is taken over and k simultaneously. On substituting
r st, e, (1.9) is seen to equal (1 z + iy)-. The main difference between
the two expansions is the presence of l! in the numerator of (1.9), leading to a
geometric expansion in contrast to the exponential (1.1). For the purpose of
applying the G.F., the exponential form appears to be more fruitful as the product
of two exponentials is again an exponential.

Since the first draft of this paper was submitted, a referee has pointed out
that a G.F. equivalent to (1.1)-(1.3) has been given implicitly by W. Miller in
equations (4.12), (4.13) of [13] as a special case of a G.F. for spherical Bessel
functions. But, whereas Miller uses the more general function to study the prop-
erties of spherical Bessel functions, the special G.F. is not used to derive any
properties of spherical harmonics.

As with all analytic approaches, the definition (1.1)-(1.3) leads naturally to
Legendre functions and spherical harmonics in their unnormalized forms:’ thus
we write

1.1 O) Y’(O, 05) PT’(cos O) eira4’

for the surface harmonics; (in 25]-[27] the symbol f was used instead of Y).
With an algebraic approach these functions are more easily handled in their
normalized forms, denoted in this paper by the prefix n,

[(2/+ l)
(1.11) nYlm(O, 4)) L ( + m)

Y’[’(o,

their use leads to more symmetric formulas in most cases, but at the price of
introducing square roots in many places, which are entirely avoided with the
present approach. Similarly, we define the regular and irregular solid harmonics
as

(1.12) ’(r) rIy(O, dp), Y’(r) Y’[’(O, dp)r-- 1,

respectively, even though conventionally they are defined with the normalized
surface harmonics as the angular factors; again a prefix n can serve to distinguish
the normalized forms where required.

The elementary properties of the Legendre functions PT’ and the harmonics
Y and are rederived on the basis of the definition (1.1)-(1.3) in 2; in 3 the
same is done for the irregular solid harmonics "l" on the basis of a related, asymp-
totic, G.F. To keep the paper reasonably short, most proofs and some of the well-

The adjectives associated with Legendre functions and spherical with harmonics will be omitted
in the sequel when no confusion can arise.
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known results are omitted. Recurrence relations and addition theorems are
derived in 4; the Laplace expansion (1.7), which usually serves as the starting
point for the theory, appears here as a special case of the general addition theorem
for the irregular harmonics Y.

When considering integrals of v products of surface harmonics taken over
the whole unit sphere, the condensation of the individual formulas (1.8) into the
exponential form (1.3) becomes of crucial importance as it enables generating
functions for the integrals to be set up from which their essential properties can
easily be derived. The general approach to these integrals is indicated in 5, to-
gether with a discussion of the case v 2, which yields the orthogonality and
normalization conditions of the surface harmonics. The cases v > 2 are treated
in {} 6, especially v 3, which leads to a theory of 3j-symbols in an unnormalized
form previously introduced in [253-[27]. In order not to make the present paper
excessively long, some of the properties of the spherical harmonics, especially
their rotational transformation properties and their 4-dimensional analogues,
will be discussed on the basis of exponential G.F.’s in subsequent publications.

2. Elementary properties.
2.1. Rodrigues’ formula and series expansions. With the definition (1.2),

(2.1) z iy r(u 1/2er eiv, + 1/2 e-iv,),
the exponential (1.1) can be factorized in the form

(2.2) ((r) exp (ru). exp (-1/2ra eiv,), exp (1/2rer e -iv’)

which shows that the only terms occurring in the expansion (1.3) satisfy the
relation

(2.3) -l _<_ m __< l;

the equality signs apply only if the power of r derives exclusively from the third
or second factor in (2.2) respectively. Only the condition (2.3) justifies the insertion
of the factorial (l + m)! in the denominator of (1.3) as nonvanishing terms with
+ m < 0 could not be rendered by the expansion (1.3). Alternatively, the argu-

ment in (1.1) can be written in the form

(u eiv,a)2
(2.4) z- iy r

2 e%

(2.5)

which yields for the expansion of the exponential

r r [(u eiv,tT)2 1]
((r) =/(u- itr sin (D)l-- / .I [--2tr e.iv,]

(2.6) -/ u (u2 1)

the summation over/ following from Taylor’s theorem. Comparison with (1.3)
and identification of/t with + m yields Rodrigues’ formula for the Legendre
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functions

(2.7) Pn(u) (--)m(1- bl2)m/2(d)l+m(tl2-1)l-u211’
with its concomitant expansion in powers of u

(2.8) PT’(u)
(-)’(1 u2)"/2 (-)Xu- zx-"(2/- 22)!

An alternative expansion of the PT’ is obtained by grouping together all
those terms in the product of the exponential series in (2.2) which have the factor
r ei’+; the order of the term in one of the factors may be varied, the powers of the
other arguments being uniquely determined thereby"

(2.9) PT’(u) (l+ m)!(--)v+mul-rn-2v(1/2Cr)m+2v

v!(v + m)!(- -- : -.
The summations in (2.8) and (2.9) are to be taken over all values of the indices
for which the arguments of all the factorials are nonnegative.

2.2. Linear independence of harmonies. The solid harmonics.’(r) defined in
(1.12) are polynomials in x, y, z, as, in view of (2.1), they contain only products of
positive powers of z, x + iy and x iy. They are linearly independent in view of
their different dependence on r or b or both. For a given value of m any PT’(u) is
linearly independent of the functions P’(u)(2 < l) as it alone contains the power
u- hence all the Legendre functions PT’(u) at constant m are linearly independent,
and so are the surface harmonics YT’ for any and m, in view of their dependence
on eimck.

2.3. Parity in u and m; special values. If we replace r by -r we obtain, in
view of (1.1)-(1.3) and (1.12),

(2.10)

and hence,

-#’?(- r) rlp( cos O) eimcp + n) )/O’n(r).

(2.11) PT’(- u) (-)l+ rnpT(u)

the latter could also have been inferred from the expansion (2.9). For + m even
and u 0 only one term survives in (2.8) or (2.9) giving

(_)+m)/2 (1 + m)!

(2.12) PT’(0) [(l + m)]![(/- m)]!’ l+ m even,

0 + modd.

For u _+ 1, o-= 0 and the right-hand side of (2.2) reduces to its first factor
which is independent of 05; comparison with (1.3) yields

(2.13) PT’( +/- 1) +_ 1)/ornO.
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Other properties can be derived by means of a generalization of which differs
from (1.1) by putting kr for r and q5 + for 4):

{(r; k, O) exp [k(z iy cos O ix sin )]
(2.14)

exp {kr[u- ia sin (q + )]}
kt eim’(r)

In particular,

(l + m)!

(r; 1, re/2) exp [r(u ir cos

(2.15) rZi,,p,(u) em4,
=Z (l+m)!

is an even function in ; hence the right-hand side remains invariant on sub-
stituting -q5 for 4, or alternatively -m for m; in consequence

P[-m(u) (-)mp?(u)
(2.16)

(l- m)! (l+ m)!

2.4. Differential equations. Application of the Laplacean (1.6) to (2.14) yields

k eimq’v2o-ff?(r)
(2.17) V2(r;k’ )=

(l + m)!
0;

but this is an identity in k and ; hence each solid harmonic individually
satisfies Laplace’s equation

(2.18) V2’(r) 0.

From (1.3), (1.4) and (2.18) there follows the ordinary differential equation for
the Legendre functions

m21du + l(l+ 1) -u2 e?(u)=0.

One of the solutions of this second order equation is given by (2.8), a polynomial
in u multiplied by (1 -U2)lml/2; the second solution becomes infinite at both
singular points (u +_ 1).

As stated in the Introduction, the definition (1.1)-(1.3) of the Legendre
functions and the derivation of their properties as given above is entirely equiv-
alent to the well-known definition (1.8) and the conclusions drawn therefrom.
The two approaches differ only in that occurs as a constant parameter in (1.8),
but as a summation index in (2.5) and (2.6). Hence for the results obtained hitherto
the approach based on (1.1)-(1.3) can, at best, be considered as a systematization
of a well-known method. Other results lean even more heavily on the expansion
of single powers of z iy; thus the Fourier expansion of (1.8) yields directly

(2.20) P(u)
(l + m) fz2nl 0

(u- iasin4) e-i4d4,

which is essentially Laplace’s first integral [3, (3.7.25)]. The proof of the corn-
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pleteness of the set of the regular solid harmonics 7’(r) to represent all the har-
monic p.o.lynomials again follows conventional lines (Hobson [10, Chap. 4]) and
will not be repeated here. The orthogonality of the surface harmonics is derived
in5.

One further set of formulas follows straightforwardly from (1.1)-(1.3) and
the generating function for the Bessel functions of integer order in the form

(2.21) eipsin 2 eim Jm(P)

[3, (7.2.26)]; comparison of terms in em yields

(2.22) e-zj=(p) (_ )m
(1 + m)" p re.

Again this formula is not altogether new; Rainville [17] devotes considerable
space to the case m 0, and the equivalent for m 0 is given in equation (22.9.5)
of [1]. However, the only derivations the writer has seen are by tedious com-
parison of coecients or by Laplace transforms, in contrast to the very concise
derivation given above.

3. Irregular solid harmonics. The function

(3.1) Exp (a) e- dt/(1 + t) e Ei (- a), Re (a) > 0,

cannot be expanded in a convergent power series, but has an asymptotic ex-
pansion [3, (9.7.7)

(3.2) Exp (a)
v=0 aV"

The notation Exp, which is not the usual one, has been chosen here to underline
the similarity of some of its properties to those of the exponential function. In
particular, from the expansion

e -’ (-)"+v
(3.3) +
we obtain the formal addition theorem

(3.4) Exp(a + b)= [Exp(a).exp(b)]* o (-)vv! b"

,= n!’ a>[bl,

where the asterisk on the product implies that those terms in the product of the
expansions for which n > v are to be suppressed. A corresponding expansion for
three terms in the argument

(3.5) Exp(a + b + c)= [Exp (a)exp (b)exp (c)]*

requires the condition

(3.6)
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in order to make the partial sums

N! (-)"+m(N + n + m)! b" c
(3.7)

(a + b + c):+
,

aN+n+m+ n! m!

absolutely convergent;similar considerations apply to sums of more than three
terms in the argument.

Consider now the generating function

)l+m(3.8) Z(r) Exp (z iy) ,t+ (- p’(u) eim

and its generalization analogous to (2.14)

(3.9)
Z(r; k, O) Exp [k(z iy cos gt ix sin

l= (kr)l+ m=- (--)l+mp(u) eimt4+O)

For real values of (x, y,z) comparison of (2.1) with (3.5)-(3.7) shows that each
summation over m at constant in (3.8) converges for a < I.,,l and, since u must
be positive, (3.8) is meaningful for 0 =< 0 =< rt/4. In particular, all the p’(u) must
be finite at u 0. The function Z(r; k, ) satisfies Laplace’s equation for any
value of k and ; hence, in view of (1.4), each function p’(u) must satisfy (2.19)
individually. However, it was shown, following (2.19), that for Iml _<_l those
solutions of (2.19) which remain finite at u 1 0 are given by the Legendre
functions P’; hence p? and P’ can only differ by a constant factor. This pro-
portionality constant is found by comparing the lowest powers of a coupled with
eim/rl+ l, i.e. ignoring the third or the second factor in (2.2), when substituted in
(1.3) and (3.8). According to (2.2), (3.4) and (3.8) we have

(-- 21-o’)m(1 nt- m)!/m!(1 ), m >= O,
(3.10) p’(u)

(1/2a)lml( + Iml)!/lml!( ..), m < O.

Comparison with (2.9) yields

(3.11) p?(u) (l- m)!P’(u), -l =< m <_ 1.

We can therefore write for (3.8),

(3.12)
Z(r)

(--)l+m(1-
r + P’(u) eim

/=0

E E (__)l+m(l m)!r}"(r),

where the P’(u) are the Legendre functions discussed in 2 for Iml =< l, and the

YT’ are the irregular solid harmonics defined in (1.12). For [ml > the formula
(2.7) becomes meaningless when substituted in (3.12): for m < -l, (2.7) involves
derivatives of negative order, i.e., integrals whose values depend on where the
lower limit is chosen, and for m > the P’(u) vanish identically, but are multiplied
by the gamma function of nonpositive integer argument, so that the terms con-
tain the indefinite factor 0. oe. In view of the nature of the differential equation
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(2.19) for the PT’(u), which has singularities at u +_ 1 only, any solution which
is finite at u 0 remains analytic at least in the interval 1 > u > 1. How-
ever, the more detailed theory of Legendre functions with nonintegral or m or
not satisfying (2.3) lies outside the scope of this paper.

The expansion of the individual inverse powers of z iy occurring in (3.8)
is again standard in the theory of spherical harmonics; the determination of the
various Fourier components in (3.8), together with (3.11), leads immediately to

(3.13)
)’l (’ e -ira* ddp

PT’(u)
27(/- m)! (u ta sin t)+

which is essentially Laplace’s second integral [10, p. 103].
4. Recurrence relations and addition theorems. Differentiation of (1.3) with

respect to b yields

iO mr ei"4)P’[’(u)
(4.1)

c4 (1 + m)!

but, in view of (1.1), this is also

(4.2) c3 eim4)rlp?(u)

-i-- ra cos b( --ra(ei4’ + e -i4)) ,
(l + --(.

The total factors multiplying r eim4/(l nt- m)! in (4.1) and (4.2) respectively are

(4.3a) mPT"(u) -1/2a[PT’_+ + (l + m)(1 + m- 1)Pt"L-I].

Similarly from a differentiation of (1.1)-(1.3) with regard to r we obtain by com-
parison

pm-(4.4a) /P?(u) (1 + m)UPl_ + 1/2o"rp’’+ -(l + m)(l + m- 1, l-lLXl

and from differentiation with respect to u,

u
(4.5a) dPT’= (l + m)plm_ -[PT’_+ -(l + m)(l + m- I)P’5- ].

du -Alternatively, we could differentiate (3.8) and (3.12) with respect to the same
three variables; this yields a set of formulas (4.3b)-(4.5b) which differ from (4.3a)-
(4.5a) only by the substitution of for 1. All the numerous 3-term recurrence
relations satisfied by the Legendre functions [3, (3.8.11-19)] can be deduced by
suitable linear combinations of (4.3)-(4.5), though some of the formulas are
obtained with less effort if both sets are used simultaneously. The detailed cal-
culations and results will not be quoted here.

In order to derive the addition theorem for the regular solid harmonics
(r) where

(4.6) r=r +r2

it is best to use the generalized G.F. (r k, ) defined in (2.14). Observing that

(4.7) (r; k, ) (r k, ). (r2 k, ),
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expanding each G.F. according to (2.14) and comparing the coefficients of k eimO

on both sides we find

’(r) (rx)
(4.8)

(I + m)! ] (-! (A’+ /’)!’

the sum to be taken over all values of 2, 2’,/t,/’ subject to

(4.9) 2 + A’-- l, / +/’= m,

and for which, in addition, the equivalent formula to (2.3) applies to each factor.
More compactly this can be written as

If one of the polar angles vanishes, say 02, this formula simplifies, in view of
(2.13), to

Whereas (4.11) goes back to Hobson [10], this writer has been unable to find any
publication giving the more general case (4.10) earlier than Rose [21], who derived
the equivalent formula for the normalized harmonics by algebraic methods; for
unnormalized harmonics (4.10) has been derived in [25] starting from the defi-
nition (2.20) (see also [7]). The generalization of (4.6)-(4.10) for

N

(4.12) r rj

is straightforward, leading to

’(r) vlu (rj)(4.13)
(1 + m)’ (2j +/j)"{,u}

the sum to be taken over all sets of 2 and # subject to

(4.14) 2j l, Z #J m.

For integer and m this formula is valid irrespective of the relative magnitudes
of the rj.

To find the addition theorem for the irregular solid harmonics T?(r) of the
sum vector (4.6) we use the formal factorization (3.4) for the G.F. (3.8):

(4.15) Z(r k, q) [Z(r ;k, q)(ra ;k, q)]*

valid for

(4.16) rl > r2.
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By sorting out terms in k-l-1 eimq, we obtain

(_)4+,/l + 2- m
(4.17) Y’(r)

4. m
Y’+-(r )(r).

This addition theorem has previously been derived by Chiu [6] by means of
irreducible tensor algebra (Chiu uses normalized harmonics), by the writer [25]
as a special case of a more general addition theorem and by Dahl and Barnett
[7] by induction. We see that, whenever the condition (2.3) applies to the indices
of Y(r), it also applies to all the factors Y(r 1) occurring on the right-hand side of
(4.17), i.e., no harmonics with singularities at 0 0 or 0 t enter into the ex-
pansions. Again the summation over # reduces to a single term if one of the polar
angles vanishes, but in this case it matters whether it belongs to the longer or the
shorter of the vectors. If r > r2 and 01 0 the expansion becomes

(4.18) fT’(r) (-)4+ + rrl 2,

4 l--

and if rl > r2 and 02 0,

(4.19) f’(r) )4 l+2-m) 4
/’2

1-m
r-((t+ 4+ 1)yn+l(01 (1).

Of special importance is the case 0, i.e., the inverse distance Irl + rzl-1. If
the direction of one of the vectors is reversed, this merely introduces an additional
factor (-)4 in the expansion, so that (4.17) becomes

= (_)u r<(4.20)
[r, r2l 4,u r,> +i Y(01, bl)Y-U(02, 2),

where r> and r denote the larger and smaller of rl and r2 respectively. On the
other hand, Irl -r21 depends on the polar and azimuthal angles only through
the angle 09 subtended by the two vectors; substituting 09 for 02 in (4.18) or for
01 in (4.19) we obtain

rZ< Px(cos 09)(4.21)
It1 rz[ (r2 2rlr2 cos 09 + r2) ’/2 r>+

which is essentially Laplace’s generating function (1.7) for the Legendre poly-
nomials P(u) P(u). Furthermore, comparison of the terms at constant
in (4.20) and (4.21) gives the addition theorem for the surface zonal spherical
harmonics [3,(3.11.2)]

Pt(cos 09) (-)uY(O1, dpl)Y?u(O2, 2)

(4.22) p/(cos O)p/(cos 02)

+ 2u’-I (1 -4-/t)!
P(cs 01)P"(cos 02) cos
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the last equation following from (2.16). In particular, 1 yields the standard
expression

(4.23) cos 60 cos 0 cos 02 -1-- sin 01 sin 02 cos ((D1 (D2).

There is a striking similarity between the expansions (4.10) and (4.17), and
the binomial series for positive and negative powers of (a + b) respectively if

’ is compared with a and "1"’ with a -t- 1. This is an immediate consequence of
the (actual or formal) factorizability of their G.F.’s (r) and Z(r). A further
analogous consequence is that the straightforward generalization of (4.17) for
the addition of more than two vectors as in (4.12),

(4.24) Yp’(r)
(2 #x 1)’

{,.} -i- m)!
"rl(r)

N r +#J ltiJ

(’s + s) A
subject to

N N

(4.25) 2, l+ Z 2j, Z /J= m,
j=2 j=l

is absolutely convergent only in the case
N

(4.26) rl > rj.
j=2

When no vector is larger than the algebraic sum of all the other vectors, the
multiple series (4.24), (4.25) are at most conditionally convergent; it depends on
the mutual orientation of the r and on the order of summing over 2j and/tj
whether they converge. Thus if (4.26) is not valid, but

(4.27) rl> rJl’2
convergence can be achieved provided the summations over 2j,/j (j > 1) are
first carried out for fixed values of 21 and tl and the final sum taken over 21
and/1. Since the limits of validity of (4.27) depend on the angular variables as
Well as the radii, some of the advantages of the addition theorems, especially the
orthogonality of the surface harmonics, are lost. Formulas equivalent to (4.24)-
(4.25) have been derived by Chiu [6] for normalized harmonics and by Steinborn
[29], [30] in a new standardization; both authors quote conditions more general
than (4.26), without pointing out their pitfalls. Thus for the Coulomb interaction
of two interpenetrating spheres, each having a uniform surface charge q and
radius a with their centers a distance a apart, only the term 11 12 --13 0
would be expected to contribute; Chiu’s formula [6] yields explicitly qZ/a for this
term, and an uncritical application of Steinborn’s [29] formula likewise, whereas
the correct result [5], [26] is 3qZ/4a.

For N 3 series expansions for to have been given, valid in the overlap
region It1 r2[ < r3 < (rl + r2) by Buehler and Hirschfelder [5] for a special
choice of axes and by the writer [26] for arbitrary orientations (other possible
expansions involve Hankel transforms [23], [28]). The resulting expressions are
more complex than (4.24) by an order of magnitude; the underlying cause for
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this is that the Y}" do not satisfy Laplace’s equation at the origin, hence any result
based directly or indirectly on their harmonicity must break down if the mag-
nitudes of the vectors are such that with appropriate mutual orientations their
geometric sum can be made to vanish.

In a recent paper [30] Steinborn and Ruedenberg have rederived the addition
theorems for normalized harmonics equivalent to (4.10) and (4.17) on the basis
of the transformation properties of harmonics under rotations. They temporarily
rotate the coordinate system so as to make the polar axis .coincide with the
direction of one of the vectors, and the terms obtained by applying a translation
along the z-axis according to (4.11), (4.18) and (4.19) are transformed back to the
old directions. This approach, though it follows logically on their prior treatment
of rotations, is very involved, and in the writer’s opinion requires considerably
greater effort than any of the previous derivations [21], [25], [6], [7]. They also
define a new set of regular and irregular solid harmonics which differ from the
standard ones by the absence of the factorials in (1.3) when applied to (1.10) and
in (3.12); the resulting addition theorems differ from (4.10) and (4.17) in that the
binomial coefficients are missing, their generalizations to more than two con-
stituent vectors follow easily and again differ from (4.13) and (4.24) only in that
the factorials are absent.

A different type of addition theorem applicable to solid or surface harmonics
of a single vector is more easily deduced from the single power G.F.’s (1.8) or (3.8),
(3.12) summed over m only, being kept constant. Identification of terms in eira4’

on both sides of the equation (z iy) (z iy)(z iy)l- yields

(4.28) (r) 2,(1-2), (1 + m) (r)’_-(r)/!

and for negative powers

(4.29) Y’(r) F, (-)u /
](r)y,+-aU(r).

(l 1-m

Two further sets of formulas can be derived, in one of which the degree of regular
harmonic on the r.h.s, exceeds that of the Y factor, and in the other both factors
are irregular; but these expansions necessarily involve harmonics outside the
range (2.3). In view ofthe fixed powers of r involved, the solid harmonics in (4.28),
(4.29) may be replaced by the appropriate surface harmonics Y. For 2 the
equations become equivalent to (4.4).

5. Angle averages of products and orthogonality. In 4 the product of two or
more generalized G.F.’s in (2.14) with common parameters k and ,, but different
vector arguments rj, served to deduce the addition theorems for the solid har-
monics j"(r). Conversely, the integrals of products of v surface harmonics over
the unit sphere or, on dividing by 4re, the angle average of these products

(5.1)
/1,’’’,/v f fiY(O ()I =I(l,m)= d2S
ml, my
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where d2S1 means integration over the unit sphere, are most easily studied by
means of a G.F. E"

(5.2)

Here the various factors " depend on the same vector argument r, but different
parameters kj, qj. In view of (2.14), (5.1) and (5.2) are related by

(lj + mj)

where we abbreviate

(5.4) k’ ei’’* II [k} exp (imO)

On the other hand, in view of (2.14), (5.2) can be written

where

1 f dzSl[uWo 1/2a(eiOUeZ(k, )= e-’eW 1)]

(5.6) q" kj exp (ioOj), o 1, O, 1.

Now for any constant vector h with real components and magnitude h, we have

d2S1 er’h
sinh h h2L

(5.7)
4rt h (2L + 1)!"

This is easily proved by re-expressing r in a coordinate system the z-axis of which
points along the direction of h. But (5.7), considered as a function of a complex
variable h, has no finite singularities, and as it is an even function in h it is also an
integer function of H h2. Hence (5.7) remains valid even if the components of
h are complex as in (5.5), (5.6) with the result

(5.8) z(,)
(2L + 1)!’

(5.9) H Wg- kI’/lkI’/_ 2 kjk,[2- 2 cos (qtj-
j,t

the sum to be taken over all pairs (j, t) once only. For v 2, this sum reduces to
a single term

(5.10)
H 4klk2 sin2 E1/2(Ol 2)]

-kk2{exp1/2i(tl 02)- exp1/2i(O2 01)) 2.

Hence the expansion (5.8) for E2(kl, 1, k2, I//2) contains only terms for which

(5.11)



788 R.A. SACK

so that in view of (5.3)

(5.12) I O, unless l l; m -ma.
mt m2

If (5.11) is satisfied, application of the binomial theorem to (5.3), (5.8) and (5.10)
yields

Im} )m(l+m)!(l-m)! 21 )(-)"(5.13) 12
m

(-
(2/+ 1). l-m 21+ 1"

Since, in view of (2.16), (__)my-m is proportional to (YT’)*, (5.12) expresses the
orthogonality of any two different harmonics over the unit sphere. Similarly,
(5.13) yields the normalization constants for the surface harmonics YT’, and with
(2.16), the factor 4n in (5.2) and the conservation of phase leads to the definition
(1.11) for the normalized surface harmonics "Ym. The expansion of an arbitrary
function of the angular variables in surface harmonics follows from (5.12) and
(5.13) in the usual way:

(5.14)

Clm

F(O, ) Ctm YT’(O, ),
l,m

(__)m
21 +

sin 0 dO ddpF(O dp)Y[-m(o p)an

sin 0 dO d4F(O, 4)lYe(O, 4)]*
4n (1 + m)! o o

6. Generalized Gaunt’s coefficients. Integrals of the form (5.1) with v 3
were first discussed by Gaunt [9] and since then have been extensively studied
mainly on the basis of Wigner coefficients and 3j-symbols (cf. [8], [16], [20],
[34]). However, these algebraic methods relate the overlap integrals (5.1) to the
transformation properties of the harmonics under rotation, whereas with the
G.F.’s E of (5.2) they can be studied independently of any concept of rotations,
quite apart from the fact that v may be taken larger than 3 (generalized Gaunt’s
coefficients).

Some general theorems follow immediately from (5.1)-(5.3), (5.8)-(5.9).
Since H in (5.9) contains the parameters kj only in pairs and the phases only as
differences j t, the only nonvanishing terms in E satisfy

(6. la) lj even 2A,

(6.1b) mj O.

Furthermore, since H does not contain any squares of kj but only cross products,
no one exponent lj can exceed the sum of all the others; with (6.1a) this is
equivalent to

(6.1c) j A lj >= 0, j 1,2,..., v.
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Also, in view of (2.3),

(6.1d) ImjI =< Ij, j 1,2,..., v.

This implies that all the Gaunt’s coefficients Iv(l, m) vanish unless (6.1a)-(6.1d)
are satisfied. To investigate the nonzero integrals Iv it is convenient to modify
Ev slightly by suppressing the denominators in (5.8). Thus

(6.2a) E’v(k, I1/) 2 (- H)A (1 + H) -1

(6.2b) U;(I, m)k e’m*.

Comparison of (5.3), (5.8) and (6.2) yields

(lj + mj)!(6.3) I(1, m) )A U’v(l, m) I-[ (2A + 1)!"
The advantage of using the symbols U’ rather than the averages I is that, since
H in (5.9) contains terms in ](,jk exp [i(,- t)] with coefficients -1 and + 2
only, all the coefficients U’(I, m) in the expansion (6.2b) for HA are integers. This
simplifies both their generation and a discussion of their properties. They are
obviously symmetric functions of the v pairs of indices (12, m2), invariant on simul-
taneous reversal of the signs of all m2"
(6.4) U’(I, m) U’(I, m).

One further important property is their recurrence relation, based on the identity
HA H" HA- 2.. Applying this to (6.2) one obtains, on expanding the respective
powers of H,

I, ..., lv Ii,-.., Iv I’,
(6.5) Uv Uv, U’v

m1,... m m],... m m1,.

the sum to be taken over all 1’, m’, 1", m" subject to

’=(6.6) 1’ + 1"= 1, m’ + m"= m, 12 2A’= const.

In the particular case A’ 1, this simplifies to

m,...,m ml,...,m- 1,...,m+ 1, .,m

l,.., l--i l-I l(6.7 + ; .....
m,...,m+ 1,...,mr-- 1, .,m_,,...,l2U
ml, mj "’’, t, m

where the sum is to be taken over all pairs (j, t). Since there are v(v 1) such
pairs, the relations (6.7) would involve 19 terms even for v as low as 4. In addition,
with increasing A the U’ become rapidly very large; so instead of investigating
their properties in detail, further modifications of the generating function are
sought, which lead to smaller, but still integer, coecients which satisfy re-
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currence relations less cumbersome than (6.5)-(6.7). This can be achieved for
arbitrary v at the cost of losing the symmetry in all the indices. The double sum
for H in (5.9) can be split into two partial sums, one of which contains all the
terms with a given k as a factor, say k l, and the other the rest"

(6.8) H

A reduced G.F. can be defined as

(6.9)
E e

In view of the definition (6.1c) and the binomial expansion of HA (Ha + H_ )A,
the symmetric symbols U’ are related to the asymmetric symbols U’, by

+2
(6.10)

The doubly primed coefficients are thus smaller than the U’, but (6.9) shows that
they are still integers. The separation of the powers of H and H_ implies that
the U, satisfy recurrence relations entirely analogous to (6.5), but subject to the
condition

(6.11) 1’1 const.

in addition to (6.6). In particular, for A’ 1, 1’1 0 this leads to a formula cor-
responding to (6.7), but with the summation taken over all pairs (j, t), not in-
cluding the index 1. By contrast, the case A’ 1’1 yields a single sum

Uv, Uv,
/T/1 /T/2 /T/v m 1,--. mj -+ 1, ..., my

(6.12) + Uv’l
m -I- 1,..., m

2U,
ml, ’’’, mj, ., m

It is relevant to ask whether the U"-symbols can be further reduced in magnitude
without losing their integer properties; but for general v this appears impossible
as one cannot further partition H so that each product of powers k exp (imp)
arises out of terms corresponding to a fixed set of powers of these constituents of
H; this is essential for getting a definite ratio between the symbols before and after
reduction, as in (6.10). The exception is the case v 3 for which each H_ consists
of a single bracket in (5.9):

(6.13) H_ k2k312 2 cos (I//2 @3)3

with cyclic permutations of the indices. Hence any given set of powers (/1,12,/3)
of k corresponds to a unique set of powers (21,22,23) of (H_ 1, H_ 2, H_ 3), the
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2 being defined in (6.1c). We can thus form a further reduced G.F.

E;’(I, m) [(1 + H_ 1)(1 + H_2)(1 + H_3)3 -1
(6.14)

(- H_ 1)z1( H_ 2)z2(- H_ 3)z3 Z U(I, m)k’ exp (im@),

where the primes and the suffix 3 to the symbols U remain suppressed. From the
multinomial theorem we have by comparison with (6.2),

(6.15)
ll 12 13

m2 m3
u; 11 12 13

ml m2 m3

’1 !22 !23
A

but (6.14) shows that the unprimed coefficients (henceforth referred to as un-
normalized 3j-symbols) are still integers, and the full symmetry in the 3 pairs of
indices is retained. Comparison with (6.3) shows

11 12 13 (_)AAI ii (Is + ms) 11 12 13
(6.16) 13 11 "U

ml m2 m3 (2A + 1)! ’,! ml m2 m3

The unnormalized 3j-symbols U(I, m) were first introduced in [25], where the
relation (6.16) was given in (28) and the connection with the normalized Wigner
3j-symbols

(6.17)
ll 12 13

m2 m3

lx 12 13
ml rn2 m3

(22s) 11(2A + 1)! I-l(ls_ m)!(l + m)!

in (26). Since the values of the 3j-symbols with m 0, which enter into the evalu-
ation of integrals of products of three normalized harmonics (Edmonds [8,
(4.6.3)3), are most easily derived when dealing with 4-dimensional harmonics, the
proof of (6.17) will be postponed until the relevant section. Similarly, although
in the present context the U-symbols are meaningful only for integer ll, 12, 13
and A, they can be generalized to half-integral values by an ad hoc generating
function. We can define

(6.18) t]23 (--U_l) 1/2 --(k2k3)l/2{exp1/2i(O2 I//3) exp 2x-i(03 02)}

with a strictly cyclic permutation of indices. Now in the expansion of

(6.19)
EV(k,@) [(1 /23)(1 q31)(1 /’112)3 -1

Z I= U(I, re)k: eira*

the sum is taken over all integer and half-integral values of (/1,12, /3), provided
all (l ms) as well as the sum 11 + 12 -k- 13 are integers. The conditions (6.1b, c, d)
are automatically satisfied, and those U-values in (6.19) for which (6.1a) is also
satisfied with integer A agree with those obtained from (6.14). If the definition of
A 1/2(11 nt- 12 + 13) is retained from (6.1a), then (6.16) is valid only for integer A;
for integer and half-odd A the left-hand side of (6.16) vanishes. The symmetry
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relations follow from (6.18) and (6.19)"

Ix 12 13 12U =U
mx m2 m3 m2

(6.20) (_)2A U

lx
ml U( 13

m3

lx

Ix 13 12

(--)2A U

mx m3 m2

lx 12
-mx -m2 13).

these are the same relations as between the normalized 3j-symbols [8], [12],
[14], [203, [34].

The recurrence relations analogous to (6.5) considerably simplify for the
3j-symbols since a simultaneous decomposition 1’ + 1" for all three powers
(lx, 12,/3) is possible. The formula thus reduces to a double sum of products of
which both factors satisfy (6.1b, c, d):

(6.21) U lx 12
ml m2 m3

l’x Ii 1’3 U
p v -l-v m l m2 v m3 -t- la + v

for normalized 3j-symbols the equivalent formula has been given on the last
two pages of Chap. llI of Vilenkin’s book [32]. In particular, since

(6.22)

(6.23)

0 0
U

0 0

u(/1
=-U

12 13 | U
m2 m3

1/2 12 1/2 13
rex--1/2 m2+1/2

12 1/2 1311---U 13<A,
m + 1/2 m2--1/2 m3

valid also for all cyclic permutations of the indices (1, 2, 3) (cf. Vilenkin [32] and
Edmonds [8, (3.7.12)]). Apart from signs, (6.23) corresponds to a 5-dimensional
generalization of Pascal’s triangle (cf. [25, (A5)]). All the symbols with, say,
13 0 can be obtained by raising r/x2 in (6.18) to the relevant powers, so that

(6.24) U
2l m)

(cf. also (5.13)). For 13 lx + 12 the sum in (6.21) can be reduced to a single term

(6.25)
U(m/ 12 /1+ 12

m2 ml m2
U[ 11 0 Ix

ml 0 -ml

(__)ll+lz+ml-me ll

U(0 12 12
0 m2 -m2

211 )( 212
m 12 m2
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In the case of general l, the decomposition

(6.26) (/1,/2,/3) (3, 3, O) -I- (2, 1,/3)

reduces (6.21) to a single sum over all integral or half-odd values of #, which in
view of (6.24) and (6.25) becomes

(6.27) U 11 12 la
ml m2 m3 u /]’3 --/’/ 22 ml + P

which is equivalent to Racah’s [16] expansion for the Wigner coefficients and,
with the use of (6.16), to Gaunt’s [9] formula for the integrals 13 as defined in
(5.1). In the writer’s opinion the use of unnormalized 3j-symbols is advisable, as
their values can be generated by integer arithmetic by means of the simple equation
(6.23) and remain of manageable size; even for 2A 32 none of the U-symbols
exceeds 109 Tabulation would also be simpler in the form of integers than in
the usual form of products of prime factors in the numerator and denominator
[4], [22].

By sacrificing the integer nature of the U-symbols, it is easy to obtain the
full Regge symmetries [18] of the 3j-symbols. Thus the symbols

(6.28) UV(l, m) C(l, m)
(221) !(222)!(23)

possess the generating function

(6.29) (k,) UV(l, m)k eira*-- exp (r/23 + /31 + /’]12)
l,nl

in view of (6.19). By pairwise bracketing of the factorials in the expansion derived
from (6.27)

UV(l, m)
(_p+m-+.

=.2(6.30) (3 --/) !(22 + m -/)

in all possible ways such that the sum of the arguments in each pair remains
constant as/ varies, one obtains Regge’s result that the symbols remain invariant
if the and m are modified in such a way that the array

(6.31)

221 222 223
11 + m 12 q- m2 13 d- m

m 12- m2 13 m3

suffers either a cyclic permutation of the rows, or a cyclic permutation of the
columns, or an interchange of rows and columns. If the array is subjected to an
odd permutation of rows or columns, the symbol has to be multiplied by (-)2A.
The same result can be obtained by substituting (6.18) in (6.29) and taking all
possible pairwise groupings of positive and negative terms in the exponent, or
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more plainly by putting in (6.29)

(6.32) (//23 %- //31%- //12)= eiCk’/2 eik2/2 eiCk3/2 l;
e- idpl/2 - ick2/2 - idp3/2

the G.F., and hence the coefficients Uv, exhibit all the symmetries of the deter-
minant (the fact that in (6.32) the elements of the third row are the inverses of
those in the second row is immaterial). For normalized 3j-symbols a G.F. equiv-
alent to (6.28)-(6.32) has been given by Miller [14, p. 262).

Further properties of the U-symbols will be discussed in later publications.

7. Conclusions. In this paper, the elementary theory ofspherical harmonics has
been reformulated on the basis of the generating functions " defined in (1.1)-(1.3)
and (2.14). The approach is essentially a 19th century one, and it is astonishing
that it should not have been explored before. It appears to run counter to the
current trend which aims at reformulating the theory of most of the special
functions of analysis (not only of spherical harmonics) in terms of group theory
and Lie algebras [-12], [13], 14], 31], 32]. However, the writer feels that the use
of scalar functions as a starting point is simpler in many ways since commutativity
is retained throughout. One further drawback of group-theoretical methods is
that attention is usually focused on representations of a given degree, corre-

sponding to fixed values of for the harmonics themselves and fixed sets of
{11, .", lv} for the product integrals. Thus, although W. Miller [12], 1-14], Akim
and Levin [2] and others have established G.F.’s for Clebsch-Gordan coefficients
and employed them to determine their properties and have derived recurrence
relations far more numerous than given in the brief outline of 6, these G.F.’s
are mostly confined to fixed upper indices of the 3j-symbols and are therefore less
general than (6.2), (6.9), (6.14) and (6.19). Hence the writer has been unable to
find any formulas in the literature corresponding to the recurrence relations (6.7)
or (6.12). For the case of three factors none of the results (6.21)-(6.32) are new;
the derivation of (6.21)-(6.23) and (6.28)-(6.32) have essentially been given by
Vilenkin [32] and W. Miller [14] respectively. Nevertheless, have felt it useful to

present these results in a coherent way; it should be noted, for example, that
Edmonds [8] in deriving his formula (3.7.12), which is the equivalent of (6.23),
has to make use of 6j-symbols.

As mentioned in the Introduction, a G.F. equivalent to (1.1)-(1.3) occurs
implicitly in a paper by W. Miller 13] dealing with the special functions associated
with the complex Euclidean group in 3-dimensional space. These functions are
essentially spherical Bessel functions and the spherical harmonics arise as a
special case thereof. However, Miller does not apply his G.F. (4.12)-(4.13) to study
the properties of spherical harmonics. Miller (in [12, (5.142)]) has further given an
exponential G.F. incorporating a sum over all degrees of unitary representations
of the group SU2; but, although the 3-dimensional spherical harmonics are
equivalent to a subset thereof, this G.F. cannot be reduced to (1.3) since the
enter the two G.F.’s with different coefficients. It can, however, serve as a G.F.
for 4-dimensional harmonics, and the second part of this series is based on its



GENERATING FUNCTIONS FOR SPHERICAL HARMONICS 795

use. Miller derives the orthogonality of the rotational functions in a way analogous
to (5.12).

In this paper, 2-5 are essentially didadtic; all the results have been derived
before by analytic means; but in almost every case the new presentation is simpler
than or at least as simple as by conventional methods. The exceptions are Laplace’s
expansion (1.7) and the orthogonality and normalization relations (5.12) and
(5.13); these equations arise here as special cases of more general formulas and
hence require a more powerful apparatus than is normally required. If only
the special theorems are required, it may be better to introduce them by a more
conventional approach. It has not been the aim of the treatment in 2-5 to
establish a complete set of formulas, but rather to concentrate on essentials. The
derivation of the higher irregular solid harmonics "l’ by differentiation of I’D
would need considerable elaboration in a more comprehensive exposition, and
a large number of further formulas following from other operations on the G.F.’s
have been omitted. Similarly, only the basic properties of the angle averages and
3j-symbols have been presented in 6, though they will be considered in greater
detail in the following publications.
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EXPANSION OF ANALYTIC FUNCTIONS IN JACOBI SERIES*

B. C. CARLSON?

Abstract. A classical theorem on expansion of an analytic function in a series of Jacobi poly-
nomials pl,,a) is extended so that and fl, instead of being assumed real, may have any complex values
provided + fl 2, 3, -4, The function to be expanded may be analytic inside an arbitrary
ellipse in the complex plane, since we use notation which does not fix the foci at -1 and 1. If the
ellipse is a circle, Jacobi’s series reduces to Taylor’s series as a special case, not a limiting case. Cauchy’s
inequality for the coefficients of Taylor’s series has an analogue for Jacobi’s series. The coefficients
are determined uniquely by the analytic function. Some special series are listed.

1. Introduction and summary. The Jacobi polynomials PT’’)(z) are defined
for all complex values of and fl and are orthogonal on [- 1, 1] if Re > and
Re fl > 1. (At least in the case of real and fl, these conditions are necessary as
well as sufficient for orthogonality.) If f is holomorphic inside an ellipse in the
complex plane with foci at -1 and 1,. it is well known 8, p. 245] that f can be
represented by a series of orthogonal Jacobi polynomials with real and fl satis-
fying> -land> -1.

Several facts about the representability of f by Jacobi series are less well
known, and a new one will be proved in this paper. Taken together they give a
viewpoint from which the Jacobi series of an analytic function is regarded as a
generalized Taylor series rather than in the customary way as a series of special
orthogonal polynomials.

(i) Orthogonality of the Jacobi polynomials is unnecessary.
(ii) Reality of and fl is unnecessary. The indices may have any complex

values provided z + fl 4= 2, 3, -4, ....
(iii) The ellipse inside which f is holomorphic may have its loci at arbitrary

points r and s of the complex plane. This is obvious if r 4= s, for it suffices to sub-
stitute z (2w r s)/(s r). If r s, however, the ellipse degenerates to a
circle and Jacobi’s series to Taylor’s series. In customary notation this can be
verified by a limiting process, but there is a convenient notation in which Jacobi’s
series with arbitrary loci appears [see (1.9)] as a two-point generalization of
Taylor’s series, the latter being a special rather than a limiting case.

(iv) If one focus is fixed at 0 while the other tends to + (along with one of
the indices), the ellipse becomes a parabola and the Jacobi series becomes a
Laguerre series.

(v) If the two loci recede symmetrically to oe and + oe, the ellipse becomes
the boundary of a strip and the Jacobi series becomes an Hermite series.

Point (i) has been observed by Boas and Buck [1, p. 61] and developed in
detail by Colton [6], who showed that the indices may have any real values
provided e +/3 4= -2,-3,-4,... and that representation by Jacobi series is
not in general possible in these exceptional cases. Point (ii) is the subject of the
present paper, and (iii) has been made previously by the author [3, (3.16a)]. Except
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sity, Ames, Iowa 50010.
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for (7.12) and (7.13) below, we shall not touch on (iv) and (v), which incidentally
show one disadvantage of fixing the foci at and 1. We shall use the notation
mentioned in (iii), which we now summarize.

The set of nonnegative integers will be denoted by , the set of nonnegative
real numbers by +, the complex plane by C, and the right half-plane by
C> {z C’Re z > 0}. The inner region of an ellipse will be called an open
elliptic disk, assumed to be nonempty. The class of functions holomorphic on an
open set C will be denoted by H(). If (b, b’) (32> a complex measure is
defined on [0, 1] by

(1.1) dlb,b,)(u) [B(b, b’)]-lub-1(1,- u)’’- du,

where B, is the beta function. Note that [0, 1] has unit measure. Let f c C be a
convex open set, and let f H(f2) and f{")= dl’/dz" with fco)= f. For every
n , (b, b’) C2>, and (x,y) f2, we define

(1.2) f(")(b, b" x, y)= f(")[ux / (1 u)y] d(,,)(u).

We shall sometimes write F for F). We may think of F") as an average (strictly
speaking, only if b and b’ are positive) off") over the line segment with endpoints
x and y, which we denote by

(1.3) Ix,

Note that

(1.4) F")(b, b’ x, x) f")(x).
In the particular case f(z) z, with C and 0 , we define

(1.5) R,(b, b"x, y)= [ux + (1 u)y]’ d#v,v,)(u).

If n N, binomial expansion of the integrand leads to the formula

n! (b),,(b’),_,
(1.6) R,,(b b’ x, y)

(b + b’),, o rn !(n m)
x’y"- ",

where (a)o 1 and (a),, a(a + 1)-.. (a + m 1), m _>_ 1. Thus R,(b,b"x, y) is
a homogeneous polynomial in x and y and is defined for all b, b’ with b + b’ -# 0,

l, ..., -n + 1. Comparison of (1.6) with [8, (4.3.2)] shows that

(1.7) P,’t)(z) (2-"/n !)(1 + + fl + n),R,( o n, fl n z + 1, z 1).

The coefficient of z" in the R-polynomial is unity. If a + fl has one of the values
-2, -3, -4, ..., there is at least one positive integer n for which

(1 +a+fl+n),=0.

Then R, is not defined and P,’), although defined, is of degree strictly less than n.
Let (r,s) (2 be fixed. It is shown in [-3, Lem.

R_,_(b,b"w- r, w- s) can be continued holomorphically to all complex
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b, b’, w such that -b b’ N and w Jr, s]. If r and s are in f, this function is
the kernel of a generalized Cauchy integral formula [3, (5.4)],

(1.8) F(")(b, b" r, s) n!(2rci)-1J,,f(w)R_,_(b,b"w- r,w- s)dw,

where the rectifiable Jordan curve 7 lies in f and encircles Jr, s] in the positive
direction. Ifr s, (1.8) reduces to the ordinary Cauchy formula by (1.4). According
to [3, Thm. 3] the right side of (1.8) provides the holomorphic continuation of the
left side to all complex b, b’ such that -b b’ N. This guarantees the existence
of the coefficients in the following expansion, the proof of which is the object of
the present paper.

THEOREM 1.1. Let C be an open elliptic disk with foci r and s, and let
f 6 H(). Let (, fl)6 C2 and assume + fl :/: -2,- 3,-4,.... Then, for every

1
(1.9) f(z) --Ft")(1 + / n, / fl / n" r, s)R,(- n, -fl n" z r, z s).

#-o

The series converges absolutely on f and uniformly, on every compact subset of ).
The coefficients are proved unique in 6, which contains also two note-

worthy relations, (6.2) and (6.6), for the Jacobi function of the second kind. If
r s the coefficient F") reduces to f")(r) by (1.4) and R, reduces to (z r)", so
Taylor’s series is a special case. An inequality for Ft"), analogous to Cauchy’s
inequalit) for ft"), is given in (3.8). If r 1 and s 1, (1.9) becomes a standard-
ized Jacobi series according to (1.7).

The proof of Theorem 1.1, like that of the classical theorem [8, pp. 251-252].,
will follow the same route as Cauchy’s proof of Taylor’s series. The principal task
is to prove (1.9) when f(z) is the Cauchy kernel 1/(w z). Substitution of this
special case in Cauchy’s integral formula will then prove the general case. Since
Cauchy’s formula requires f to be holomorphic, we shall not discuss Jacobi’s
series for functions which are square-integrable on a line segment (for a summary
with references, see [7, 10.19]).

2. Jacobi’s series with remainder for the Cauchy kernel. We shall use the
abbreviations

p,(z) R,,(-e- n,-fl- n z- r, z- s),
(2.1)

q,,(w) R_,_ 1(1 .a_ / n, + fl + n;w- r, w- s).

If , fl, z, w, r, s are complex numbers such that + fl - -2,- 3,-4,.-. and
w Jr, s], p, and q, are well-defined for every n N. Note that P0 1. Similarly
q_l= by (1.5) and analytic continuation, and p_ is well-defined if + fl
4= 2, 3, 4, and z q r, s].

From elementary relations between associated R-functions [2, (4.1)-(4.3)] it
follows after a certain amount of algebra that

(2.2)
Rt+(b- 1,b’- 1;x,y)+ (2t + c)(b’ b)(x y)

2c(c- 2)
x + Y]Rt(b b’,

2
"x y)

bb’t(t + c)(x y)2
C2(C2- 1)

R,_x(b+ 1,b’+ 1;x,y)=0,
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where c b + b’ and 2- c N. For every ne N we define U, and V, by the
following equations if + fl 4: 1, 0,- 1,... and require continuity at + fl

1,0,-1’

(0{2 fl2)(r- S) r + s

2( + fl + 2n)(a + fl + 2n + 2) 2
(2.3)

n(a + n)(fl + n)(a + fl + n)(r- s)2
V,

(a + fl + 2n)2[(0 + fl + 2n)2 1]"

If z [rl s],, w It, s], + fl :/: + 2, +_ 3, 4, and n e , (2.2) yields

(2.4)
P"+ 1(z) + (U, z)p,(z) + V,p,_ 1(z) O,

qn-I(W) + (U, w)q,(w) + V,+ lqn+ 1(w) 0.

We multiply the first equation by q,(w), the second by p,(z), and subtract. Defining

(2.5) X,(z, w) p,(z)q,_ l(w) V,p,_ (z)q,(w), n ,
we find

(2.6) X,+ 1(z, w) X,(z, w) + (z w)p,(z)q,(w), n .
Summing (2.6) over n 0, 1, ..., N yields

N

(2.7) Xu+ 1(z, w) Xo(z, w) + (z w) p,(z)q,(w).
n=0

Now X0 1 under the restrictions imposed on (2.4). All other terms in (2.7) are
polynomials in z and continuous functions of a and fi provided a + fl 4: -2,
-3, -4, .... Thus the restrictions on z, a, fl may be relaxed by continuity, and
we have proved the following Jacobi series with remainder for 1/(w- z) (cf.
[8, (4.62.19)]).

LEMMA 2.1. Let a, fl, z, w, r, s be complex numbers with a + fl :A -2,- 3,
-4, and w Jr, s]. For every n define p, and qn by (2.1) and V+ by (2.3).
Then, for every N ,
(2.8)

N

(w z) p,(z)q,(w) + PN+I(Z)qN(W) VN+lpu(z)q+l(W).
n=0

If r s then V+ 0 and (2.8) reduces to Taylor’s series with remainder
for 1/(w- z) in powers of z- r. For general r and s we shall determine con-
ditions under which the two remainder terms tend uniformly to zero as N tends
to infinity. To avoid proving that asymptotic approximations to q, hold uniformly,
we shall carry the method of steepest descents only as far as is needed to obtain
inequalities. For p, we shall use inequalities proved in [5].

3. Inequalities for the Jacobi function of the second kind and the expansion
coefficients. An inequality for q. will be obtained from the following inequality
for an R-function in two variables.

INEQUALITY 3.1. Let (a, fl)eC2 and define (a, fl) {ne "Re(1 + a + n) > 0,
Re (1 + fl + n)> 0}. Let D {(x,y) C2"0 Ix, y]}, where Ix, y] is defined by
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(1.3). Then there exists a continuous function M’D + such that, for every
(x, y) D and every n N(, fl),

(3.1)
JB(1 + + n, + fl + n)R_,_l(1 + + n, 1 + fl + n;x,y)[

<= M(x, y)lx 1/2 + yl/2 l- 2,- 2,

Where the square roots are chosen so that [X 1/2 -- yl/2[ > iX1/2 yl/2[. Thefunction
M is homogeneous ofdegree zero in x and y and depends on , but not on n.

Proof. For every n e N(e, fl) define

A, B(1 + 0 + n,1 +/3 + n)R_,_ t(1 + 0 + n, 1 +/3 + n’x,y),

O.(u) [ux + ( u)yl-"-u+"( u)+".

Let m be the least element of N(e, fl). By (1.1) and (1.5),

A. O.(u) tu [q(u)]"-O(u)tu,

where

(3.2) qg(u)
u( u)

ux + (1 u)y"

Note that ,, is absolutely integrable on the unit interval. The function (p has
zeros at 0 and 1, a simple pole at Uo y/(y x), and saddle points at

Ul yl]Z/(yl/2 _lt_ X1/2) and u2 yl/Z/(yl]2 X1/2),

provided x va y. The pole is halfway between the saddle points.
Since (x, y)e D we may suppose [arg x arg Yl < n. If arg x arg y then

0 < u < 1, while u0 and u2 are either greater than unity or negative. The saddle
point u is on the path of integration, and Itp(u)l =< [((ul)1 for 0 _< u =< 1. (The
same inequality holds in the trivial case x y.)

If -n < argx- argy < 0, we choose the square roots so that -n/2
< arg x1/2 arg yl/2 < O. Then u [1 + x1/Z/yl/2] lies in the first quadrant
of the open unit disk, while uo and u2 are in the lower half-plane. By Cauchy’s
theorem we may deform the path of integration into a contour C leading from
0 to 1 over the saddle point at ul, such that ]q(u)l =< ]q(ul)l for all points u on the
contour. The same remark holds for the case 0 < arg x arg y < n, in which
u lies in the fourth quadrant of the open unit disk while uo and u2 are in the
upper half-plane. Therefore, in every case,

(3.3) IA, ](D(N1)] Jc [Ore(U)du].

Since Iq(u)l [x 1/2 -+- yl/2]-2, we have proved (3.1) with M(x, y) replaced by

(3.4) A(x, y)= Ix 1/2 + yl/212m+ 2 fC lux + (1 u)Yl lu + m(1 u)t +"

We may choose C to depend continuously on (x, y)e D, for example, by taking
the path of steepest descents from ul. Then is continuous on D. Since R_,_
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is homogeneous of degree -n in x and y, (3.1) still holds if M(x, y) is replaced
by M(x, y) lC4(x/y, 1).

LEMMA 3.2. Let (r, s)6 C2, p 6 I+, and p > Ir sl. Then the set of all points
z C satisfying

I(z- r) 1/2 q- (z- s)1/21 pl/2

is an ellipse with foci r and s. The lengths of the principal axes have sum p and
difference Ir slZ/p.

Proof. Equation (3.5) implies

(3.6) I(z- r) /2 (z s)X/z ---Ir- sl/p/

and hence, by adding the squares of (3.5) and (3.6),

Iz- rl + ]z- sl 1/2p + 1/2lr- sl/p.

This is the equation of an ellipse with foci r and s. The right side is the length of
the major axis, and the length of the minor axis is therefore 1/2p 1/2It s[2/p.

INEQUALITY 3.3. Let f C be an open elliptic disk with foci r and s. Denote
the sum of the lengths of the principal axes by p. Let (,
as in Inequality 3.1. If q, is defined by (2.1), there exists A + such that, for every
n (z, ) and every w

(3.7) IB(1 + z + n, +/ + n)q,(w)l <= Ap -"-1.

Proof. Define D as in Inequality 3.1. By (2.1), (3.1) and Lemma 3.2, there
exists a continuous homogeneous function M’D + such that, for every
n (,/) and every w C f,

IB(1 + + n,l + fl + n)q,(w)l <= M(w- r,w- s)p -"-l M(ww r 1)p -"-1--S

Let K {((w-r)/(w-s),l):wC- }. Since K is a compact subset of D
and M is continuous on D, M is bounded on K. Let A be the maximum ofM on K.

From Inequality 3.3 we can obtain for F") an inequality analogous to
Cauchy’s inequality for f")but less precise.

INEQUALITY 3.4. Define f, p and (, ) as in Inequality 3.3. Let f H(f) and
assume If[ is bounded on . Define F") by (1.2). Then there exists L + such
that, for every n (, ),

(3.8) IB(1 + + n, 1 +/3 + n)F")(1 + + n, +/ + n; r,s)l _-< Ln!p-".

Proof. Let 7 be a positively oriented ellipse lying in f with foci r and s, and
let p’ < p be the sum of the lengths of its principal axes. By (1.8) and (2.1),

F")(1 + + n, 1 +/3 + n; r, s) n!(2ni)-x ff(w)q,(w)dw.
Let/l be the length of 7, and note that 2 < 2rip’. Let # be the supremum of Ifl on
f. By Inequality 3.3 (with p and A replaced by p’ and A’, respectively) we find,
for every n

IB(1 + z + n,1 + + n)F")(1 + z + n,1 +//+ n;r,s)[ <= n!(2n)-2pA’/(p’)"+

<- n !#A’/(p’)".
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Since 7 can be chosen to make p’ arbitrarily close to p, the inequality stillholds
if A’/(p’)" is replaced by A/p". Putting L #A we have proved (3.8).

4. Jacobi’s infinite series for the Cauchy kernel. Retaining the notation and
conditions of Inequality 3.3, we obtain from [5, Thm. 5.6] the following inequality
for the Jacobi polynomial p,,(z) defined by (2.1). For every n N there exists a
positive number g,(, fl) such that

I(1 + +/3 + n),p,(z)l n!g,(e, fl)p",

lim [g,(e,/3)] 1/" 1.

(4.1a)

(4.1b)

The inequalities for q, and p, give enough information about the behavior of the
remainder terms in (2.8) to prove the following theorem.

THEOREM 4.1. Let f C be an open elliptic disk with foci r and s. Let
(0, ) C2 and assume o + fl 2, 3, -4, .... Then, for every z and every

1
q,(w)p,(z)

W Z n=0

weC- fL

(4.2)
R_,_I(1 +e+n,1 +fl+ n’w- r,w-s)

n=O

R,(-o- n,-fl- n;z- r,z- s).

The series converges absolutely, uniformly in w on C , and uniformly in z on
every compact subset of f.

Proof. Let p denote the sum of the lengths of the principal axes of f2. Let
p’ < p be the corresponding sum for a confocal elliptic disk f’c f. Assume
z f’ and w C f. By (3.7) and (4.1a) the first remainder term in (2.8) satis-
fies, for every n e N(e, fl),

According to (4.1b) and [7, (1.18(4))] the Nth root of the right side tends to
p’/p < as N oe, and hence the left side tends to zero uniformly on f’ x (C f).
So also does the second remainder term, IVu+ lpu(z)qu+ l(W)l, by a similar cal-
culation. Given any compact set K c f2 we can choose f’ so that K
and hence the series in (4.2) converges uniformly to 1/(w z) on K x (C
The series converges absolutely by the root test, as one verifies by applying (3.7)
and (4.1)to Ip,(z)q,(w)l.

5. Proof of Theorem 1.1. Let 7 be a positively oriented ellipse lying in f
with foci r and s and interior f’. For every z f’ Cauchy’s integral formula gives

(5.1) f(z) (2hi) -1 J f(w)(w z) -1 dw.

The classical theorem for real e, fl > is proved in [8, pp. 251-252] by using the asymptotic
formulas of Darboux. Since Darboux’s formula for the Jacobi polynomial [8, p. 196] does not hold
uniformly on any neighborhood of the foci, the proof of uniform convergence is incomplete. It can
be completed, following a suggestion of Professor R. Askey, by using the maximum-modulus theorem.
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Since the Jacobi expansion (4.2) of (w z)- converges uniformly in w on C f’
and therefore on 7, we may integrate term by term to obtain

(5.2) f(z) p(z)(2ri) f(w)q(w) dw.
n=O

By (2.1) and (1.8) this is the same as (1.9). If K is any compact subset of fL we can
choose ), so that K c f’. Since (4.2) converges uniformly in z on K, so do (5.2)
and (1.9).

To prove that (1.9) converges absolutely for every z e , choose elliptic disks
f’ and f" confocal with f such that z f’ c f" c f. Let the sums of lengths of
principal axes satisfy p’ < p" < p. Since f e H(f), Ill is bounded on f". By (3.8)
and (4.1) the nth term of (1.9)is bounded in modulus for every n e (e, B) by

n !.(, )(p’/p")"
IB(1 //n,l/fl/ n)(1 //fl/n).l

Since the nth root of this quantity tends to p’/p" < 1 as n c, (1.9) converges
absolutely by the root test.

6. Uniqueness of the coefficients. If (1.9) were not the only representation of
f by a series of Jacobi polynomials, subtraction of two different representations
would give a nontrivial series of the form

(6.1) 0 ap,,(z), z .
m--0

There is a simple example 9, (14)], [10, (33)] of a series which converges to zero
on the interfocal line segment provided < -1/2 and / -1,-2,-3, (the
polynomials may even be orthogonal), but it diverges everywhere else for all
values of . We shall show in this section that convergence to zero cannot occur
at every point of an open set in the plane. The method, although not the shortest
possible, is interesting because of (6.2) and (6.6), which are not widely known. The
latter can be found in different notation in 6, (16)].

If the complex plane is cut along the line segment Jr, s], q,(w) is holomorphic
in the cut plane but discontinuous across the cut. The following lemma states
that the discontinuity in q, is the Jacobi polynomial p, multiplied by the associated
weight function. This is a generalization of a familiar property of Legendre
functions ( =/3 0) [7, (10.10(36))].

LEMMA 6.1. Let , , r, s be complex numbers with + -2,- 3,-4,...
and r s. Let z _r, s] {r} {s}, and let e C satisfy arg e arg (s r) + rt/2.
Define p, and q, by (2.1). Then, for every n ,
(6.2) lim [q,(z- )- qn(Z + )] (Z- r)(s z)p,(z),

0

where arg (z- r)= arg (s r)= arg (s- z)and

n!B(1 + + n,1 + + n)
s(6.3) I, r) +o+/+ 2n

(1 + +/3 + n),
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Remark. The Jacobi function of the second kind is usually defined as q,(w)
multiplied by (w r)-a(w s) and a constant, and the cut extends through r

(usually -1) to infinity. Since the elementary factor also is discontinuous across
the cut, the discontinuity of the product does not have the simplicity of (6.2) unless

is an integer [7, (10.8(21))], [8, (4.62.8)]. We shall see in the proof of Theorem 6.2
that (6.2) is intimately connected with the orthogonality and normalization of
the Jacobi polynomials.

Proof. Given n we first prove (6.2) for values of and fl such that
n (, fl) (see Inequality 3.1). By (2.1) and (1.5) we find, assuming w [r,s] and
putting ur + (1 u)s,

B(1 + e + n, + fl + n)(s r)l++a+z"q.(w)
(6.4)

(w- t)-"-l(s- t)+"(t- r)+" dt.

If w z + e we may deform the path of integration into a path 7 + which follows
the cut except for a small semicircular detour to the right of the cut (as one pro-
ceeds from r to s) with radius 6 and center z. Since Iz + e tl >_ 6 for every on

7+, it follows from Lebesgue’s theorem of dominated convergence that the
integral is continuous at e 0. Hence its limit as w z + e z is

(z- t)-"-l(s- t)+"(t- r)+" dr.

The same result holds if w z e z and 7+ is replaced by 7-, for which the
semicircular detour around z lies to the left of the cut. When we take the difference
in (6.2), the straight portions of 7 + and 7- cancel, leaving the two semicircles. These
combine to form a complete circle with center z and radius 6, described clockwise.
Evaluation by the Cauchy integral formula yields (-1)"+ 1(_ 2zti)/n! times

(6.5) dz----I(s z)+"(z- r)a+"] (-1)"(1 + 0 + fl + n),(z r)a(s z)p,(z),

this being Rodrigues’ formula for p,. Having proved (6.2), we now observe that
both sides are holomorphic in and fl for +/3 4: -2, -3, -4, .... By analytic
continuation, (6.2) is valid subject to this condition.

THEOREM 6.2. Let , fl, r,s be complex numbers, assume + fl v -2,-3,
-4, ..., and let 7 be a rectifiable Jordan curve encircling the segment It, s] in the
positive direction. Let (m, n) N and let bin, if m n and 0 otherwise. Define
Pm and q, by (2.1). Then

(6.6) f,2i
p(w)q,(w) dw 6,,.

Proof. Since p(w) is a polynomial of degree m with unit coefficient of wm,
(6.6) follows at once from (1.8) if m =< n. Also, the case r s is elementary, for the
integrand reduces by (1.4) to (w r)"-"-1. If r 4: s we deform 7 into two small
circles around r and s, joined by the two edges of the cut. We now assume
Re > -1 and Re fl > -1. It follows easily from (6.4) that (w s)q,(w)- 0 as
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w--, s [for example, write w- s (w- t)- (s- t)], and similarly with s re-
placed by r. Hence the integrals around the two small circles tend to zero with
the radius. By Lemma 6.1 the integrals along the edges of the cut combine to give

(6.7) (2ci) -1 Pm(W)q,(w) dw I] pm(Z)p,(z)(z r)(s z) dz..

We have already seen that this vanishes if m < n. Since the integral on the right
is symmetric in m and n (and I-1 - 0), it must vanish also if m > n. In addition
to proving (6.6), we obtain as a by-product the orthogonality integral

(6.8) pm(Z)p,(z)(z r)(S z) dz 6m,I., Re e > 1, Re fl > 1.

Provided 0 + fl - -2,-3,-4,... the integrand of (6.6) is bounded on 7 for
every fixed e,/3 and holomorphic in e and fl for every fixed w on 7. Therefore the
integral is holomorphic in e and fl, and the validity of (6.6) can be extended by
the principle of analytic continuation.

An alternative proof of (6.6) which uses neither (6.2) nor analytic continuation
will be sketched briefly. As before, we need to consider only the case m > n. In
the definition (2.1) of Pro, expand the right side by the binomial theorem [3, (3.4)]
for R-polynomials. Using (1.8) we find that the left side of (6.6) equals

m! " Rk(-- m,--fl- m" --r, -s)Rm_,_k(1 + o + n, + fl + n" r, s)
(6.9)

0
]{; !(m n k)!

By [3, (4.5), (2.18), (4.15)] the sum is the term proportional to (r s) in

(6.10) 1FI(- m;-o- [3- 2m;s- r) 1F1(1 + 0 + n;2 + o + [3 + 2n;r- s).

Multiplication of the two series 2 shows that this term is proportional to

2Fl(-m+n,1 +e+fl+m+ n;2+a+fl+2n;1)
(6.11) (1 m + n)m_

0.
(2 + + fl + 2n)m_

This completes the alternative proof.
We now suppose e +/? 4: -2, -3, -4, and amp 0 on an open set

in the plane. The essential fact is that convergence of -’,amPm(Z) at a point
z It, s] implies convergence on an open elliptic disk f (with foci r and s and with
z on the boundary) and uniform convergence on compact subsets of f. This
statement is readily proved by Darboux’s asymptotic formula [8, (8.21.9), (8.23.1)],
which we have not used previously in this paper, and the maximum-modulus
theorem. (Darboux’s formula is valid for all complex 0 and fl, although a printed
statement to this effect is hard to find.) It follows that the sum of the series is
holomorphic on 92 and must vanish on 92 if it vanishes on an open subset. We
multiply by q, and integrate term by term (since the convergence is uniform)
around a contour 7 which lies in f and encircles It, s]. By Theorem 6.2 we find

On the right side of [7, (4.3(13))] the first parameter of the aFz-series should be a’ instead of -a’.
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a, 0 for every n . Thus there is no nontrivial representation of zero on an
open set in the plane, and the coefficients of (1.9) are unique.

7. Some special cases. We note here some special cases of Theorem 1.1. Let, fl, r, s be complex numbers with + fl 4: 2, 3, -4, .-., and define p, by (2.1).
The S-function [3, (2.16)3 is defined by an equation similar to (1.5),

(7.1) S(b, b" x, y) exp ux + (1 u)y] d#(b,b,)(u),

and continued analytically by (1.8) with f(w) ew. For all complex : and z,

(7.2) e== --0S(1 + o + n, -+- + n’tcr,

The Bessel function Jv and the Gegenbauer polynomial C, (including the Legendre
polynomial P, C,/2) are given by

(7.3) F(1 -+-v)J(z)= (z/2)vS(1/2 q-- v,1/2 + ,," iz, -iz),

(7.4) 2"v)..(1/2 ,, ).n.C,(z)= n 1/2- v- n z+ 1,z

Thus (7.2) contains (for fl) Sonine’s formula [7, (7.10(5))] and in particular
(for fl 0) the expansion of a plane wave in spherical Bessel functions and
Legendre polynomials.

The Chebyshev polynomial with unit coefficient for the highest power of z is

(7.5) 21 -,(1 + 6,0)- cos n(arc cos z) R,(1/2 n, 1/2 n; z + 1, z 1).

From this we deduce the following Fourier cosine series. Let (A,B) (2, let
f c C be an open elliptic disk with loci A

___
B, and let f H(f). Then, for any

complex 0 such that A + B cos 0 fL

(7.6)
f(A + B cos O) F(1/2,1/2"A +B,A-B)

B?I
+ 2 n!F(")(1/2 + n 1/2+ n A +B A-B) cosn0

A particular case is the Fourier cosine series of a plane wave, in which the ex-
pansion coefficients are Bessel coefficients. A useful corollary of (7.6) is the
relation

(7.7) f(A + B cos O) cos nO dO
rCB"

F’"’1 + n, 1/2 + n A + B, A B), n e N

Let (A, B)e (I 2 and let f be an open elliptic disk with foci r and s such that
A/B . If 2 e C and z e f, then

(7.8) (A- Bz)-= (2)n.R__n(l ++n,l +fi+n’A-Br, A-Bs)Pn(Z).
n=O

Special cases and an application of this series are given in [4]. One special case
is an expansion of a Coulomb potential in Gegenbauer polynomials.
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With the same conditions as for (7.8), we find

log(A-Bz)=L(1 +,1 +fl;A-Br, A-Bs)

B(7.9)
--R_,(1 + + n, 1 + fl + n" A Br, A Bs)p,(z),

n=l g/

where the L-function [3, (4.6)] is defined by

(7.10) L(b, b’; x, y) log [ux / (1 u)y] d#(b,b,)(U

and continued analytically by (1.8) with f(w) log w.
If Re e > -1, Re fl > -1 and r va s, the coefficients in (1.9)can be written

in the form

(7.11) F(")(1 + + n, 1 + fl + n" r, s)= f(z)p,(z)(z r)(s z) dz,

where arg(z- r)= arg(s- r)= arg(s-z) and I, is defined by (6.3). This
representation follows from (1.9) and (6.8), or alternatively from (1.8) and (6.2)
by squeezing the contour 7 down onto the cut.

Finally we mention that the Laguerre and Hermite polynomials, defined as
in [7, 10.12, 10.13], satisfy

(7.12) L,(z) (- 1)"
lim R,(-s n,-fl n; z,z s),

(7.13) H,(z) 2" lim R,(-s2 n,- s2 n;z + s, z s).
S---

Rodrigues’ formula (6.5) provides a convenient method of proof.
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PARSEVAL RELATION AND TAUBERIAN THEOREMS
FOR THE HANKEL TRANSFORM*

J. R. RIDENHOURf AND R. P. SONI:[:

Abstract. Let Fv(x), the Hankel transform of f, be defined by Fv(x)= f(t)x/t Jv(xt)dt. It is

proved that the Parseval relation F(x)G(x)dx f(x)g(x)dx holds, if (i)x+l/2f(x)s L(0, R)
for each finite R > 0, f is of bounded variation in [a, yv) for some a > 0, and f(x) 0 as x "
(ii) g s L(0, ), g is of bounded variation in a neighborhood of every point where f is not and G(x)

O(x--) as x for some 2 > 3/2. As an application, results of Tauberian character for the
Hankel transform are obtained.

1. Introduction. Let F(x), the k-transform off, be defined by

(1.1) F(x) f(u)k(xu) du.

The Hankel transform, with k(u)= u/2j(u), arises in the study of multiple
Fourier integrals [1, p. 69], the summability of multiple Fourier series [3] and the
eigenvalue problems for the partial differential operators [2]. It is well known
[1, Chap. 5] that, if k is a Fourier kernel, (1.1) defines a unitary transformation on
L2(0, ). Moreover, if f L2(0 )and g L2(0, ), we have

(1.2) F(x)G(x) dx f(t)g(t) dt.

The formula (1.2), however, may be true even when f and g are not square inte-
grable. Edmonds [4], [5] has proved a number of results concerning the validity
of (1.2) when k is the Fourier sine or the cosine kernel and the integrals defining
F or G converge only in the Cauchy sense. Macaulay-Owen [10] considered the
Hankel transform and obtained (1.2) under conditions comparable to a result of
Titchmarsh [14, Thm. 38] for the trigonometric transforms. More recently, Soni
and Soni [13] have considered the general Fourier kernels with some additional
restrictions on the kernel. However, only monotone functions are considered in
[1.3].

We generalize the result proved by Macauley-Owen [10] in a manner
analogous to Edmonds [4] for the sine and the cosine transforms. It is well known
[6, (10), p. 29] that

X + 1/2

(1.3) + 1/2e t2(xt)/2j(xt)dt exp s > 0.
0 (2s)V + 4s

Our generalization, together with (1.3), allows us to prove Tauberian theorems
for the Hankel transform. If the kernel belongs to L(0, )’, Wiener’s Tauberian
theorem [7, Thm. 232] may be directly applicable. Bureau [2] and Cheng [3]
proved Tauberian theorems for a modified form of the Hankel transform, with
k(u) u-J(u), v > 0. Both authors impose order conditions on the function
and do not allow slowly varying functions in the asymptotic behavior of the

* Received by the editors March 5, 1973, and in revised form July 13, 1973.

" Department of Mathematics, Austin Peay State University, Clarksville, Tennessee 37040.
: Mathematics Department, University of Tennessee, Knoxville, Tennessee 37916.
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transform. Pitman [11] does allow slowly varying functions;however, his results
are only for the sine and cosine transforms. Our results are for the Hankel transform
which, for the particular cases v-- + 1/2, reduces to the sine and the cosine
transforms respectively.

Karamata [7, Thm. 110 proved the following Tauberian theorem for the
Laplace transform.

THEOREM A. Assume that a > O, o(u) is nondecreasing, l(y)= e -’" do(u)
converges for y > O, and g(u) is of bounded variation in [0, 1]. Further let

(1.4) Z(S) e-S"g(e -s’) da(u).

If L(x) is slowly varying, then

(1.5) I(y) y-*L(1/y), y O+

implies

(1.6) g(s) -(-s-L(1/s) e-"g(e-")u-1 du

as s --. 0+, except for.an exceptional set.
With the help ofthe Parseval relation, we are able to give analogous Tauberian

theorems for the Hankel transform. Except for the results given here, to the best
of our knownledge, there are no results similar to Theorem A for any other
integral transform. By specializing g, we then obtain asymptotic behavior of the
function (or an integral related to the function) when the Hankel transform
behaves like xL(x).

2. Notation and basic assumptions. All functions are assumed to be real and
measurable. The parameter v satisfies the condition v _>_ -1/2. F(x), the Hankel
transform off, is defined by

(2.1) F(x) f(u)(xu)X/2j,(xu) du.

(G(x) is similarly related-to g.) The convergence of an integral in the Cauchy
sense is indicated by an arrow I14, p. 9]. The function (t; f) is defined by

(2.2) z(t; f) Uv/2 1/4f(ul/2) du.

The function L(x) is slowly varying in the sense of Karamata [8]. BV[a, b]
is the class of functions of bounded variation in a <_ x < b.

The class f(x) ’ if xf(x) L(O, R) for each finite R > 0, f(x) BV[a, )
for some a > 0 and f(x) 0 as x .

The constants p and K are defined by

(2.3) p (v y + 1/2)/2,

(2.4) K 2+’/2F(v/2 + 7/2 + 3/4).
F(p + 1)
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3. Main results. The first theorem gives a generalization of a result proved
by Macaulay-Owen I10].

THEOREM 1. Let v >= --1/2. Iff v+ 1/2 and g satisfies the conditions
(i) g L(O, oo) and is of bounded variation in a neighborhood of every point

where f is not"
(ii) Gv(x) O(x 4) as x --, oo for some 2 > -then the Parseval relation

(3.1) F(x)G(x) dx f(t)g(t) dt
o

holds.
Theorems 2-5 give results analogous to Theorem A for the Hankel transform.
THEOREM 2. Let < y < v 4- 1/2, f >= O. If f L(O, oo) and h

then

(3.2) Z(S) e-SUh(e-su) da(u f)

exists for s > O. Furthermore,

(3.3) F(x) xL(1/x), x -, O+

implies

(3.4) Z(s) pKL(s- 1/2)S-P e-,h(e-,)up- du,

as s - O+.

THEOREM 3. Let v > 1/2, < 7 < v + 1/2, f > O. If f ,+ 1/2 and
h BV[0, 1], then (3.3) implies (3.4).

THEOREM 4. Let v >= -1/2 and h be continuous in [0, 1]. If f satisfies the
conditions of Theorem 2, then

(3.5) F(x) x + /2L(/x), x --, 0 +,

implies

(3.6) Z(s) 2v+ 1F(v 4- 1)L(s-1/2)h(1), s 04-.
THEOREM 5. Let v > -1/2 and h be continuous in 0, 1]. Iffsatisfies the condi-

tions of Theorem 3, then (3.5) implies (3.6).
Theorems 6 and 7 give the behavior of (u;f) and f(u) in terms of the be-

havior of F(x).
THEOREM 6. Let v >= -1/2, -1 < 7 v + 1/2. If f satisfies the conditions of

Theorem 2 or 3, according as v > -1/2 or v > -1/2, then

(3.7) F(x) xL(1/x), x --, 0+,

implies

(3.8) o(u" f)
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THEOREM 7. Let v >__ -1/2, -1 < y < v + 1/2. Assume that f satisfies conditions
of Theorems 6 and one of the following"

(i) u 1/2f(u)is monotone decreasing for sufficiently large.
(ii) u 1/2f(u)is monotone increasing for sufficiently large. Then,

(3.9) Fv(x) xL(1/x), x 0+,

implies

(3.10) f(u) pKu-- 1L(u), u ---* oo.

Results similar to those contained in Theorems 2-7, when the behavior of
f(u) and a(u;f) as u --, 0 is obtained in terms of the behavior of F(x) as x --, c,
can be given by using the dual results of Karamata [9, Haupsatz 1]. We also
note that the restriction y > -1 is necessary in view of Lemma 1.

4. Preliminary results. In this section we give properties of the Hankel
transform needed to prove the main results. We note that F(x), the Hankel
transform of,f e L(0, oo), exists and is a bounded, continuous function for x _>_ 0.

LEMMA 1. Iff6+ 1/2’ then F(x) exists for x > O. Moreover,

(4.1) Fv(x) o(x- ), x 0 +,

(4.2) F(x) o(x+ /2), x .
The next lemma gives a property of the Hankel transform analogous to a

known result [14, p. 13] for the Fourier transform.
LEMMA 2. If 0 <= < a < b < fl <= or, f e L(O, and f vanishes in (, fl),

then

;o(4.3) x/ Jv(xu) du f(y)w/ &(uy) dy 0

uniformly for x [a, b].
Although a direct proof of these lemmas can be given, the following known

result [12, Lemma, 2] considerably shortens the proofs.
LEMMA 3. Let f(t) L(O, oe). If k(t) is essentially bounded and kl(t --o(t),

--, o, where

k (t) k(u) du,

then F(x) o(1), x - oo. If k(t) ct, o, then

F(x) c f(t) dr, x c.

Proof of Lemma 1. It is known that x/ J(x) and j’; x/ J(u) du are uniformly
bounded so that the existence of F(x) is obvious.

F(x) + x/-tt J(xt)f(t) dt

=11 +12
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Since f(t) is of bounded variation in IN, o) for N sufficiently large, and tends to
0 as , we may write f(t) f(t) f2(t) where f and f: are nonincreasing
and tend to 0 as oe. Therefore,

(4.4)

Also

I2= O(fa(N) +x f(N)).

I x+ /2 (xt)-J(xt)t+ /2f(t)dr.

Again, u-J(u) and .[ u-J(u)du are uniformly bounded. Therefore, by the
dominated convergence theorem,

(4.5) x 1/21 O(1) x ---, 0+

This proves (4.1).
By Lemma 3,

X 1/2I o(1), x .
This, together with (4.4), proves (4.2).

Proof of Lemma 2. By absolute convergence,

;o’ L(xu)F(x)dx f(y)y/: dy uL(xu)L(xy) du.

By [15, (8), p. 134], the right-hand side becomes

f(y)XZ+ x(2x)J(2y) yJ+ x(2y)J(2x)2 x ye dy

J(2y) ,/22x3/2Jv+ 1(2X) yl/2f(y)2 y2 dy 2x J(2x)

y3/2f(y) /2f(Y)
X

2 dyx2 y dy + J+ l(2X

2x/2J(2x) y3/2f(Y)x2 . y. dy

13 I + I5 I6.

Let

E(t, 2) f(y)(2y)l/2J(2y) dy.

Integrating by parts we obtain

g(z, 2)
13 O(1)

X2 2
E(y, 2 y2)2 dy
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By Lemma, 3, E(, 2)/(x2
with the dominated convergence theorem, implies

Hence,

Similarly,

Let

2) O(1), / 0(3. Moreover, Lemma 3, together

2y
E(y, 2)(x2 y2)2 dy o(1),

I o(1), R .
14 o(1), 2 o.

16 (2x)l/2Jv(2x)
x2 y2 f(Y)(2Y)I/2Jv+ 1(2y)dy.

F(t, ) fl f(y)(2y)’/2J+ ,(2y) dy.

Integrating by parts we obtain

16 0(1) F(y 3) y2 x2

2y2

(y2 c2)2j dy.

F(t, 2) is uniformly bounded and, by Lemma 3, tends to 0 as 2 ---, o. 16 o(1)
as 2 --, o now follows by the dominated convergence theorem. Similarly,

15 o(1), 2 .
Clearly, the estimates are uniform for x e [a, b].
Remark. If e 0 in Lemma 2, the condition z < a is not required. In other

words, iffvanishes in [0, fl] and 0 < b </3, then the convergence to zero in Lemma
2 is uniform for 0 =< x =< b. A similar statement is valid for the case fl oc.

The next lemma is due to Macaulay-Owen [10.
LEMMA 4. Iff L[0, o), g e BV[0, or) and g(u) 0 as u o, then

F(x)G(x) dx f t)g( t) dt.
0

5. Proof of Theorems 1-7.
Proof of Theorem 1. By Lemma 4, it is sufficient to prove the theorem for

the special case when f _= 0 in a, ). Now

If(x)l < Mx" + 1/2 tv+/2lf(t)]dt

so that F(x) is bounded in 0 =< x __< 1. Also G(x) is a bounded, continuous
function in 0 _<_ x <__ 1. Thus F(x)G(x) L(O, 1). Let us first assume that there is
exactly one point b, b > 0, such that f is of bounded variation in (0, b 6) and
(b + 6, a), while g is of bounded variation in (b 26, b + 26) for some 6 > 0.
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Define the functions fA(x), fB(X) and fC(x) by

By Lemma 4,

and

f f(x),
fSx)

0,

xe(O,b 6),
otherwise,

fB(x) {f(x),O,
xe(b 6, b + 6),
otherwise,

f f(x),
fC(x)

(0,

xe(b + 6,a),
otherwise.

Gv(x)FA (x) dx g(x)fa(x) dx

Gv(x)FC(x) dx g(x)fC(x) dx.

Hence we only need to prove the result forf and g.
Define

g(x) g(x),
0,

g"(x) g(x),

g(x) g(x),
(o,

x e (0, b 26),
otherwise,

x(b 26,b + 26),
otherwise,

xe(b +
otherwise.

Since f L(0, ), gn e BV[0, oe) and gn(x) 0 as x oe, by Lemma 4

foGf(x)Ff(x) ax gn(x)fn(x) ax.

Also ga L(O, ), so that
x
G(x)F(x)dx F(x) dx ga(x)(xt)X/L(xt) dt

gA(t) dt F(x)(xt)X/zJ(xt) dx.

By the remark after the proof of Lemma 2,

lim f(x)(xt)/2j(xt) dx 0

uniformly for e [0, b 26]. Hence,

G(x)f(x) dx 0 gA(x)fn(x) dx.
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Similarly

;oGC(x)F(x) dx 0 gC(x)f(x) dx.

If b 0, the proof is slightly different sincefmay not be integrable into the origin.
By assumption, g BV[0, 2 and f BV[& a for some > 0. Define functions
f* and f* as follows:

Then, by Lemma 4,

Also

5f(x), x (O,
f’(x)

1.0, otherwise,

f(x), x If, a],
[.0, otherwise.

F (x)G(x) dx fB*(x)g(x) dx.
0

F, (x)G(x) dx fA*(t) dt G(x)(xt)/2J(xt) dx

v+ x/2fa*(t)dt G(x)x+ /
(xt)

dx.

The inner integral is uniformly bounded and g(x) is of bounded variation in
(0, 6) so that, by the dominated convergence theorem,

F (x)G(x) dx fa*(x)g(x) dx.

This completes the proof for the case of the single point.
Next let E be the set of points x for which f is not of bounded variation in

any neighborhood of x. Then E is closed and bounded. For each x E, there is
an interval (x 2x, x + 26x) in which g is of bounded variation. The collection
of intervals (x 6x, x + fi), x E, is an open cover for E so that there is a finite
subcover (xl 6xl, X1 + (xl), (Xn (xn’ Xn + (xn), say. We may assume
that Xl < x2 < < x, and that no interval is completely contained in another
one. Let Ik denote the interval (xk 6, xk + fix), k 1, 2,..., n. Define the
functions fa(x), fal(x), fa"(x) by

.f’o(x)

fa(x)

f(x), x q U Ik,
k--=l

0, otherwise,

f(x), xell,
O, otherwise,
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and

fA(x) I f(x),
0,

for k 2, 3, ..., n. Then

x e (max {x,_ + 6_,, x, }, x, + ),
otherwise,

f(x) fA’(x)
k=O

except possibly at a finite number of points. By Lemma 4,

fo foG(x)FA(x) dx g(x)fA(x) dx.

Furthermore, by the same reasoning as for the single point, we have

fo foG(x)FA ffx) dx g(x)fA(x) dx

for k 1, 2, ..., n. Thus

f(x)g(x) dx g(x) fA(x) dx
k=O

k=0

(x)FJx) dx.

This completes the proof.
We note that the condition Gv(x)= O(x--) is needed only when f is not

integrable into the origin. For the case f e L(0, 1), we obtain an improved form
of Lemma 4. The cases v +_ 1/2 give Edmonds’ results for the sine and the
cosine transforms [4].

Proof of Theorem 2. Let g(x) x+ 1/2 e-X2. Then, by [6, (10), p. 29],

By Theorem 1,

(5.1)

G(x) xv+ 1/2(2s)-V-1 exp s>0.

XV+ 1/2

H(s)
(2s)V +

e-x/4*F(x) dx xV+ 1/2 e-,X2f(x) dx.

H(1/s) x+ 1/2 e-SX/4Fv(x dx

2- 1/2sV+ e-"p(u) du,
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where p(u) blv[2- 1/4F,(2ul/2). Assume (3.3) holds;then

p(U) 2U(/2 + v/2 + 3/4)- 1L(u- 1/2), u -- 0 +.

By a well-known Abelian argument, which involves a change of variable followed
by an application of the dominated convergence theorem, we obtain

fO 17 ) -v/2 3/4,e-S"p(u) du 2F + + L(s1/2)s -/2- s -- .
Hence

(5.2) H(s) 2- 1/2F

Also - + - + L(s 1/2)S v/2+7/2-1/4 s0+.

(5.3)

H(s) x+ 1/2 e-SX2f(x) dx

2
e- de(u, f).

Combining (5.2) and (5.3), we get

e d(u;f) 27+ 1/2F + -+- L(s- 1/Z)s-, sO+,

where p is defined by (2.3). cz(u ;f) is nondecreasing and continuous and L(s-i/z)
is slowly varying. Hence, by [7, Thm. 110], for p > 0,

(5.4) Z(s) pKL(s- 1/2)s- e-,,h(e-,,)uo- du, s --. 0+.

This completes the proof.
The proof of Theorem 3 is similar.
Proof of Theorem 4. By an argument similar to the one employed in the proof

of Theorem 2, (3.5) implies

e-"p(u) du 2+ 1/2F(v + 1)L(sX/2)s 1, S--O0,

so that

’e-S,,do(u;f) 2+1F(v 1)L(s-I/2),+

Hence, by [7, Thm. 111 ], the integral

s-O+.

Z(s) e-"h(e-") &z(u f
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exists for s > 0 and

Z(s) 2v+ 1r(v + 1)L(s-1/2)h(1), sO+.

The proof of Theorem 5 is similar.

Proof of Theorem 6. Case (i). < < v + 1/2. In Theorem 2 or 3 (accord-
ing to v >__ 1/2 or v > 1/2), let h(u) be the function defined by

Then,

Also

-1

h(u)=
e <= u <= 1,

0, O--<u<e-1

Z(S) e-"h(e-") de(u; f)

d(u f) (1/s f).

fo e-"h(e-")u-1 du lip.

Combining (5.4), (5.5) and (3.4), we get

a(u;f) KL(u/2)u,
Case (ii). 7 v + 1/2. Let

u-l(1 + logu),
h(u)=

O,

NuN_ 1,

O<u<e-1

Then

(5.6)

Z(s) e-"h(e-’) de(u; f)

l/s

s (u ;f) du.
0

By Theorem 4 or 5,

(5.7) )(s) 2v+ 1F(v + 1)L(s-1/2), sO+.

Combining (5.6), (5.7) and (3.6), we obtain

(5.8) a(t f) dt 2+ 1F(v + 1)L(ul/Z)u,

By a well-known argument [7, p. 170], (5.8) implies

a(u;f) 2+lF(v + 1)L(ul/2),
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Proof of Theorem 7. (i) pl(t) v/2. I/’f(t /2) is nonincreasing for >> 1. By
Theorem 6,

(5.9) p(t) dt KL(u/2)uv,

Let 6 be any constant such that 0 < 6 < 1. Then

(5.10) ’-Up(t)dt KL((u tu)l/2)(u- lu)p,

so that

f_.p(t)dt
(5.11) L(ul/2)u

U -- 00
Since p(t) is nonincreasing, (5.11) implies

(5.12) lim sup
p(u) <

K
u-oo L(ul/2)up-1 ---[1 -(1

Similarly, by considering

"+"p(t)dt KL((u + 6u)X/2)(u + 6u), U--O0,

we obtain

(u) K[(1 -t- 6)pP(5.13) lim,_ooinfL(ui-/-v2..o__)u >=
o

By choosing 6 sufficiently small, the bounds in (5.12) and (5.13) can be made
arbitrarily close to Kp. Hence,

(5.14) Pl(U pKL(ul/Z)uo- 1, U "- 00.

However, (5.14) is equivalent to (3.10). The proof of the other case is similar.
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LIE THEORY AND SEPARATION OF VARIABLES.
II" PARABOLIC COORDINATES*

WILLARD MILLER, JR.]"

Abstract. Winternitz and coworkers have characterized those solutions of the equation
(A3 + o2)f(x) 0 which are expressible as products of functions of the paraboloid of revolution, as
simultaneous eigenfunctions of the commuting quadratic operators

E JP2 / P2Jx PJ J2P1,J
in the enveloping algebra of the Lie algebra of the Euclidean group in three-space E(3). Here we study
the representation theory of the real and complex Euclidean groups in an E J basis and use the
results to derive some addition and expansion theorems for parabolic functions which simplify and
in some cases extend identities due to Buchholz and Hochstadt. We also give the decomposition of
the quasi-regular representation of E(3) in an E J basis.

Introduction. This paper is the second in a series analyzing the relationship
between group theory and the method of separation of variables in the principal
partial differential equations of mathematical physics [1]. Here we study a re-
lationship between the Euclidean group in three-space E(3) and the separation of
the reduced wave equation (A3 q- t;02)f(x) 0 in parabolic coordinates.

The Lie algebra (3) of E(3) is six-dimensional with basis {Pk, Jk :k 1, 2, 3)
and commutation relations

[Jj, Jk] jklJl [Jj, P] ejkP,, [Pj, P] O, j, k, 1,2,3,

where ek is the completely skew-symmetric tensor such that e12 3 ---+ 1. A
three-variable model of (3) is

Pk COx,,, J X3Ox2- XzOx3, J2 Xl(x3- X3tx,
J3 x2O XOx

and the reduced wave equation is

(,) (p2 + p22 + P)f(x)= -o92f(x),

where 09 is a nonzero constant. In [2] it is shown that the elementary solutions

f of (*) in parabolic coordinates, i.e., products of functions of the paraboloid of
revolution, are characterized by the requirement that they are simultaneous
eigenvectors of the quadratic operators E JP2 + P2JI PIJ2 J2Pa and J23
in the enveloping algebra of (3):

Ef 2f, Jf -rn2f.
Here, we exploit this observation by studying the spectral resolution of E cor-
responding to class 1 irreducible representations of E(3), and of the complexified
group CE(3). In particular we determine the relationship between an E J

* Received by the editors July 23, 1973, and in revised form September 17, 1973.
]" School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. This work

was supported in part by the National Science Foundation under Grant GP-28739.
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basis for the representation space and the more natural J. J- J basis. As is
well known [3], [4] studies of the representation theory of E(3) using the latter
basis lead to addition theorems and expansion formulas for spherical Bessel
functions. Similarly we here use the former basis to derive addition theorems and
expansion formulas for products of functions of the paraboloid of revolution. We
also show explicitly how to directly use the representation theory of E(3) to
obtain solutions of (*) in parabolic coordinates. (For a classical discussion of the
separation of (*) in parabolic coordinates see [5, Chap. 8].)

The spectral resolution of the self-adjoint operator E and the explicit group
theoretic methods used to study parabolic coordinates in this paper are new.
However, the addition theorems (2.13) are simplifications and extensions of
results derived by Hochstadt [6]. Relation (4.7) expressing spherical waves in
terms of parabolic functions is due to Buchholtz [7]. Neither of these authors
made use of representation theory in their proofs. To the author’s knowledge the
present paper is the first to explicitly relate parabolic coordinates to the rep-
resentation theory of E(3).

Applying the methods of this paper to the group PE(3), the Poincar6 group
in three-space, and its covering groups one can derive expansion formulas much
more general than those given here.

1. The complex Euclidean group CE(3). We denote by egg(3) the Lie algebra
of the complex Euclidean group in three-space. This algebra has a basis with com-
mutation relations

(1.1)

The complex Euclidean group CE(3) is the 6-parameter Lie group con-
sisting of all ordered pairs {w, A},

W (b/, V, W)e C3 A 6 SL(2, C),
C(1.2)

ad- bc 1,

with group multiplication

{w, A} {w’, A’} {w + Aw’, AA’},

where

(1.4)
Aw (a2u b2v + abw, -c2u + dZv c dw,

2acu- 2b dv + (bc + ad)w)

see [4], [8]. It is easy to verify that g(3) is the Lie algebra of CE(3). Indeed the
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generators of cg(3) can be chosen so

(1.5)
{w, A} exp (ug+ + vN- + w3) exp o +

exp (- c d-) exp (- 2 In d3)

in a neighborhood of the identity element. Here "exp" is the exponential mapping.
A realization of egg(3) is given by the type E operators [4],

zt
j3 tot, J+ T-t ea v/1 z20 +_

_1_ 2
O,

(1.6)
p3 =oz, P+/- =ow/1-z2t +/-., coeC, o#0,

acting on analytic functions f(z, t). Note that

p.p=p2 +p22 +p _p+p-
(1.7)

P. J PIJ1 -+- PzJ2 + P3J3 --O,

where

p3p3 0)2,

P+- Pz + iP1, p3 iP3, i-- x//- 1,
(1.8)

J+ -T-J2 + iJ1, j3 iJ3
Using this realization we study the eigenvalue problem

Eh 2h, J3h mh,
(1.9)

E JIP2 P2J1 P1J2 J2P1 .--i(P+J P-J+ 2P3)
for analytic h(z, t). Since

(1.10) E 2ico(z (1 z2)Oz), j3 tot,
in this model we find that, to within a constant multiple, the eigenfunctions are
given by

(111) h,(z,t) (1- z2)-1/2( 1 )a/2 i2
0 2 mC.

1 + 2o9’

Introducing new variables

1--z
(1.12) 2 "l+z

and the multiplier p() (1 + 2)/(2) we obtain transformed eigenfunctions and
operators,

f(, z) p()- h(z, t) ’cm,

+ 209z+ 3 1
(1.13) j3 =zc3, Po 1 +2’ Po =9 1 + 2,,

+1
+J-=
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where

J p- Jp, Pp p- pp.

Dropping the subscript p in (1.13) we see that

3Jf mf, + (re+e+ 1)f, (e-m-JYm-- 2 +++ 2

(1.14)

If we choose arbitrary complex numbers Co, mo and let e 0o + n, m mo + l,
n, integers, we see that at least formally, expressions (1.14) define a representation
T of egg(3) which is not equivalent to any of the representations classified
0,0

in [4].
In the following we set o mo 0 so that e and m range over the integers,

though most of our formulas are true for arbitrary e, m.
The Lie algebra representation (1.14) induces a local group representation

by operators

(1.15)
T(w, A) exp (uP + + vP- + wP3) exp -J

exp (-cdJ-) exp (- 2 In dJ3).

We define the matrix elements {w, A}}’,’ of these operators by

(1.16) T(w, A)f {w, A}’,"f,.

It follows that

(1.17) A },rn {W nt- Aw’, AA’}}’,{w A},n {w ’’
for {w, A}, {w’, A’} sufficiently close to the identity element. Using the differential
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operators (1.13) and standard results from Lie theory [43, we obtain

T(u, v, w)f(, z) T(w)f(, z)

(O

2 1exp
1 + 2(2uz -+- 2v{z + w(1 )) f({,z),

T(A)f( )=
V bz/d{)(l + b.c{/d)(1- c{/az)| /2(1.18)
k + clair

.f -(i + bz/d)(1 c-J 7 -(11 b/d)(1 + b-)3

Ib/d[ < IU’cl < la/cl, Ib/dl < I1/’cl < la/cl,

where

T(u, v, w) T(w, I), T(A) T(O, A),

(a ;)w=(u,v,w), A= ad-bc= 1,

Substituting tlese results into (1.16) and using well-known generating functions
for Laguerre and Jacobi polynomials [4], [5], we find

(1.19)
{0,0, w}=+ 2t,,, ewe’( 1)’LI- 1)(_ 2woo),

{0,0, w}:’ 0 otherwise.

=0,1,2,...

{u v O}=’’’ (2uo9)
r(p + l)

a+l+2p,m+l p!l!F(l)

(1.20) {u ) O}a’ma+l,m+l
(2UO))

l!

2F /+1

ifp= 1,2,...,

UU(D2t
=0,1,2,

=0,1,2,...

-1= 1,2,..-
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m{A}a+l-k,m_l_ (-- 1)tamd-m+t+t,b-t-,

2 2

3+-m+2 21) F{3--m+2k)2 F(-/+I)F(-k+I)

(1.21) 1

2F1 2

-1+1

2

m+-2k-1 -m-s+!
2F1 2 2

-k+l

if l, k O, +.1, -t-2, ...,
{A}’,]’ 0 otherwise

1 pHere L)(z) is a generalized Laguerre polynomial and pF
fll fl z, is a

generalized hypergeometric function [9]. In (1.21) we use the fact that

2F1 z F(c) is an entire function of c.

Alternatively we can employ the Hille-Hardy formula [4, p. 193] to derive

{u, v, W},+l+Zk,m+ (-- 1) eW’(Zuoo)

[ k’
L(l)’’)L(l)’") (k-1)l ]"l(l) (p)zl)_.

F(k + + 1) ’ ’’ F(k + 1) "-
(q)

W],x’m e’’(2uoo)
{hi l), )+l,m+l-’- 1

(t.22)

u,v,w , 0 otherwise.

I=0,1,2,..., k= 1,2,...

=0,1,2,...

1= 1,2,.., k=0,1,2,.-.

Here,

(1.23) P + r/ x/ x/ oo.
2

woo,
2

The general matrix element {w, A}’,’ can be computed from (1.19)-(1.22) and the
addition theorem (1.17).
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2. A three-variable model for CE(3). We next construct a model of relations
(1.14) in which the J and P operators are differential operators in three complex
variables x, y, z. Namely we set

P1 x, P2 Oy, P3 t;3z,
(2.1)

J1 Ytz + zcqr, J2 -Z0x + XOz, J3 -xr + YOx"
It follows easily that the operators

(2.2) P+ P2 + iP1, p3 iP3, J+ -T-J2 + iJx, j3 iJ3

satisfy the commutation relations (1.1). Furthermore, P. J 0.
For this model the eigenvalue problem (1.7), (1.9) becomes

(ax2 +a23 +P)f= -o2f, i(a+J- -P-J+ -2pa)f=2f,
(.3)

Jf mf

where f f(x, y, z). Note that the equation P. Pf -o)2f becomes

( + + + o)f 0.

The equations (2.3) have solutions which are products of functions of the
paraboloid of revolution. Instead of verifying this we shall directly construct

x z) satisfying 1.14). The wave y,basis functions f( y, plane functions h(x, z)
exp [ico(aax + a2y nt- a3z)] a2 + a22 + a23 1 satisfy

P Ph 00
2 h, P.ih icoajh, j= 1,2,3.

We shall construct our basis functions as integrals over plane waves"

s f d-tt {--iCO [xx//1-- fl2 (t + t-)f(x, y, z) dfi F(fl, t) exp
2

+ iyx//1 f12 (t-’ t)+ 2flz]} I(r).

We assume that the surface S and the analytic function F are such that I(F) con-
verges absolutely and arbitrary differentiation in x, y and z is permitted under
the integral sign. Integrating by parts we find

(2.4) i(-xc3 + yc,)f I(tc3tF

provided that S and F are chosen such that the boundary terms vanish. Similarly,
if the boundary terms vanish we find

(2.5) j+f I(J+F), p+f i(P+F), p3f i(p3F),

where the J, P operators are given by (2.1), (2.2) and the J, P operators are given
by (1.6) (with fl z). Thus, P. Pf -co2f and the action of egg(3) on f cor-
responds exactly to the action of the operators (1.6) on F.
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In particular, the functions

dt / tf,(x,y,z) d -(1 +
(2.6) -ioo

2 - iyx//i 2 t) + 2z]}exp 2 [xx//1- (t+ )+ (t

I(h(/3, t)), ,m O, +_1, ___2,’",

satisfy relations (1.14) where C1 is the contour shown in Fig.

fl-plane

FIG.

-1

t-plane

FIG. 2

and C2 is the contour shown in Fig. 2 in the/3- and t-planes respectively. In terms
of the variables , z where

2
Z-- f--q7

_+_ 2’
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-plane

FIG. 3

the integral becomes

f(x,y,z)= -2fc dfc d’c’cm-l
+ 2exp -ioo

1 + 2(x-iy)

+ - 2.(x + iy)+ z--

where C’ is the contour in the -plane shown in Fig. 3. Using the standard exponen-
tial generating function for Bessel functions and the Hille-Hardy formula we obtain

8rt2(i)lml( 1)kk!
f(x, y, Z)

(2.7) (Iml + k)!
(2ioop)lml/2(- 2icorl)lml/2

ei’("- O)L"l)(2iogp)L’l)(- 2icor/) eira#

if e= -Iml-2k- 1, k=O, 1,2,..., m O, +l, +_2,

f(x,y, z) 0 otherwise.

Here p, r/,/3 are parabolic coordinates:

(2.8) x=2w/cosfl, y=2/pr/sinfl, z=p-r/.

We conclude that the functions (2.7) and the operators (2.1), (2.2) satisfy
relations (1.14). This is true even though some of the functions f,(x, y, z) in our
model are identically zero. This Lie algebra representation of egg(3) can be ex-
tended to a local Lie group representation of CE(3) in the usual way. In par-
ticular the Lie derivatives (2.1), (2.2) induce group operators

IT(u, v, w)f](x) exp (uP+ + vP- + wp3)f(x)

(2.9)
f(x + i(u + v), y u+ v,z + iw), x (x,y,z),

(b)[T(A)f](x) exp -J+ exp (-cdJ-)exp (-2 In dJ)f(x)

f(R(A-’)x),
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where

and R(A) is the complex orthogonal matrix

a b + d c) (d + c a ba),

(2.10) R(A)=1/2(a._b_d +c (da +c +a +b),

\ac- bd -i(ac + bd)

ab cd i
Finally we obtain the relations

IT(u, v, w)f](x, y, z) {u, v, w}a:, f,,(x, y

(2.11)
t,,,

[T(A)f,] (x, y, z) {A}a,,,f,(x,fl z), Ib/dl < < la/cl,

for the functions (2.7) where the matrix elements are given by (1.19)-(1.23). Ex-
pressions (2.11) are addition theorems for the functions of the paraboloid of
revolution (2.7) and they contain most of the formulas of Hochstadt [6] as special
cases.

By altering the integration contours in (2.6) it is not difficult to construct
functions f(x, y, z) of the general form (2.7) but with m an arbitrary noninteger
complex number, and such that the relations (1.14) corresponding to P-+ and p3
hold. Thus one can derive addition theorems corresponding to the operators
T(u, v, w). For some of these results see [6]. However, it does not appear possible
to satisfy relations (1.14) corresponding to J-+ and j3 for arbitrary m.

3. The real Euclidean group E(3). Let (3) be the Lie algebra of the real
Euclidean group in three-space, i.e., the 6-dimensional real Lie algebra with basis
{o, k :k 1, 2, 3} and commutation relations

(3.1) [oCj, Jk] g-’jkll’ [Jj’ k ejkll’ [j’k O, j, k, 1,2, 3,

where t;jk is the completely skew-symmetric tensor such that el23 + 1. The real
Euclidean group E(3)consists of all ordered pairs (r, A), where r (r r2, r3)5 R3
and

a b
(3.2) Z

_
fi

eSU(2), lal 2 + Ib[2= 1.

The group multiplication law is

(3.3) (r, A)(r’, A’) (r + R(A)r’, AA’),

where R(A) is the real 3 x 3 orthogonal matrix given by (2.10) with c -,
d 2. Note that E(3) is the simply connected covering group of the Euclidean
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group of all rotations and translations in three-space [4, p. 256]. We relate the Lie
algebra generators to the finite group elements via the expression

(3.4) (r, A) exp (rP + r2P2 + r3P3) exp 001J3 exp0 exp (-D2J3

Here (q91, 0, (/92) are the Euler coordinates of A (see [4, p. 217]). Using relations
(1.8) we can easily verify that g(3) is a real form of g(3).

The class one faithful irreducible representations of E(3) are defined by
operators

(3.5) T(r, A)f() exp (-iogr. )f(R(A -1))
acting on the Hilbert space L2(82) of Lebesgue square integrable functions f(k)
on the unit 2-sphere, with inner product

(f g) de dOf()g(fQ sin O,

(sin 0 cos qg, sin 0 sin qg, cos 0);

see [3], [4]. The representations are indexed by the constant 09 > 0. The induced
Lie algebra representation is defined by operators

(3.6)

P1 io sin 0 cos qg, P2 io sin 0 sin q,

P3 io cos 0, J1 sin q9c3 + cos (p cot

J2 -cos q630 -k- sin q cot 03o, J3 -63q,

(3.7)

The operator E on L2($2) is given formally as

E JIP2 + P2J1 PIJ2 JzP1 2(P + P2P1 PIJ2)

-2io(cos 0 + sin 0o).

To be definite we initially define E by (3.7) with domain the space of all C
functions on Sz which vanish in neighborhoods of 0 0 and 0 n. It is easy to
show that E is symmetric on this domain and essentially self-adjoint.

For any function f() e L2($2) let

ffm(2) dq f() e -im’p

2eR, m =0,_1, +2,...

Then

1
(3.9) f(k) eimp j_ m()

(tan (0/2))’’z/2
d2

sin 0

in the sense of L2-convergence. Furthermore,

f: ;o(3.10) do dOlf()[ 2 sin 0 [m(2)l 2 d2,
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and for f in the domains of E and j3 j3,

(3.11)
Ef([l[) - - ei’’’ Afire(2)

(tan (0/2))
0

d2,

foo mffm(2)(tan (0/2))i/2oj3f() Z eimq
m=- sin 0

d2.

Thus E and j3 can be extended to unique self-adjoint operators on L2($2).
In the usual treatments of the representation theory of E(3) (see [3], [4]) one

chooses an orthonormal basis for L2($2) which consists of simultaneous eigen-
vectors j/m()of the operators j3__ ij3 and J. J--j2 q_ j2 _+_ j32. Indeed, the
functions

(3.12) "lJm(k)=(-1)ly’[’(0, qg), 1=0,1,2,’", m= l,l- 1,..., -1,

form an orthonormal basis and

(3.13) j3jl,, mjlm J. Jj -l(l + 1)j/.

Here 7’(0, qg) is a spherical harmonic [3]. To determine the relationship between
the J. J j3 spectral representation and the E j3 representation we compute
the transforms ,’m(2) corresponding to the function f(k) fro(k). The result is

(3.14)
-l + m, + rn + 1, -i2/4w + (m + 1)/2
m+ 1,m+

1, m=0,1,...,l,

’"(2) (- 1)I(21 + 1)(l+k)!-ll(k !) 4r(/- k)!
/2F i2 k+l

T- + 2

l-l+ k, l+ k + 1 -i2/4w + (k + )/2l
3F2 k+ 1,k+ /’

rn= -k, k= 1,2,3,.-.,/,

,.f/n’m(2) 0, if n 4: m.

Now that we have determined the unitary transformation relating the two
bases we can use the known matrix elements, Clebsch-Gordan coefficients, etc.
in the J. J- j3 basis and express them in terms of the E- j3 basis [3], [4],
[10]. The routine computations are omitted.
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4. A three-variable model for E(3). We now show how to construct a three-
variable model for the class one faithful irreducible representations of E(3).
Consider the functions

hx() exp [io9x. ] e Le(S2),

x (x, y, z) e R3, (sin 0 cos p, sin 0 sin qg, cos 0).

Computing the expansion coefficients of hx with respect to the basis {j}, (3.12),
we find

(4.2)
H/(x) (h,,, j> 4rc(i)tjt(or)Y’[’(O’, qo’),

m= -l, -l + 1,... l,

where x (r sin 0’ cos qg’, r sin 0’ sin o’, r cos 0’) and

jl(o9r) 2-) 1/2

Jr+ 1/2(o9r)

=0,1,2,...,

is a spherical Bessel function [5], [4, p. 263].
On the other hand, in the E j3 basis we find, from (3.8),

(4.3)

og(2) do exp [iogx. ] e-imq
-i2/2o dO

tan 2oJ
eimll
2O9

i" exp [iog(p q) cos 0] Jm(2ogx/- sin 0) tan

23/2O9-----5F + .F
l+m i2)2 4 (r/P)- 1/2

-in/2og,. f //// (ein/2#i;14o,ml2(e YNI l"rriX/4o,m/2 (-DN///-) eim#

dO

see [7, p. 83]. Here

//[,u/e(z)
Zl +u)/e e-/e 1+ !2

F(1 +#) 1F 2
;1 +W-z

and Fl(a; c; z) is a confluent hypergeometric function. The parabolic coordinates
p, r/,/3 are defined by (2.8).

We can better understand the significance of these results by noting the
action of the operators T(r, A), (3.5), on the plane wave functions h,,(k)"

T(r, A)h,,(,) exp (-icor. ,)hx(R(A-)) hR(a)x_r([).
Thus, the induced group action on the functions H/re(x) is given by

T(0, A)Hm(X) <hx, T(0, A)fm)

(4.4)
(T(0, A- ’)h,,, fm) Hm(R(A- 1)x),

T(r, E)U(x) _= (h., T(r, E)jtm)

(T(-r, E)h,,, jtm)= H(x + r),
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where E is the 2 x 2 identity matrix. It follows that the H/re(x) transform under
the group action induced by the Lie derivatives (2.1) where x (x, y, z). Further-
more,

(4.5) p. PH/m e
--(_0 Hm, J. JHm -l(l + 1)H/m, j3H/m mHl

so the {H} are solutions of the equation (V2 + o92)H 0 which transform as a
j. j j3 (spherical wave) basis under the action of E(3). A similar computation
shows that the functions {dog ,(2)} also transform under the operators (2.1) and
satisfy the relations

(4.6)
P. PoCg ,(2) c02og ,(2),

J3m(2) m,(2).

Thus the {(2)} are solutions of (V2 -- co2)H 0 which transform as a E j3

basis under the action of E(3). This suggests that the ourS,(2) should be simply
expressible in terms of functions of the paraboloid of revolution.

Using the coefficients (3.14) we can relate the functions H(x) and ,(2)"

(4.7) H/re(x) <h j> oetx o"l,mm(/)k" (2)d2.

This formula, which follows easily from (3.10), constitutes the expansion of a
spherical wave in parabolic functions [7, p. 170].

Direct computation yields

sin oR
(4.8) (hx, h,,,) 4, R2

oR
(x x’): + (y -/)2 + (z z’)

On the other hand,

(4.9)

(4.10)

Thus, the expression (4.8) can be regarded as a bilinear generating function for
the H(x) and ,(2).

The decomposition of the quasi-regular representation of E(3) into a direct
integral of irreducible representations is well known, e.g., [11]. The results are
usually expressed in terms of the J. J j3 basis. Here we briefly describe the
decomposition in terms of the E j3 basis. As we have shown the bases are
related by (4.7).

Let Lz(R3) be the Hilbert space of Lebesgue square integrable functions
/(x) f(x, y, z):

If(x)l 2 dx < .
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Then

(4.11)

where

(4.12)

f(x) _1 k3 dk 3f x-’m(- 2)ffm(2) d2,

/m "’u(2)f(x)dx

and ocg ,’k(2) is given by (4.3) with 09 k.
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ON BOUNDED SOLUTIONS OF NONLINEAR
DIFFERENTIAL EQUATIONS IN HILBERT SPACE*

JEROME A. GOLDSTEINt AND ARTHUR LUBIN

Abstract. The main result can be stated roughly as follows: Let u be a Hilbert-space-valued
solution of u’(t) Au(t), - < < , where A differs from a symmetric linear operator by a suit-
able nonlinear perturbation. Then either u is constant or else supt [[u(t)[I . More generally, A
can depend on t, and the equation u"(t) A(t)u(t) is also considered.

1. Introduction. Let A be a symmetric linear operator on a Hilbert space
Let u:[ (-,) At be a strongly continuously differentiable solution of
u’(t) Au(t), s E, where means differentiation with respect to t. Then either u
is identically constant, or else u is unbounded. This result is due to H. Levine [3],
who generalized earlier work of S. Zaidman [5]. Levine also allowed A A(t) to
depend on t. The present note generalizes Levine’s result to allow A(t) to be
nonlinear. Our nonlinear theorems ought to be useful in the study of almost-
periodic solutions of nonlinear parabolic equations (cf. e.g., Foias-Zaidman 1]).
We also consider the equation u"(t) A(t)u(t) and give some examples.

2. First order equations. Let be a real or complex Hilbert space. The
norm and inner product in A will be denoted by II" and (.,.) respectively.
For each s E let A(t) be an operator with domain (A(t)) and range contained
in . Let g be a subset of such that c f),R (A(t)).

By a strong Y-solution of

(1) u’(t) A(t)u(t)

we mean a strongly absolutely continuous function u: - g such that (1) holds
a.e. For nonlinear equations, this notion is more appropriate than the notion of
strongly continuously differentiable solution (cf. e.g., Pazy [4]).

THEOREM 1. Let u be a strong g-solution of (1), and suppose u’ is g-weakly
absolutely continuous, i.e., (u’(. ), x) is absolutely continuous for all x . Suppose
there exists a Lebesgue measurable function a [ [ such that

d > --a(t)[[u’(t) 2(2) Re -d-s(u’(s), u(t))[s=,

and a(t) < 1 for a.e. . Then either u const, or else

sup Ilu(slll 2 dslt e
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f Department of Mathematics, Tulane University, New Orleans, Louisiana 70118. The work of

this author was supported by the National Science Foundation under Grant GP-38596.
; Department of Mathematics, Tulane University, New Orleans, Louisiana. Now at Depart-

ment of Mathematics, Northwestern University, Evanston, Illinois 60201. The work of this author
was supported by the National Science Foundation under Grant GP-38265.

837



838 JEROME A. GOLDSTEIN AND ARTHUR LUBIN

Proof. The idea of the proof is as in [3] and is quite simple. Let

t+

F(t) u(s)ll 2 ds.

Then for a.e. ,
F’(t) u(t + 1)112 u(t)l[2 Qtt+l

t+l

2 Re (u’(s), u(s)) ds,

F"(t) 2 Re (u’(s), u(s))]’, +1

2 /- Re (u’(s), u(s)) ds

+
2 (G(s) + H(s))ds,

d
u(s)ll 2 ds

where G(s) Re (u’(s), u’(s)) Ilu’(s) 2,
-(s)llu’(s)l 2. Consequently,

and H(s) (d/dr) Re (u’(r), u(s))l=s

+

(3) F"(t) >__ 2 (1 (s))l[u’(s) 2 ds >= O.

Hence, F is a convex function on . If u is a nonconstant solution of (1), then
u’ 0 and (3) implies F"(to) > 0 for some to R since (1 (s)) > 0 a.e. by hy-
pothesis. Thus, either lim,_,_ F(t)- or lim,_ F(t)= , and the theorem
follows.

Remark 1. Suppose A(t) is linear and symmetric for each t, and for each
x9, A(.)x is strongly continuously differentiable on [ and (A’(t)x,x)
>= fl(t)llA(t)x 2 for each , x 9, where fl" [R --+ is measurable, independent
of x, and fl(t)< 2 for each t. Then the hypotheses of Theorem 1 hold with
(t) fl(t) 1. Thus, Levine’s result [3, Thm. 1] is included as a special case. It
is worth noting that u’= Au is actually strongly absolutely continuous in this
case because of the smoothness assumption on A. Thus our assumption that u’
is 9-weakly absolutely continuous can occur as a consequence of regularity
assumptions on A.

Example 1. Let A(t)x g(x)S(t)x, where S(t) is a linear symmetric operator
for each e , 9 c tq,u (S(t)), and g’9--+ [ is differentiable. Suppose that
there is a measurable ’ --+ [ such that S(. )x is strongly absolutely continuous
for each x e 9 and (S’(t)x, x) >= -fi(t)llS(t)xl[ 2 for each x e and a.e., e [. Let
7 > 0 be such that ? __< g(x) for each x e 9, and suppose fl(t) < 2 for each [.

Let u be a strong 9-solution of (1) and suppose that either
(i) S(t) >__ 0 for each [R and g’(u(t))u’(t) >= 0 a.e., or
(ii) S(t) 0 for each e N and g’(u(t))u’(t) <= 0 a.e.

((ii) becomes equivalent to (i) if is replaced by -t in (1).) Then the hypotheses
of Theorem hold, so supt Ilu(t) c if u is nonconstant. We now verify this.
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For a.e. we have

d
d-[g(u(t))S(t)u()] g(u())S()u’()

+ g(u(t))S’(t)u(t)+ [g’(u(t))u’(t)]S(t)u(t),

so Re ((d/ds){u’(s), u(t))[=) J + J2 + J, where

J, {g(u(t))S(t)u’(t), u(t)) u’(t) 2,

J2 g(u(t)) Re {S’(t)u(t), u(t)) >= (t)y- 1[] u’(t) [2,

J [g’(u(t))u’(t)] {S(t)u(t), u(t)) 0 a.e.

if either (i) or (ii) holds. Thus, the hypotheses of Theorem 1 hold with (t)
)-lfl(t)- 1.
Example 2. Specialize Example so that g(x) f( x 2), wheref’ [7,

7 > 0. Then
g’(u(t))u’(t) 2f’(u(t) 2)f(u(t)12)(S(t)u(t),u(t)).

Therefore (i) holds if S(t) >= 0 for each and f2 is absolutely continuous and non-
decreasing (so that ff’_>_ 0 a.e.), and (ii) holds if S(t) <= 0 for each and fe is
absolutely continuous and nonincreasing. For a specific example, take arg L2([n),
n _> 1, S(t)= A, the Laplacian (A =< 0), and f(x)= kl(k2 tan-1 x), where
is a positive constant and k2 > t/2. Then setting fl(t)= 0, the hypotheses
(including (ii)) hold, so there are no nonconstant (in time) strong solutions of the
nonlinear heat equation c3u/c3t g(u)Au, x e JR", e [R satisfying

f lu(t, x)l 2 dx <sup
t [n

where g(u) f(llu 12),f as above.

3. Second order equations. Let fq,n(A(t)). A strong -solution of
(4) u"(t) A(t)u(t)

is a strongly absolutely continuous function u’- having a strongly
absolutely continuous strong derivative such that (4) holds a.e.

THEOREM 2. Let u be a strong -solution of (4). Suppose Re (A(t)u(t), u(t)) >= 0
a.e. Then either u const, or else at least one of limt__,_ ]u(t)1, limt__,+o Ilu(t)ll
is +.

It is a conclusion of the theorem that lim,_ +o Ilu(t) both exist.
Proof. Let F(t)= Ilu(t) 2. Then a straightforward computation shows that

F and F’ are absolutely continuous and

F"(t) 21 u’(t)l[ 2 + 2 Re (A(t)u(t), u(t)) >= 0 a.e.,

so F is convex. The theorem follows easily.
Example 3. Let L2([), 5 H2([)-- the domain of the self-adjoint

Laplacian A dZ/dx2, and A(t)v Av -g(v)Av. (A is independent of t.) Let u
be a strong @-solution of the nonlinear equation

(5) 32u/t2 --g(u)Au.
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Then

(6)

where Ux

Re (Au(t), u(t)) Re g(u)lUxl 2 dx + g(u)xuxfi dx

Ou/cx, etc. If g(v) f( v[I 2) and f >= 0, (6) reduces to

Re (Au(t), u(t)) f(llu(t) 2)]Uxl2 dx 0,

and the hypotheses of Theorem 2 are satisfied. One can easily determine con-
ditions, on g which guarantee that the second integral on the right-hand side of
(6) has nonnegative real part, even when g(v) depends on v itself and not just on

Remark 2. By combining the ideas of Levine [3] and of this note, it is easy to
obtain criteria so that the conclusions of Theorem 2 apply to the equation
Pu"(t) A(t)u(t) + F(t, u(t), u’(t)), with A(t) nonlinear, so that Theorems 2 and 3
of [31 are subsumed as special cases. We omit the details.

Remark 3. It is possible to extend our results to an U’ situation. (Compare
with [3, p. 250].) The resulting theorems are rather cumbersome to write down,
so we omit precise statements. A useful tool is a lemma of T. Kato [2, p. 510].
We conclude with a nonlinear example in an Lp context.

Example 4. Let X be the real space LP([), 2 < p < oe. Let,/be a nonnegative
measurable function on R, and let g(v) f(llvllP) for v e X. Let u’R X be a
strong solution of (5). We claim that u const, or else

max { i_moo, [lu(t)p,

For p 2 this follows from Example 3. For a proof, set

F(t) u(t) v lu(t, x)lp dx.

A straightforward calculation using integration by parts and g(U)x 0 shows that

f"(t) p(p 1)lulp- 2 g(u)
U 2 U 2

+ dx,

and the result follows easily.
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FREE BOUNDARY PROBLEM*

DAVID E. TEPPER’

Abstract. Let be a doubly connected region in the complex plane limited by the infinite point
and a convex set F. If 2 > 0, then we study the existence, uniqueness and geometry of annuli m
having F as one boundary component and another boundary component 7, such that there exists a

harmonic function V in o satisfying: (a) V 0 on F, (b) V on 7 and (c) Igrad VI 2 on 7.

1. Introduction. Suppose @ is a doubly connected region in the complex
plane which is limited by a compact boundary component F and the point at
infinity. If Q is a continuous positive function in 9, then in [1] Beurling considers
the following problem: Can one find an annulus o c having F as one boundary
component and another boundary component 7, the "free boundary", such that
there exists a harmonic function V in m satisfying:

(a) V=0onF,
(b) V= lonT,
(c) Igrad V] Q on 7.

Beurling gives necessary and sufficient conditions for the above problem to have
a solution. He also gives a sufficient condition for a unique solution to the problem.

In this paper, we shall be concerned with the qualitative properties of the
free boundary in the special case when F is convex and Q is a constant 2 > 0.
From Beurling’s work, it is easy to prove that in this case there do exist solutions.
Furthermore, uniqueness in this case is actually shown by Beurling. A summary
of our results is:

(i) The solution annuli as 2 increases are monotone decreasing, and the
free boundaries of the solution annuli exhaust all of @ as 2 tends to zero.

(ii) The free boundary of each solution annulus is a closed convex curve.
(iii) In a certain sense, the free boundaries are asymptotic to a family of

circles as 2 tends to zero.
In the next section, we summarize the results in [1].

2. Preliminaries. Suppose Q is a continuous positive function which is
permitted to tend to infinity at F within the following limitation:

(1) Q=O [grad,
u u]),

where u stands for any harmonic function which vanishes on F and is positive
and regular in some annulus o contained in @ having F as one boundary com-
ponent.

We shall use the following notation and definitions, cg will denote the family
of all finite subannuli of having F as one boundary component. For o) cg, the

Received by the editors March 21, 1973.
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harmonic function in co with boundary values (a) and (b) will be denoted Vo, and
referred to as the stream function of co.

As in [1], to give a proper definition of (c) we assign the following quantities
to co e cg

Igrad
a(co, Q) a(co) lim inf

Q

b(co, Q) b(co) lim sup
Igrad Vol

where the limits are taken as z e co tends to the free boundary. By means of these
limits we define the following three sets of annuli

A(Q) A {coeCg:a(co)_> 1},
B(Q) B {coe C:b(co)__< 1},
Bo(Q) Bo {co e cg :b(co) < 1 }.

The intersection A f’l B is the set of solutions.
The following three statements are consequences of the results in [1].

(I) If co’e A and co"e B0, then there exists a solution f, co’ c f c co".
(II) B - is necessary and sufficient for there to be a solution. Further-

more, if co e B, then there exists a solution f, f c co.
(III) If F is. convex, then for Q 2, a positive constant, there cannot be more

than one solution.

3. Existence and uniqueness. We shall make use ofthe following definition.
If J is a closed convex curve and A is the region limited by J and the point at
infinity, then [z, J.A] stands for the distance from z e A to J. The following ob-
servation is easily shown:

(IV) If J is convex, then [z, J; A] is a subharmonic function of z e A.
We return to the case where Q _= 2, a preassigned positive constant. Using

Beurling’s results and (IV), we prove the following theorem.
THEOREM 1. Given 2 > 0, there exists a unique solution. Furthermore, if fx

denotes the unique solution, then

(2)

Proof. By (III) there cannot be more than one solution. From (II) we need
only show B(2) va . To show this, let F’ be any analytic closed convex curve
c which is homotopic to F. If ’ is the region limited by F’and the point at
infinity, then we define

(3)

and

ol {ze’.[z,r’.’] < -}

(4) U ..
We claim that co B(2). If V is the stream function of co and

U(z) 2[z, r’: ’],
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then for z e cox we have

(5) V(z) >__ U(z)

by (IV). We observe that equality holds in (5) on the free boundary of co. There-
fore, on the free boundary of co, we have

(6) 0> cV >c?U _2

where the derivatives are taken in the inward normal direction. Hence co e B(2),
and by (II) there exists a solution fx, fx c co’.

The relation (2) holds because F’ is arbitrary.

4. Monotonieity. In the rest of this paper will stand for the unique solution
annulus for the case when Q 2, a preassigned positive constant. We now prove
the following theorem.

THEOREM 2. If21 > 22, then

(7) c .
Furthermore, if7 is the free boundary oj’x, then

(8) U v .
2>0

Proof. The relation (7) holds by uniqueness of the solution and because

x B(21)"

To show (8) we suppose zo 6 and show zo 6 7z for some 2. We define

s {:Zo n}, s {:Zo n}.
We know that S . To show $2 , choose R > 0 such that if E is the disk
[zl < R, then zo 6 E and F E. If U is the stream function of the annulus E ,
then ]grad UI is bounded away from zero on the circle lzl R. Hence, if

6"= min ]grad U],
I1 g

then E A(6). Furthermore, for some 6o < 6, we have

= {z:z,r;] < }.
Therefore, by (I), we have Zo o.

Since S for 1, 2, we see that

2eS 2eS2

for some 2 and 2g. If 2 > 22, then there exists 23 such that 2 > 23 > 22. We
then would have

(9) x, 3 C 2
which is impossible. Similarly, 1 < 2 leads to a contradiction. Hence, 2 2
and Zo e y**.
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5. Convexity of the free boundary. We introduce the following definitions
and notation. If F’ and F" are closed convex curves, then we define

(10) IF’, V"] sup inf ]w’ w"[
W’ I" "r’"

and observe that in general F’,F" 4: F",F’. A sequence {F,},=l of closed
convex curves will be called increasing if F, lies in the interior of F/l for
n= 1,2,....

We have the following theorem.
THEOREM 3. If 7 is the free boundary of, then is a closed convex curve.
Proof. First suppose F is an analytic closed convex curve oriented in the

positive sense with respect to such that the curvature of F does not vanish. If
V is the stream function of and U a conjugate of V, then the analytic function

(11) f(z) U + iV

maps minus a Jordan slit connecting F to yz onto the rectangle, 0 < U < Uo,
0< V< 1. Let

(12) f’(z) exp p(z) + iO(z)].

At each point z s ?f, let r/ be the inward normal direction and s the tangent
direction in the positive sense. By the Cauchy-Riemann equations, we have

(13)

(4)

On 1-" we have

() cp/rt OO/cs < o,

by convexity of F. Therefore, p attains its minimum on the free boundary where
p =- log 2. Hence, for z 7 we have

o <= [,p(z)]/ EO(z)]/s

which implies 7 is convex.
Passing to the general case, let {F,}, be an increasing sequence of analytic

closed convex curves C- , with nonvanishing curvature such that
decreases to zero as n --, oe. If f") is the solution annulus for the curve 1-’,, then
it follows that

(16) fx--- U (f")N).
n-I

6. Asymptotic behavior of the free boundaries. To study the asymptotic be-
havior of the free boundaries, we transform onto the exterior of a circle. For
this purpose, let

(17) z=f(w)= Cw + so + ,,w-"
n=-I
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be a schlicht mapping of [w[ > onto .. If F* denotes the circle [w[ 1, then the
annulus f-l(f) is the unique solution to the free boundary problem for the
curve F* and the function

(18) Qa(w)-- lf’(w)[.

The annulus f- l(fz) will be denoted by f’. We may assume C in (17) is positive.
We have the following theorem.
THEOREM 4. For each 2 > O, there exists and > 0 such that

(19)

and (flz ) --, 0 as 2 O.
Proof. If ;’ is the free boundary of f2"4, and V’ is the stream function of

f, then for w we have

(20) Igrad g’(w)l-- 2lf’(w)l.

Let

(21) pa inf {Iwl "w e ).

For 2 sufficiently small, there exists and e positive such that

(22) 0 < C p < If’(w)l < C + I1
2_,, tend to zero as 2 --, 0. Letwhere p,x and pxz

(23) Ex 2 C

and define ez and flz by the equations

(24) E Fxa log fix log fl

If

(25) f {w’ < Iwl < "}, 2- {w’l < Iwl </3},

then we see that f and f are the respective solutions to the free boundary
problem for the curve F* and the constants Ex and Fz. Hence by (22) and (I),
we have

(26)
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We need only show that (fix 0x) 0 as 2 0. However, for 2 sufficiently small
we have

(27)

fl ; F; log fl; E, log ,

2p, log , ,Ipf-- )(C + Illpz +

By (23), 2-1Ez is botnded, and by (26), 0p]-1 < 1. Hence (/34 -0) 0 as

REFERENCES

[1] A. BEURLING, Free boundary problems for the Laplace equation, Institute for Advanced Study
Seminar, Princeton, N.J., (1957), pp. 248-263.

[2] ., An extension of the Riemann mapping theorem, Acta Math., 90 (1953), pp. 117-130.



SIAM J. MATH. ANAL.
Vol. 5, No. 5, October 1974

ERRATUM: SOME ISOPERIMETRIC INEQUALITIES FOR
HARMONIC FUNCTIONS*

L. E. PAYNE

Inequality (2.6a) and equation (2.7) are incomplete. Although the con-
clusions of the paper are correct (the two missing terms annihilate one another
when (2.6a) and (2.7) are combined), the corrected versions should read as follows:

(2.6a) 2 n c3n2 --s ss -n cqx cqxj Oxid
> 0,

(2.7)
c32H cH OH c3nj c32H
c3n---Y + K-n n

c3x c3x c3s2
O

* This Journal, (1970), pp. 354-359. Received by the editors January 14, 1974.
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ON THE ASYMPTOTIC BEHAVIOR OF THE BOUNDED
SOLUTIONS OF A NONLINEAR VOLTERRA EQUATION*

STIG-OLOF LONDEN"

Abstract. This paper is concerned with the asymptotic behavior of the bounded solutions of the
nonlinear Volterra equation x(t) + o a(t z)g(x(r)) dr f(t). Conditions implying that the solutions

are slowly varying are obtained. These conditions generalize earlier results by Levin and Shea and
by the author.

Introduction. In this paper we investigate the asymptotic behavior of the
bounded solutions of the nonlinear Volterra equation

(1.1) x(t) + a(t z)g(x(z))dz f(t), 0 <= < ,
where a(t), g(x), f(t) are prescribed real functions. Specifically, our main result is
the following.

THEOREM 1. Let

(1.2) a(t) >= O, 0 <= < ,
(1.3) a(t) be nonincreasing on [0, ), a(0) < ,
(1.4) a(t) L 1(0, ),

(1.5) g(x) C(- ),

(1.6) f(t) L(0, ), lim f(t) F.
t--

Let x(t) be a solution of (1.1) on [0, ) such that

(1.7) x(t) L(O, ).

Then x(t) is slowly varying in the sense that for any positive constant T one has

(1.8) lim I sup x(z)- inf x(z)l =0.
t’-*x3 t- T <_z<_t t- T <_z<_t

Also

(1.9) lim dist (x(t), L) 0,

where

(1.10) L de=f XlX + g(x) a(z) dz F, lim inf x(t) <= x <= lim sup x(t

The equation (1.1) has recently been analyzed in [2], [3] and the present
result generalizes the main result of [3], in the case of an integrable kernel a(t),

* Received by the editors April 9, 1973, and in revised form October 1, 1973.
f Institute of Mathematics, Helsinki University of Technology, Otaniemi, Finland.
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by significantly weakening the hypothesis on f(t). More precisely, we observe
that in [3] we postulated

f(t) e CE0, ) f’l BV[0, ),

in order to obtain asymptotic results. In particular the condition fe BV[0, ),
although rather technical and not absolutely intrinsic to the problem, was crucial
to the proof in [3]. Our principal goal has therefore now been to construct a
proof which does not make use of this condition.

While the main emphasis in the proof is thus on eliminating the hypothesis
f e BV, it turns out that by Lemma 1, to be discussed below, we are able to also
abandon the assumption f e C.

Observe that as only (1.6) is assumed on f(t), it follows that Theorem 1 has
immediate consequences on the asymptotic behavior of the bounded solutions of
the delay equations

x(t) + g(x(t- z))a(z)dz f(t), 0 <= < ,

where 0 < T =< , where a(t) satisfies only (1.2), (1.3) and (1.4), and where the
initial function x(t) is bounded on T =< _< 0.

Theorem 1 includes as special cases comparable results presented in [2] and
[4] which make much stronger assumptions on both a(t) and g(x).

Discussing the proof we begin by observing that Theorem is obtained by
proving Theorem 2 and Lemma 1, which together imply Theorem 1.

Theorem 2 is concerned with (1.1) under identical assumptions on a(t) and
g(x) as Theorem 1, but under strong smoothness hypotheses on f(t). In particular,
f(t) absolutely continuous on [0, o) and limt ess supt__<,<oo If’(r)] 0 are
assumed. We show in Theorem 2 that (1.8) and (1.9) follow under this smoother
hypothesis. Note however that f BV is not postulated in Theorem 2.

Lemma 1 in turn simply states that if Theorem 2 holds, then so does Theorem
1. The proof of this statement, which we delegate to 3, makes above all use of
the smoothing nature of convolution, and of (1.4).

THEOREM 2. Let

(1.11) a(t) >_ O, 0 <__ < ,
(1.12) a(t) be nonincreasing on [0, ),

(1.13) a(t) LI(0, ct)),

(1.14) g(x) C( , ),

(1.15) f(t) be absolutely continuous on [0, ),

(1.16) f’(t) L(O, v),

(1.17) lim f(t) F,
t’-

(1.18) lim ess sup ]f’()] 0.
t--* t__<

a(0) < ,
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Let x(t) be a solution of(1.1) on [0, oo) such that

(1.19) sup ]x(t)l < .
Then (1.8) and (1.9) are satisfied.

LEMMA 1. Let Theorem 2 hold. Then Theorem holds.
We begin the proof of Theorem 2 by stating the uniform continuity of g(x(t))

and the absolute continuity of x(t) on [0, oz). From (1.1) we then deduce, using
(1.13) and (1.19), the equation (2.8) and the inequality (2.9). These relations are
basic to the continuation of the proof.

The inequality (2.9) clearly gives an intuitive upper bound for the variation
of g(x(t)) on any bounded interval. In Lemma 4 we make this intuitive bound
exact. The proof of this lemma, see the last section of this paper, basically follows
the method developed in the proof of [3, Lemma 1]. Of course, the conclusion of
Lemma 4 is weaker than the conclusion of [3, Lemma 1] because we now only
have (1.18)and notfe BV[O, ). We observe that the proof of Lemma 4 is notably
simpler if a(t) is a pure saltus function and does not contain any continuous part.

After Lemma 4 we turn our attention in the proof of Theorem 2 to analyzing
the function H(x(t)), where H(x) is defined in (2.6). The result of the discussion
between (2.13) and (2.46) can be summarized by stating that H(x(t)) may essentially
be taken as constant on U, P,, where ’, are the intervals mentioned in Lemma 4.
Note that if L (defined in (1.10)) consists of a finite number of points or of a finite
number of disjoint closed intervals (possibly of both) then this part of the proof
can be considerably simplified. In particular, if L consists of a single point or of a
single closed interval, then this discussion reduces to a few lines.

From (2.46) onward the proof does not present any difficulties. We assume
that (1.8) does not hold and show that this leads to a contradiction. The final
statement (1.9) is then easily obtained from (1.1) and (1.8).

The results obtained clearly do not preclude the nonexistence of limt_.oo x(t).
However, as a byproduct of the proof of Theorem 2 we have that the possible
oscillations necessarily are such that lim, H(x(t)) exists.

Our method of proof also allows us to treat the case where limt_o/ a(t) o.
This is done in the following.

THEOREM 3. Suppose (1.13) and (1.17) hold and let

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

a(t)>=O, 0<t<

a(t) be nonincreasing on (0, o),

g(x) be locally Lipschitzian for Ixl < o,

f(t) LBV[O, o),

limV(f,[t- T, t]) O for any T > O.

Let x(t) be a solution of (1.1) on [0, o) satisfying (1.19). Then (1.8) and (1.9) hold.
In Theorem 3 we use the following notations"

V(f, I)de__f total variation off on I,
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LBV[O, ) de_=f {f(t)lf(t) of bounded variation for any

compact subinterval of [0, oe)}.
Observe that the local variation of f has to be restricted. The condition

(1.22) is added as we also need g(x(t)) LBVO, o). The proof of Theorem 3 (see
4) consists of an application of the arguments of the proof of Theorem 2 to a

certain family of functions x(t), e > 0, which satisfy lim_ 0 supo_<t Ix(t) x(t)l
--0.

We note that the existence and boundedness of solutions of (1.1) under
hypotheses related to those of Theorem 3 have recently been considered
in [1].

To conclude this section we state two lemmas which will be frequently
used. Lemma 2 states a well-known fact and the proof of Lemma 3 may be found
in [3].

LEMMA 2. Let u(t) L(O, Do) and let a(t) satisfy (1.4). Define v(t) by v(t)
toa(t r)u(r)dr, 0 <= < . Then v(t) is uniformly continuous on [-0,
LEMMA 3. Let u(t)CO, De)f’l L(O, ) and let a(t) satisfy (1.2) and (1.3).

Define v(t) as in Lemma 2. Then v(t) is absolutely continuous on [0, ), v’(t) L(O, ),
and

v’(t) a(O)u(t) + u(t- r)da(r), a.e. on 0 <= <

(2.1)

2. Proof of Theorem 2. From (1.14) and (1.19) it follows that

sup Ig(x(0)l-- M < .
O-<t<

Define y(t) by

(2.2) y(t) a(t r)g(x(r)) dr,

Then, by (1.1) and (2.2),

0<t<.

We claim that

(2.4) g(x(t)) is uniformly continuous on 0 __< < oe.

To realize that (2.4) holds, notice at first that from (1.13), (2.1) and Lemma 2, it
follows that y(t) is uniformly continuous on 0 _< < oe. The conditions (1.15)
and (2.3) then imply that the same is true for x(t). But this, together with (1.14),
gives (2.4).

Obviously (1.11), (1.12), (2.1), (2.4) and Lemma 3 yield that y(t) is absolutely
continuous on [0, ) and so, by (1.15) and (2.3), x(t) is absolutely continuous on
[0, oe), and

(2.5) x’(t) + a(O)g(x(t)) + g(x(t- r))da(r)= f’(t), a.e. on 0 __< < oe.

(2.3) x(t) + y(t) f(t), 0 < < .
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Let A a(r,)dr (without loss of generality, assume A > 0), and define
G(x), H(x), g(t), H(t) by

’o

A 2(2.6) G(x) g(u) du, H(x)= -g (x) + G(x), Ix] < ,
(2.7) g(t) g(x(t)), G(t)= G(x(t)), H(t)= H(x(t)), 0 <= < v.

If we expand g(r,) g(r, s)] 2, integrate by parts, and use Fubini’s theorem,
we immediately find that (2.8) is equivalent to the equation obtained after multi-
plying (2.5) by g(t) and then integrating.

G(t) G(O) + - g2(t r,)a(r,) dr, + - gZ(r,)a(z)dr,
(2.8)

2
[g(r,) g(r, s)]2 da(s) dr, f’(r,)g(r,) dr,, 0 =< < .

Excepting the last term we have, by (1.13), (1.19), (2.1) and (2.6), that all the terms
on the left side of (2.8) are bounded on [0, ). Thus, again using (2.1), there
certainly exists a constant K such. that for any i1, i2, 0 _< i < i2 < ,
(2.9) [g(r) g(r, s) 2 da(s) dr, <= 2M If’(r,)l dr, + g.

Following the deduction of (2.4), (2.5), (2.8) and (2.9), our next step is to
formulate Lemma 4.

LEMMA 4. Let the hypothesis of Theorem 2 hold and let v, T be arbitrary positive
constants. There exist a positive constant " and an integer . such that if

(2.10) F, %f {tinY" <- <_ (n + 1)}, n 0, 1,...,

then, for each n >_ , there exists a closed interval [’, satisfying (m is the Lebesgue
measure)

(2.11) sup g(t) in_f g(t) =< v,
tFn t-Fn

(2.12) F, c F,, m(F,)_> T.

For the proof of Lemma 4, see {} 5. However, to convince oneself that Lemma 4
is plausible, it suffices to combine the first part of (1.12), (1.18) and (2.4) with (2.9).

To complement Lemma 4 we need (2.17) which says that the possible increase
of H(t) between two consecutive intervals f’,_ and f’, can be made arbitrarily
small by taking n sufficiently large.

Let v > 0 be arbitrary and choose any " such that v _>_ 2M2 a(’c)dr,. Then
take any , , {f’,} satisfying (2.10), (2.11)and (2.12), and let {t,}, {t,} be de-
fined by f’, {tit’, <= <= t,}. Suppose (2.17) does not hold or equivalently,
suppose there exists a subsequence {nk} of {n} such that if n e {nk}, then

(2.13) H(t.)- H(t._,)> [A + 1Iv.
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Let t,, t._ in (2.8). From (1.11) and (1.12) now follows, after taking differences,

G(t,) + - g2(t, z)a(z) dz G(t 1) g2(t, z)a(z)dz
(2.14)

<= f’(z)g(z) dz.
tn-

By (2.11) one may clearly assume

(2.15) sup g2(t) in_f gE(t) __< v, if n >__/.
te’n tFn

But (2.14) gives, on account of (1.13), (2.1), the second part of (2.12), and (2.15),

(2.16) H(t,)- H(t,_ )- Av M2 a(z) dz <_ M If’(z)l dz.
ri-1

Note that t, t,_ < 2, a fixed number. Therefore, after using (1.18), (2.13) in
(2.16) and remembering how was chosen, one clearly obtains a contradiction,
if n is sufficiently large. We conclude that

(2.17) H(t,)- H(t,_ ) <__ [a + 1Iv,

for any v > 0, if satisfies v __> 2M2 j’ a(z)dz and n is taken sufficiently large.
Take any sequence {v}, v > 0, i= 1,2, ...; v, 0, i , and then any

sequence {} satisfying

(2.18) v >__ 2M2 a(z) dz, 1,2, ....
By Lemma 4 there exist sequences {}, {/,} such that for i= 1, 2, ..., one has
the following. If

(2.19) F,.dz-f {tln <= <-- (n + 1)}, n 0, 1, ...,
then, for any n >__/,, there exists a closed interval ’. satisfying

(2.20) sup g(t) inf g(t) <

(2.21) ’,n =
Choose any such {}, {}, {{.}}, and define ,/ by

(2.22) lim infH(t), / lim sup H(t), i= 1,2,...,

where the inf and sup are taken over t3_. m. There exists a subsequence {ik}
of {i} such that li exists, and a subsequence {ik} of {ik} such that

lim H exists. Without loss of generality, let both these subsequences
equal the original sequence.

Clearly and our next purpose is now to show that < cannot
possibly hold. This will occupy us until (2.46).

Suppose

(2.23)
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let L be as in (1.10), and write H(L) {hlh H(x) for some x e L}. As the first
step in showing that (2.23) leads to a contradiction we assert that

(2.24) [,/] = H(L).

To prove (2.24) we assume the opposite. Thus, suppose there exists H’ such that
<= H’ <_ II, H’ H(L). By the continuity of H(x) and as L is closed, there exists

6 > 0 such that

(2.25) [H(x)- H’I 6, x e L.

Take any such 6 which also satisfies 4[/ ] _>_ 6, and define [H1, H2] by

(2.26) [Ha H2]=IH’ 6
H’ ]-, + n [/,/3

Then

(2.27) H2 H >__ 6/4,

(2.28) dist ([H1, Hz], H(L)) >_ 36/4.

Define {t’i,}, {ti,}, by , {tit’s, -< =< t,}, 1, 2, ..., and take/large enough
so that

(2.29) [A + 1]v =< 6/8.
Note that by (2.17) and (2.18) we may assume for any

H(tin) H(ti,n-1) < [A + 1]Vi, if n => ri,

which together with (2.29) gives

(2.30) H(t,)- H(ti, 1) <= 6/8

for sufficiently large and n _>_ ..
By (1.1), (1.13), (1.17), (2.1), (2.18) and (2.20) we may take

(2.31) sup x(t)- inf x(t) < vi, if n > i,

and combining this with the dtinitions (2.6), (2.7), and with (2.20) one has, with-
out loss of generality, for any i,

(2.32) sup H(t)- inf H(t)

From (2.32), the way/7i,/ were defined, and the fact that v 0, it follows that
for each sufficiently large/there exist {t,,,,,}, {t,,,,m} c {t,,} such that

6 6
In(t,.,,) n,I =< -, IH(t,..,,.) n,I =< -.

For large enough we certainly also have
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and so,

(2.33) IH(t ,.,)- HI <
=16’

By (2.26), (2.27)and (2.33),

IH(t,,,,)- HI <
=16"

rn + ---, H >-
=8’

(2.34)

IH, + l,H2- 1-] c[H(t,.,,,),H(t,,,,,)].

By (2.30) the maximal possible increase of H(t) between the (right) endpoints
of two consecutive intervals ,_ , , can be taken sufficiently small. By the
second part of(2.34) there exist endpoints on which H assumes values <= H + 6/16,
and endpoints on which H assumes values __>H2 6/16. Combining these facts
with the first part of (2.34) allows us to conclude that for each sufficiently large
there exists {tim,u} {tin} such that

(2.35) H, +-- <= H(t,,,,k) <= H2 16"

From (2.28) and (2.35), it follows that

(2.36) dist (H(ti,,k), H(L)) >= 36/4,

and by (1.10), the continuity of H(x), and (2.36), there exists # > 0 such that

(2.37) Ix(t,,) + g(tini,)A El >= #.

Choose any such p. Then take t,, in (1.1) and use (1.13), (1.17), (2.1) and (2.20).
This yields

(2.38)

where ,--, O, nik---’ oe. But combining (2.37) and (2.38), and recalling that
v---, 0, T ---, oe, when ---, oe, clearly provides a contradiction if i, nk are taken
sufficiently large. Hence (2.24) holds, assuming (2.23).

Before proceeding, observe the following which makes it intuitively obvious
why (2.23) and (2.24) will ultimately lead to a contradiction. Elementary cal-
culations show that H(x) is constant on any closed interval [x,, Xb] L, x < Xb.
Thus, by (2.23) and (2.24), L must contain an infinite (even nondenumerable)
number of points (or an infinite number of intervals) such that for any two such
points x’,, x;, x’, < x;, one has [x’,,x;] L (and for any two such intervals
[x’,,, X’b], [X’c, X’a], X’b < X’, one has [xj,, X’c] L).

Define :?, 2, E(x) by

(2.39) 97 lim infx(t), 32 lim sup x(t),

(2.40) g(x) --[F x] 2 + g(u) du,
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Clearly (1.14) implies E(x) Cliff, ]. Also note that from (1.10), (2.6) and (2.40),
it follows that

E(x) H(x), x L,

and so E(L) H(L), which together with (2.24) yields

(2.41) m(E(L)) >_ n H,

(m is the Lebesgue measure). Differentiating E(x) and using (1.10) gives

(2.42) E’(x) O, x L.

Define 2 by 2 2 9 and take e such that 0 < e __< (1/22)[H H]. By the
uniform continuity of E’(x) on [2, 2], there exists 3 > 0 such that if E’() 0 for
some 2 e [2, 2], then

(2.43) IE’(x)] <- e, - =< x _< 4- 6.

Take any such > 0. Let N be any integer satisfying Nx _>_ 2, and divide [2,
in Nx equal parts by xj"

2
<6

(2.44)
j= 1,2,... N.

Observe that if for some Jo, __< Jo _-< Nx, one has [Xo_ 1, Xjo] iq L - ,denotes the empty set) then, from (2.42), (2.43), and the second part of (2.44),

(2.45) IE’(x)] - g, Xjo-1 5 X Xjo.

Define J and S by

(2.46) J {jll <=j <= Nz,[xj_I,Xj] ["] L 4: (2}, S (.J [Xj_I,Xj.

S may be written as the union of disjoint closed intervals [,, x,], k 1, 2,
.., Nrz. Note that L S and consequently

(2.47) E(L) E(S).

Recalling (2.45) and (2.46) we obtain IE’(x)l _-< e, x e S, and so

sup E(x)- inf E(x <= F,[X Xk
<-k<-tz Yc<_x<_x <_x<_x’ <_k<_q

which yields

(2,.48) m(E(S)) <=
But by (2.47), (2.48), and the way e was chosen,

(2.49) m(E(L))

which violates (2.41). From this contradiction we finally deduce that (2.23) cannot
possibly hold. Thus let

(2.50) Ho
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But this implies that there exists {v}, v’ 0, o, such that without loss of
generality we may assume

(2.51) In(t)- n0[ =< v’, t U ,, i-- 1,2,....

Once we have (2.51) the remainin part of the proo is fairly straihtforwarO.
Suppose (1.8) is not satisfied. Then there exist constants T’, v’ and sequences
{zp}, {z’p}, "cp, "c, o, p o, such that

(2.52) ]x(’cp)-x(z,)[>= 3v’>0, 0<zp-zv-< T’, p= 1,2,....

Choose so that

(2.53) 9T’[a(0) + 2] _< v’.

From (2.20) it follows that we can take

(2.54) su_p g2(t)- in_f g2(t) _< v, 1,2,..., n >_
tFin tFin

By (2.1), the second part of (2.6), (2.18), (2.21), (2.51) and (2.54),

G(tin + -} Z(tin z)a(z) dr G(ti,n_ 1) - g2(ti,n- z)a(z) dr

(2.55) <= IH(tin)- H(ti,.-1)1 + Avi + M2 a(z) dr

Invoking (1.18) and (2.1) gives

tt(2.56) 2 f’(z)g(z) dz <= 2M If’(z)l dz <__ ri,
i,

for 1,2,..., and n >__ i, if is chosen sufficiently large. Combining (1.11),
(1.12), (2.55) and (2.56) with (2.8) (where we let t t,, t,,_ and then take differ-
ences) yields

(2.57) [g() g( s)] da(s) d 4v’ + 2v[A + 1,
i,n-

for i= 1,2,..., and n . By (1.12), (1.13), (2.1) and (2.5),

Ix’(t)l a(O)g(t)+ g(t ) da(r) + lf’(t)

(2.58) g(t) g(t r) da() + 9 + If’(t)l

g(t)- g(t )1 da() + 9a(0) + 9 + If’(t)l,
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a.e. on z _< < o, for any sufficiently large . From the second part of (2.52),
(2.58), and the absolute continuity of x we obtain

Ix(.)- x(v’.)l =< Ix’(s)l as _< [g( s)- g(z)] da(s) d

(2.59)

+ 9r’[a(0) + 1] + ’(s)l ds,

if p is sufficiently large. Suppose that for some io, Po there exists no _-> No such
that Z’po is an interior point of f’o,o_ . Recalling (2.31) and the fact that v --, 0,
we immediately have that in such a case we may, without loss of generality, move

Z’o to to,o_, (i.e., let :’o equal the right endpoint of Fo,,o_ ) and still have (2.52)
for p Po. Hence, by the second part of (2.21), the second part of (2.52), and
taking T’ _< T, we conclude that for any i, p there exists an n such that [:’, z

[t,,_,t,]. But using this fact, together with (1.12), (1.18), the first part of
(2.52), and (2.57) in (2.59) gives that if p is sufficiently large, then

(2.60) 3 <= -1 [4v’ + 2v[A + 1]] + 9r’[a(O) + 2].

However, combining (2.53) with (2.60) certainly provides a contradiction for
sufficiently large i, as both vi, v’i 0, o. Thus (1.8) follows.

To prove that (1.9) is satisfied we assume the opposite. Thus, suppose there
exists and {sp}, sp , such that dist (x(sp), L) >_ > 0. Take {sp} so that
limp_,oo x(sp)= xs exists and define gs limp_.o g(s,). Evidently x L and so
there exists/ > 0 such that

(2.61) Ix + Ag- FI->/.

By (1.8) and (1.14),

(2.62) Ix(t) xl-< K3, Ig(t)- gl K3, sp T <= <= s,
for any constants K, T1 if p is sufficiently large. But making use of (1.13), (.1.17),
(2.1), (2.62) i.n (1.1), and taking K sufficiently small, T1 sufficiently large, immedi-
ately produces a contradiction to (2.61). Hence (1.9) is satisfied.

This completes the proof of Theorem 2.

3. Proof of Lemma 1. Consider (1.1) under hypotheses (1.2)-(1.7). From
(1.5) and (1.7) it follows that

(3.1)

Define y(t) by

(3.2) y(t) fl
Clearly (1.1) and (3.2) imply

(3.3)

g(x(t)) L(0, o).

a(t z)g(x(z)) dz, 0 <= < .
x(t) + y(t)= f(t), 0 <_ < .
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Define (t),/9(0 by

(3.4) 0=<t< ,2(0 x(t)- f(t) + F,

(3.5) 33(0 a(t z)g(2()) d, 0 <= < .
Combining (1.5), the first part of (1.6), (1.7) and (3.4) yields

(3.6) 2(t) e L(0, ),

(3.7) g(2(t))

and from (1.4), (3.1), (3.7), and Lemma 2 one has

(3.8) y(t) e C[0, ), (t) e C[0, ).

By (3.3) and (3.4) one may obviously write

(3.9) 2(t) +
f

def

(3.10) f(t) (t) y(t) + F, 0 <= < oo.

We assert that

(3.11) f(t)e C[0, ), lim f(t) F.
t---

The first part of (3.11) follows from (3.8) and (3.10). For the second part we note
that invoking (1.6) and (3.4) gives

(3.12) lim [(t)- x(t)] 0,
t--

and by (1.5), (3.6) and (3.12),

(3.13) lim [g((t))- g(x(t))] 0.

But (1.4), (3.1), (3.2), (3.5), (3.7), (3.10) and (3.13) yield the second part of (3.11).
Clearly (1.5), the second part of (3.8), (3.9) and the first part of (3.11) imply

(t) c[0, ),

g((t)) e c[0, ).

(3.14)

(3.5)

Define )?(t), 37(0 by

(3.16) Yc(t) (t)- f(t) + F, O<_t_ < ,
(3.17) 37(t) a(t z)g(ff(z))dz, 0 =< < .
From (1.5), (3.6), (3.11), (3.14) and (3.16) one obtains

(3.18) sup I(t)l < oo,
O<t<o



NONLINEAR VOLTERRA EQUATION 861

(3.19) sup Ig((t))l < .
O<t<

Recalling (3.9) and (3.16) one easily verifies that

(3.20) )(t) + 37(0 f(t),
if

0_<t < ,

(3.21) f(t)
def

Note that by (3.17) one has that the equation (3.20) is of the same type as the
original equation (1.1). However, as we show next, f(t) is considerably smoother
than the hypothesis (1.6) postulates. Thus we claim that

(3.22) f(t) is absolutely continuous on [0, ),

(3.23) f’(t)
(3.24) lim ess sup If’()l 0,

t tz<

(3.25) lim f(t) F.
t

To prove (3.22) and (3.23) we observe that (1.5), the first part of (3.11), (3.14) and
(3.16) yield g(ff(t))6 C[0, ). Combining this fact with (1.2), (1.3), (3.7), (3.15),
(.19), (3.21) and Lemma 3 immediately gives (3.22), (3.23) and

(3.26) f’(t) a(0)[g(2(t)- g(2(t))] + [g(2(t r))- g(2(t z))] da(z),

a.e. on 0 N < . To prove (3.24) and (3.25) we notice that the second part of
(3.11), and (3.16)imply

(3.27) lim [2(0- (t)] 0,

and so, on account of (1.5) and (3.18),

(3.28) lim[g(ff(t))- g(2(t))] 0.
t

But from (1.4), (3.26) and (3.28), one has (3.24), and from (1.4), (3.5), (3.17), (3.21)
and.(3.28), we obtain (3.25).

To conclude the proof we now observe that by (3.12), (3.17), (3.20), (3.22)-
(3.25) and (3.27) one has Lemma 1.

4. Proof of Theorem 3. Assume at first that we also have

(4.1) f(t)e C[0, ),

(4.2) x(t) LB V[0, ).

Clearly (2.1) is satisfied. Define y(t) as in (2.2). By (1.13), (2.1) and Lemma 2
one obtains y(t) C[0, ). Combining this with (2.3) and (4.1) gives x(t) C[0, ).
From (1.19), (1.22) and (4.2) it then follows that (g(t) as in (2.7))

(4.3) g(t)e C[0, ) LBV[O, ).
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Define, for any e > 0, a,, h,, x, by

(4.4) a(t) a(e), 0 <= < e, a(t) a(t), e<=t< ,
(4.5) h(t) [a(z)- a(z)]g(t z)dz, 0 <= t <

(4.6) x,(t) x(t) + h,(t), 0 <__ < o.

By (1.13), (1.21), (2.1), (4.4), (4.5) and Lemma 2,

(4.7) sup Ih(t)l < oz,
0_t<oo

where the bound is uniform for e > 0,

(4.8) lim sup Ih(t)l- 0, h(t) C[0, oo).
0 0 _t < oo

Combining (1.13), (1.21), (4.3), (4.4), (4.5) and [5, Thm. ll.2b, p. 85] yields

(4.9)

and

(4.10)

h,(t) LBV[O, oo) for any e > O,

lim V(h, I)= 0
0

for any compact interval I c [0, o). From the continuity of x, (1.19), (4.2), (4.6),
(4.7), (4.8), (4.9) and (4.10), it follows that

(4.11) sup Ix(t)l < o, uniformly for e > 0,
O_t<oo

(4.12) lim sup Ix(t) x(t)l- 0, x(t) C[0, o) f’l LBV[O, ),
-*00_t< oo

and

(4.13) V(x, I) <= V(x, I) + 1 < oo,

for an arbitrary compact interval I if e is sufficiently small.
Define g for e > 0 by g(t) g(x(t)), 0 __< < oo. Obviously (1.22), (4.11),

(4.12) and (4.13) imply, for some constant M independent of e,

(4.14) g(t) C[0, oo) f’l LBV[O, oo),

(4.15) sup Ig(t)l =< M < oz,
0_t<

(4.16) lim sup [g(t) g(t)l O,
-0 0=<t<

(4.17) V(g, I) <_ KI[V(x I) + 1],

for an arbitrary compact interval I if e is sufficiently small. Clearly the constant
K1 depends neither on e nor on I. Next define y, j) for e > 0 and 0 __< < o by

(4.18) y,(t) a,(t z)g,() d, (t) a,(t z)g(z) d,

and let f y, j),. By (1.13), (4.4), (4.16)and (4.18),

(4.19) lira sup If,(t)l- O.
e00=<t<oo
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From (1.20), (1.21), (2.1), (4.3), (4.4), (4.14), (4.15), (4.18) and Lemma 3 it follows
that

(4.20) y,, f, are absolutely continuous on [0, ),

and as one easily verifies (use (1.1), (4.5), (4.6) and (4.18)) that

(4.21) x + y f + f,

one also has that x, f is absolutely continuous on [0, ).
Invoking (1.24) and (4.1) gives that f is uniformly continuous on [0, m)

which together with (4.20) and (4.21) implies that the same is true for x,. Com-
bining this last fact with (1.22) and (4.11) yields the uniform continuity of g on
[0, ) for any e > 0. However, using also (4.16) one immediately obtains some-
what more, namely"

For any g > 0 there exist positive constants , 0 such that if
(4.22).

It tz[ =< 3, 0 < 0, then Ig(t:) g(t2)l .
Let A, G(x), H(x), G(t), H(t) be as in (2.6), (2.7) and define G(t), H(t) for

e > 0 and 0 < by G(t) G(x(t)), H(t) H(x#)). From (4.20) and (4.21)
one has, for any e > 0,

[x,(t) f(t)]’ + a,(0)g,(t) + g,(t )da() f;(t), a.e. on 0 N t < m,

which upon multiplication by g,(t), integration, and after invoking (1.23), the
second part of (4.12) and (4.14), yields the following analogue of (2.8)"

1
2(t )a.() d + g()a.() dzG,(t) G,(O) + g

(4.23)
2

[g(r) g( s)] da(s} dz

g,()f;() d + g,() df().

By obvious reasoning one obtains a formula corresponding to (2.9)"- [g(z)- g.(z s)] 2 da(s) dr

(4.24) K + g()f;() d + g,() df()

for some a priori K and any ,; 0 N < < . ((4.14) and (4.20)justify the
integration by parts.) Observe the following Ncts concerning (4.24). By (1.24) and
(4.15), the last term in (4.24) can be made arbitrarily small (independently of e)
by taking , suciently large but requiring - N some fixed T < .
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From (4.15), (4.17) and (4.19) it follows that those terms in the last third of (4.24)
which contain f can be made arbitrarily small for any fixed interval [i 1, i2] by
taking e sufficiently small.

To continue our proof we need the following Lemma 5, the proof of which
follows the proof of Lemma 4 fairly closely, except for evident alterations. The
basic facts needed in the proof of Lemma 5 are (1.21), (4.22), (4.24) and the ob-
servations made in the preceding paragraph after (4.24).

LEMMA 5. Let the hypothesis of Theorem 3 hold and let v, T be arbitrary positive
constants. There exist a positive constant , a sequence {e,}, e, > 0, and an integer. such that if

(4.25) F, de..f {tln <= <= (n + 1)}, n 0, 1, ...,

then for each n >= . there exists a closed interval [’, satisfying (go(t) de=f g(t))

(4.26) sup g(t) in_f g(t) <= v, for 0 <=
tFn tFn

(4.27) F, c F,, m(F,)>= T.

The remaining part of the proof of Theorem 3 very much parallels the cor-
responding part of the proof of Theorem 2 (except of course for the discussion
below regarding the validity of (4.1), (4.2)). In what follows we consequently only
indicate the necessary changes.

Repeating the argumems which gave (2.17) and using Lemma 5, one at
first obtains the following. For any pair of positive constants v, T such that
v => 2M2.f a(r)d:, there exist sequences {f’,}, {,} satisfying (4.25), (4.26) and
(4.27), such that for 0 < e =< e, and sufficiently large n one has

(4.28) H(tn)- H(tn-1) [A + 3/4]v,

where {t.} is defined by . {tit’. <= <= t.}. But clearly (4.28)and

(4.29) lim sup IH(t)- H(t)l 0,
e00<t<oo

(which holds) yield (2.17).
We next choose sequences {vi}, {} satisfying (2.18)and corresponding

sequences {}, {Ri}, {{f’,,}}, {{i,}} such that for 1, 2,...; 0 _< e < ,, and
n > Ri one has

g(t) in_f g(t) <= v,, k 1,2,(4.30) su_p
tFin tFin

where i, satisfies (2.19), (2.21). The definitions (2.22) carry over unchanged
which entails that the arguments between (2.22) and (2.51) (where a(0) < oo is not
needed) can be repeated verbatim. Consequently (2.51) holds. But by (2.51) and
(4.29) there exist {e} such that for i- 1, 2,..., and 0 < e, _< ei one has (H0 as

in (2.50))

(4.31) IH(t)- Hol 2v’, e U z,.
n>=i
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Choose any such sequence {i} and without loss of generality let ein ’i, for
1, 2, ..., and n __> i.
Suppose (2.52) holds. By the first part of (4.12) this implies that there exists

g/> 0 such that if 0 < e _< 0, then

(4.32) ]x(Zp)- x(Zp)] >_ 2v’> 0.

Take any such f/and then choose > 0 such that for e > 0,

(4.33) sup 4 a(t :)lgO:)l d <- v’,
O__<t<oo

_
and in the remainder of the proof restrict e to the interval (0, min (0, 0)]. Define
eby

(4.34) (t) a(O), 0 <= < O, (t) a(t), 0 <= < c.

Then

(4.35) a(t) e(t),

Let f be any positive number satisfying

(4.36) 2T’[(0) + 2] __< v’.

Taking k 2 in (4.30) and using (2.18), (2.21), (4.15) and (4.31) yields

(4.37)
;ii’"- Vi2 r)a(r)dr < 4vi + Av +

2
g (ti’"-

i= 1,2,..., n>N, 0<eNe,,_

and where {t,} is defined as after (2.28). Consider the integrals

(4.38) 4 g(r)f(r) dr, 4 g(r) df(r),
[i,n- li,

for i= 1,2,..., n > N and 0 < e N e,. From the observations made after
(4.29) there exist {ei} such that for i= 1,2,..., and 0 < e e one has (Ho as
integral can be made arbitrarily small (in particular N v) by taking sufficiently
large. Remembering the integration by parts in the inequality (4.24), and still
invoking the observations following (4.24), one also realizes that for each (i, n)-
pair one may take the first integral in (4.38) N v. (For this it suffices to take each
ei, sufficiently small.) Now let ti,, ti, in (4.23), take differences, use (1.20),
(1.21), (4.37), and the preceding estimates for the integrals in (4.38), and finally
(4.34). This gives

(4.39) [g(z) g(z s)] 2 d(s) dz 8v’i + 2Avi + 2vi,
ti,n-
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for 1,2,..., n > N, and 0 <
Define z, for e > 0 by

(4.40) z(t) (t z)g(z) dz, 0 <= < c.

From (4.14), (4.34) and Lemma 3 the absolute continuity of z(t) follows. Differ-
entiating (4.40), estimating and integrating over [z, Zp] therefore yields, (recall
how (2.59) was deduced)

(4.41) Iz(zp) z(zp). <= l f [g(z s)- g(z)] 2 do(s) dr, + T’[a(0) + 1],
v

for e > 0 and sufficiently large p. Define u for e > 0 by u y z. By (1.21),
(4.18), (4.33), (4.34), (4.35) and (4.40) one then has 4 sup0_<,< lug(t)[ =< v’, and so
2]u(zp)- u(zv) <= v’. Consequently,

(4.42) 2]y(zv)- y(zp)] <= v’ + 2]z(zv)- z(zp)].
From (1.24), (4.19) and (4.21) the existence of
then for all sufficiently large p,

(4.43) Ix(zv)- x(zp)[ <-]y(zv)- y(zv) + T’.

As in the proof of Theorem 2 we have that for any (i, p) there exists an n such that
[Z’p, zp] [ti, , till. Therefore, to obtain a contradiction it suffices to combine
(1.21), (4.32), (4.36), (4.39), (4.41), (4.42) and (4.43), and to remember that
vi, v’i--* O, if i . Thus we have (1.8) and (1.9), assuming (4.1) and (4.2) are
satisfied.

To complete the proof we show that Theorem 3 may easily be reduced to a
problem where in addition to the full hypothesis of Theorem 3 one also has
(4.1), and that (4.2) follows from the hypothesis of Theorem 3.

Recall the first paragraph in the proof of Lemma 1. The statements in this
paragraph clearly imply that the reduction mentioned above is equivalent to
showing that (f as in (3.10))

(4.44) f(t) LBV[0, o),

(4.45) lim v(f, It T, t]) 0 for any T > 0.
t-*oo

By definition fmay be written

(4.46) f(t) a(t z),(z) dz + F, 0 <= <

if ,(t)d__f g(2(t)) g(x(t)). From (1.13), (1.19), (1.22), (1.23), (3.4), (3.6)--of course
now suPo_,< I&(t)l < oe--(4.46) and [5, Thm. ll.2b, p. 85],

(4.47) v(f, [0, T]) <_ K V(f, [0, T]) +/ < o,

for some a priori constants K,/ and any T > 0. Hence (4.44) follows.
We prove next that (4.45) holds. Suppose not. Then there exist 6 > 0, {t.},

t, , and T > 0 such that
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(4.48) v(f, It.-T, t.]) >= 6 > 0, n 1,2, ....
By (1.13) and (1.24) there exist a subsequence {t,k} of {t,} and a sequence {T,k}
such that

(4.49) T. o, a(T.) 0, n , 0 =< t,,- T.- T,

(4.50) V(f, [t,- T,- T, tnk])---, 0, nk--* oz.

Take any such {t.}, {T.} and write f as follows"

(4.51) f(t) + a(t ),() dr + F, T. <= < oz.
Tnk

Call the first integral in (4.51) h,, the second h., and define a., ,., b. by

(4.52) a,k(z a(z), 0 < =< Tn, a,,(r) 0, T, < __< t,k,

’,,() ’()- ’(t, T, T), t, T.k T __< : __< t.,
(4.3)

,,(r) 0, 0 __< r < t,- T,- T,

(4.54) b,k(t) a,(t K’,(z)dz, 0 -< -< t,.

Observe that these definitions imply

bn(t hnk(t ,(tn T, T)A(Tn), tn- T<=t <=tnk,

(A(t) de=.f f a(z) dr) which in turn gives

(4.55) V(b.k, [t, T, t,]) V(h,k, [t.k T, t,]).
But clearly (4.52), (4.53), (4.54) and [5, Thm. l l.2b, p. 85], yield

V(b., [t,k T, t.]) V(b,, [0, t.]) A V(g., [0, thai)
(4.56) a V(,, [t, , T, thai) AV(, [t. T, t,])

KAV(f, [t,- - T, thai),
where the last inequality follows from (1.19), (1.22), (3.6) and the definition of .
Hence, by (4.50), (4.55) and (4.56),

(4.57) lim V(h,, [t, T,.t.]) O.
k

Our following step will be to show that (4.57) holds with h, replaced by,. Integrating by parts and using Fubini’s theorem gives

,,(t) a(z) d $(s) ds

(4.58)

a() (st s + (s r) a(r s,

which allows us to conclude that (t) is absolutely continuous. (Note that the
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calculations in (4.58) are formally justified as , is locally of bounded variation
and as V(a, [Tk, )) < .) However, combining (3.1), (3.7) and (4.49), the fact
that V(a, [Tk, )) 0, if nk , with (4.58) also gives

(4.59) lim ess sup I’,(t)[ 0.
nk-- Tnk =<t <

Therefore V(h,, [t,k T, thai)--. 0, if nk . But this, together with (4.51) and
(4.57), violates (4.48) and consequently (4.45) is obtained.

To demonstrate (4.2) we only need observe the following. Let / be such
that Ig(x(tx)) g(x(t2))l <- /lx(tl) x(t2)l, 0 =< tl,t2 < ), and choose e > 0
such that RA(e) < 1. Then, by (1.1), (1.23) and [5, Thin. ll.2b, p. 85],

V(x, [0, el) _< IV(f, [0, el) + A(e)lg(x(O))l][1 -/A(e)] -x < .
Continuing in steps of size e yields (4.2).

5. Proof of Lemma 4. Let v, be arbitrary positive constants. By (1.11) and
(1.12) we may write

(5.1)

where

(5.2)

a(t) b(t) + c(t), 0 __< < ,

b(t) C[O, ),

(5.3) b(t) >= O, 0 <_ <

(5.4) b(t) nonincreasing on [0, ),
and (t are the discontinuity points of a(t)),

(5.5) c(t) [a(tk)- a(tk + 0)],
t<-tk

(5.6) c(t) >= O, 0 <_ <

(5.7) c(t) nonincreasing on [0, ),

b(0) < ,
O=<t < ,

c(0) < .
As the proof of Lemma 4 is now essentially different depending on whether

(5.9) Ig(t)-gol =<e on to-(5=<t=<to+6,

for any to, 6 <= to < o. (We adopt the obvious notation go g(to), , g([,),
etc.) Choose any such 6 > 0. By (1.13), (5.4) and (5.8) there exists It/1 r/z satisfying

0 < Y/1 < Y/2; ’/2 r/ < 6; b(r/1 b(q2) > 0.

Let [t/,/’/2] be any such interval.
In the next two paragraphs we work out some preliminaries and in particular

we establish the existence of two disjoint intervals [e, e2], [fll,/2] satisfying
(5.17), such that 2- 1 and f12- fl are sufficiently small compared to the
distance between these intervals.

and define e by 45 v. From (2.4) the existence of 6 > 0 follows such that

(5.8) b(t) O,

b(t) 0 or not, we consider the two cases separately, in I and II respectively.
I. Suppose
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By (5.4), the last part of (5.10), and the uniform continuity of b(t) on [r/, /2],
it is not hard to show that there exist two intervals [a’, ], [fl’, fl] such that

(5.11) 0 < 1 (X’I < (2 < ’1 < 2,

(5.12) b(al)- b(al) > 0, b(fl’,)- b(fll)> O.

Choose any two such intervals and define 7’ by 2’ fl a. Then let N be any
positive integer such that

(5.13) T N 2N7’,

and let bo be any positive constant which satisfies

(5.4) No ’.
By (5.4), (5.11) and (5.12) there exist intervals [a, a], [fl, fie] such that

(5.15) ’ =< < =< , #’ =< < # =< #,
(5.16) 0 < a2 a 60, 0 < f12 fl 60,

(5.7) b()- b(:) > 0, b(#)- b(#:) > 0.

Take any two such intervals and define a, fl, , by

(5.18) 2a a + a2, 2fl fl + f12,

(5.19) 2 f12 a, w min (b(fl) b(fl2), b(a) b(a2)).

By the middle third of (5.10), (5.11), (5.14), (5.15), (5.18) and the first part of (5.19)
one has

(5.20) 0<2Nbo2’fl-a2 <fl-a<26.
Thus (think about N as being a large integer) a2 a and f12 fl have been
chosen quite small compared to the distance between the intervals [a,a2],
[fl, f12]. Also note that (5.9) and (5.20) give

(5.21) Ig(t)-gole onto--N6otto++N6o,

for any to, fi to < .
By (2.4) there exist positive constants fi, 1, 2, ..., N, satisfying

(5.22) 2fi rio,

(5.23) Ig(t) gol e2-*- to 6, < < to
for 1, 2, ..., N, and any to, 6o to < . Choose any such

After these preliminaries our goal will be to show that for each 1, 2, ..-, N,
there exist a sequence {t,} and a constant such that

[ti,- ifl, ti -ia] [n, (n + 1)],
(5.24)

Ig(t) gil < 2e, t, ifl ti, ia,

if n is suciently large. This will be done successively for increasing i, beginning
with 1. Note that once we have (5.24) for N, then, as N[fl ] > 2N’

T, and as 4e v, we also have Lemma 4, assuming (5.8).
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To attain our goal we repeatedly use (2.9), combining this inequality with
(1.18) and (2.4) in the form of (5.21) and (5.23), the first part of (5.4), and with
(5.8) in the form of (5.17).

Define $1 by $1 {m), tn 1,2, .... We claim that there exist a positive
constant T1, and an integer N1 such that if

def{(5.25) Fin tinT <= <= (n + 1)Tl,teS1}, n 0, 1,2, ...,
then for each n => N there exists at least one element of F1, (call this element
l,) such that for some points l,, 1, satisfying

<t --< /1 tl. 52 (1 < 1, 1,(5.26) tl, 2 61 ln In

one has

(5.27) 11, g lnl < and 11, gin] <

Suppose not. Then, no matter how large T is taken, we can find a sub-
sequence {nk} of {n} such that for every k 0, 1, ..,, the next sentence is valid.
For any element l,k

e F1, the inequality Ig(t) gl,l > e/2 holds on at least one
of the intervals

(5.28) tln 2 (1 tln ill, tln 02 (1 tin O

From (5.4), (5.17), (5.23) with and to tlnk, and (5.28), one then obtains,
for example,

[g(t) g(t z)] db(r) >= -[b(t tl + 1) b(t tl + +
(5.29)

32

>--[b(fll)- b(fl)] > O,
-16

tln --61 <= < k 0
k

Recalling (5.1), (5.4) and (5.7) we realize that (2.9) is still a true statement although
a(s) is replaced by b(s). Therefore, taking in (2.9), i1 n,T1, i2 1 + T1, and
also invoking (5.4), the second part of (5.19) and (5.29) gives

+ Te26 < 2M [f’(z)[ dz + K k 0,
16 P"

anT

where p, the number of elements F,. By (5.25) we may surely assume
2p1, T, and so

(5.30) 2b 2M ess sup [f’()[ + KT; , k O, 1,
32

But by (1.18) this provides a contradiction if T, k are taken sufficiently large.
Consequently our claim is proved.

Take any T, N, {t,}, {[,}, {,} satisfying (5.26)and (5.27), and efine
Sz by $2 {([,,,)}. Note that concerning the location of the points
we can only infer that they satisfy (5.26). Analogously (see below) the points
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t, t2n, 2,, are only known to satisfy (5.36) This limited knowledge, which of
course becomes more troublesome with increasing (i as in (5.24)), forms the
reason for including the term N6o in (5.21). With the aid of this term we are able
to circumvent the inconveniences caused by conditions like (5.26) and (5.36).

Clearly, by (5.21 and (5.27),

3e, ln
(5.31) Ig(t)- g <

where n 0, 1,...

-7-N6o <- <= 1. + 7 + N6o,

-7-N6o <= <= l. + v + N6o,

But combining (5.26) and (5.31) gives Ig(t) g l,[ _-< 3e/2 on

tin 1 Y N6o <= <= tln 2 -- 7 (1 -- N6o,
(5.32)

l, o{ 7 Nlo 5 =< l, o2 + 7 61 + N6o.
By (5.16), (5.18), (5.22), and as N 1, one has that the intervals in (5.33) are sub-
intervals of those in (5.32) and thus ]g(t) g l,] --< 3e/2 holds on

(5.33) tln fl 7 <= <= tl, + 7, tl, 7 <= <= tl, + 7"

From (5.20) we obtain that for any n the two intervals in (5.33) partially overlap
and hence we may surely write

3e
(5.34) [g(t) gln[ < tln fl < < tln O n 0 ....

2

Finally note that fl 0 > 27’ and so the length of any of the intervals in (5.34) is
> 27’. Therefore, by (5.13), (5.34), and the fact that 4e v, we have Lemma 4
assuming (5.8) and N 1. (Or equivalently, we have (5.24) for 1.) Thus, in
what remains of I, take N >_ 2.

Continuing our construction we next assert that there exist a positive con-
stant T2, and an integer Nz, such that if

aeMF2. {(s, z)lnT2 =< s, z =< (n + 1)T2, (s, z) $2}, n 0, 1,...

then for each n >__ N2 there exists at least one element of F2n (call this element
,’" satisfying(2,, 2,)) such that for some points tzn t2n 2n

2n
(5.36)

2n 02 (2 t2n <= 2n

one has

(5.37) Ig2. ’2.l < , Ig. 2.l --4’
< Ig’. g2.1

--4
<

Suppose not. Then, no matter how large T2 is taken, we can find a sub-
sequence {nz} of {n} such that for 0, 1, ..., the next sentence holds. For any
element (2,,, 2,,)e I-’2n at least one of (5.38a)-(5.38c) is true"

(5.38a) Ig(t)- 2ntl > , 2n,- f12 62 5 2n,- ill,



872 STIG-OLOF LONDEN

(5.38b) Ig(t)- ’2,,I > , 0{2 13 2 -
(5.38c) Ig(t)- g2,,I > , 52 __<-- tzn

By (5.4), (5.17), the second part of (5.19), (5.23) with 2 and o
(5.38), one then obtains, for any element (2,,, 2,,)e Fznt,

O32
(5.39) [g(t) g(t .)]2 db(r) > 64’

everywhere on at least one of the intervals

(5.40)

In (2.9) let i1
and (5.40),

(5.41)

2n, or 2nt and

[2n,- 62, 2n,, [2n,- 52, 2n,, 1-’-" 0, 1,’’"

rifT2, 2 1 -11- W2, and replace a(s) by b(s). Then, by (5.4), (5.39)

64 P2n, < 2MT2 ess sup If’(:)l + K, 1= 0, 1,
nl T2_-<z

where Pzm the number of elements eF2,,. Surely we may take 2p2n, >= -T2T71
and therefore, invoking also (1.18), one observes that (5.41) yields a contradiction
if T2, are chosen sufficiently large. This proves our assertion.

Note that we demonstrated the truth of the assertion without recourse to
anything in the paragraph containing (5.31)-(5.34). In fact, both this paragraph
and the paragraph which contains (5.42)-(5.48) follow as by-products and are not
necessary for the remaining part of the proof of Lemma 4. However, they do give
clarifying interim results.

Take any T2, N2, {(2n, t2n)} {(t2n t2n, 2nl}, satisfying (5.36)and (5.37).
By (5.35) we have that for each n there exists an integer p(n) such that t2,

tip(,), 2, lp(,). Take the sequence {tips,)} (clearly a subsequende of S:) and
call it {tZn}. Then, from (5.26) for n 0, 1, ...,
(5.42) tzn 2 (1

and by (5.27),

(5.43) 12, g2, < , Ig2, g2nl <
2’

Using (5.42) to estimate 2,, 2, in (5.36) yields for n 0, 1,

t2n 2fl2 61 52 < t2n t2n 2fll
(5.44) tzn

tzn 202 ’2n 1,

and recalling (5.37) and (5.43) we obtain for n 0, 1, ...,
3e 3e

(5.45) Ig2, g2nl =< --, Ig2, g2,1 _-< -, g’, g2,1 _-<

n =0,1,
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’"’ and invoking also (5.44) and (5.45)Taking in (5.21) successively o t2n tzn
readily gives Ig(t) gznl <- 7e/4, n 0, 1, on

t2, 2fl 7- N6o <= <= tzn- 2fl2 + 7 6 6:z + N6o.

(5.46) tZn fl 7 N6o <= <= tZn O2 2 + 7 (1 t2 + N6o,

t2, 20 7- N6o <-_ <= tZn 202 %- 7 61 62 %- N3o.
From (5.16), (5.18) and (5.22), and as N => 2, we perceive that the intervals in
(5.47) are subintervals of those in (5.46), and thus ]g(t) gZn] 7e/4 holds on

t2n- 2fl 7 <= <= t2n- 2fl
(5.47) t2n

tzn 2

For any n we have by (5.20) that the three intervals in (5.47) partially overlap and
so it is certainly true that

(5.48) Ig(t) gZn <= 7e/4, tzn 2fl <= <= tZn 2Z, n O, 1,’.’.

Note that the length of any of the intervals in (5.48) is >47’. Therefore, by
(5.13), (5.48), and the fact that 4e v, we arrive at Lemma 4 (assuming (5.8))if
N 2. One may thus take N _>_ 3.

By now it is evident how to continue the proof. One simply repeats the
arguments leading from (5.25) to (5.34) or those, basically the same, going from
(5.35) to (5.48). Of course, the arguments have to be slightly modified at each step
to allow for the increasing number of sequences one has to keep count of. After
working through these arguments N times one observes that the result cor-
responding to (5.34) or to (5.48) is that there exist {tu,} and a constant Tu such
that

[tN. Nil, ts.- No] = [nTu, (n + 1)Tu],

Ig(t) gN,] =< [2 2-N]e < 2e, tu, Nfl <= <= tu, N,

for n sufficiently large. Take Tu as the of Lemma 4. Then, as N[fl ] > 2N7’
> T, and as 4e v, we clearly have Lemma 4, assuming (5.8).

II. Suppose b(t) =_ O. The saltus function c(t) may be written

(5.49) c(t)
k=l

where

(5.50) Ck(t) a(tk) a(tk %- 0)def ak> O, 0 <= <= tk,

O, tk<t<,

and where

(5.51) a < .
k=l
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(Naturally, certain modifications are necessary if the series in (5.49) contains
only a finite number of terms.) Relations (2.1) and (5.51) give the uniform con-
vergence which justifies writing (2.2) as

(5.52) y(t) y Ck(t- z)g(z)dr, 0 <-_ < .
=1

Define f(t), k 1,2, ..., on [0, ) by f(t)= oCk(t- z)g(z)dr. Conditions (2.1)
and (5.50) yield that each fk(t)is absolutely continuous on [0, ) and

(5.53) f’(t) { ag(t), 0 <= <_ t,

a[g(t) g(t- t)], t=<t<
From (5.52)it follows that y(t)

_
fk(t). By (2.1), (5.51) and (5.53) one has that

]ff= lf,(t)converges uniformly on [0, ). Therefore

y(t) y f(t)= y
-1 --1

fk(r) dr fk(r) dr,
k-1

and so

(5.54) y’(t) f’(t) a.e. on [0, m).
k=l

From (2.9), (5.49), (5.50), and as a(t) c(t) we obtain, for any i, 2 such
that 0 =<
(5.55) {ak[g(z)- g(r tk)] 2} dr =< 2M [f’(r)l d + K,

where the sum extends over all k such that r >= O.
By (1.14), (1.18), (1.19), (2.3), and the absolute continuity of x, y, f, there

exists # > 0 such that if ly’(t)l _-< # a.e. on an interval It,, tb] satisfying tb t,
T, t, sufficiently large, then

(5.56) sup g(t)- inf g(t) _< v.
[ta,tb] [ta,tb]

Take any such # > 0. Then choose ko so that

(5.57) 2 f’(t)
k>ko

__<# a.e. on0_< t< .
By (2.1), (5.51) and (5.53) this is possible. Let To max1-<k-<ko tk" Recalling (5.53),
(5.54), (5.57) gives

ko

(5.58) 2ly’(t)l < 2 alg(t)- g(t- t)l +
k=l

As a > 0, k 1, 2,..., relation (5.55) implies

(5.59)

a.e. onTo__<t< m.

ak[g(r) g(r tk)] 2 dr < 2M If’(r)l dr + K,
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for any , 2 satisfying To -<
Suppose that, no matter how large is taken, there exists a subsequence

{ni} of {n} such that in any subinterval (having length ’)of F., (where F,, is
defined by (2.10)) there exists at least one point having the property that for some
k, <=k <=ko,

(5.60) Ig()- g(’[ tk)l > #/(2akko).

By (2.4) and (5.60) there exists 3 > 0 such that

(5.61) Ig(t) g(t tk)] > #/(4aoko),

where ao maxl_<k_<ko ak. But using at first (1.18) and (5.61) in (5.59), then taking,
ni sufficiently large, clearly gives a contradiction.
Thus there exist , . such that if n => ,, =< k =< ko, then

Ig(t)- g(t tk)l <= #/(2akko),

everywhere on an interval F, satisfying F, = F,, m(F,) >__ T, F, defined by (2.10).
By (5.58) this implies ly’(t)l <=
was chosen, one immediately realizes that Lemma 4 holds if b(t) =_ O.

This completes the proof of Lemma 4.
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ANALYTICAL METHODS FOR A SINGULAR
PERTURBATION PROBLEM IN A SECTOR*

N. M. TEMME

Abstract. From the exact solution of an elliptic boundary value problem in a sector, asymptotic
approximations with respect to a small parameter are derived. The asymptotic expansion is uniformly
valid in the boundary layers. Also the phenomena for the case of almost characteristic boundaries
are discussed.

1. Introduction. In [4], the author considered a singular perturbation prob-
lem for an elliptic equation in a quarter-plane. The exact solution of the equation
was represented as a contour integral and from this representation the asymptotic
solution was derived by using saddle point methods.

In this paper we consider the same equation

(1.1) eACh(x, y) 0-(x, y) 0,

the domain of definition now being an arbitrary sector shaped domain in the
x, y-plane

(1.2) A {r, [r >= 0,0 =< <_ }.
In (1.1) is a small positive parameter and A is Laplace’s operator;in (1.2) r and
b are polar coordinates, where

(1.3) x-rcos4), y:rsin4)

and

(1.4) 0 < __< 2n.

The case z 1/2n (the quarter-plane) is discussed in [4].
Along the boundary of the sector A, the function (I) is subjected to the

following boundary conditions"

(1.5) O(x,0)=0, @(x,y)= ifb-.
In order to investigate the asymptotic behavior for small values of e, the

exact solution of (1.1) is determined from which the asymptotic approximations
are derived. Also the various types of boundary layers are discussed, for instance
the "free" (i.e., internal) boundary layer in the case of an obtuse angle . Finally,
the case of an almost right angle will be considered.

2. The solution of the boundary value problem. We shall first remove the first
order derivative in equation (1.1)by substituting

(2.1) O(x, y) e’rF(x, y), co 1/(2e).
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Then the function F has to satisfy the following boundary value problem:

(2.2)
AF(x, y) co2F(x, y) 0,

F(x,O) 1, F(x,y) O ifb=.
In general, the solution of an elliptic equation in an unbounded domain is

not unique. But, by imposing a condition upon F concerning its growth at in-
finity, uniqueness can be ensured. We prove the following lemma. The function
Io(cor) appearing in the lemma is a modified Bessel function satisfying Au co2u

O, Io(cOr) > O, Io(eOr) exp (cnr)/x//2cor (1 + O(r- 1)) as r .
LEMMA. Assume that u is a regular function in A satisfying: (i) Au co2u 0,

(ii) u 0 on the boundary of A, (iii) lim,_oo u(x, y)/Io(cor) O. Then u 0 in the
whole domain A.

Proof. Let v u/w, with w(x, y) Io(Cor). The function v satisfies the elliptic
equation

2
Av + -(VWx + vw) 0,

and v 0 on the boundary of A. Owing to (iii), for every positive number a we
can find R such that r > R implies Iv(x, Y)I < a. Consider the part A of A con-
tained inside a circle with radius R1 > R and center at the origin. Then on the
boundary of A we have Ivl < a. According to the maximum principle for elliptic
equations in bounded domains, the inequality Iv] < cr holds in the whole set A.
For an arbitrary point (Xo, Yo) A, R can be chosen large enough for A to contain
that point. Then ]V(Xo, Yo)] < a, and, since a may be arbitrarily small, V(Xo, Yo) 0
and hence u(xo, Yo) 0, which proves the lemma.

A formal solution of the Helmholtz equation in (2.2) may be written as

(2.3) F(x, y) J eAze-t + Betf() dr,

where z x + iy, x iy and A, B are constants to be specified. It can be
easily verified that F in (2.3) satisfies the equation in (2.2) by writing Laplace’s
operator as

2 02 t2
cgx-- + y2 4z

Performing the differentiation in (2.3) we obtain AF 4ABF. Hence, if 4AB co2,
then F satisfies the equation in (2.2). Taking A 1/2ico, B -1/2ico, z rei4’, we
have

(2.4) F(x, y) f e-Ursinhtf(t + idp) dr.

By changing (2.3) into

eAe-+ Bzetg(t) dr,
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we obtain a representation as in (2.4), but now with g(t ick) in the integrand.
Hence, a formal solution of the Helmholtz equation can be represented by

F(x, y) f e -’’sin’ (f(t + i) + g(t i)) dr.

For suitable choices off and g the expression f(t + icp) + g(t ib) becomes the
real (or imaginary) part of a holomorphic function of the complex variable

+ i (with real and ). In that case this expression is a harmonic function
of the variables and b.

To solve the boundary value problem (2.2) we choose a representation of
the following kind:

F(x, y) f e -irsinh’ U(t, )dr,

where U is harmonic (but not necessarily holomorphic) in the strip

B {t, qbl-o < < o,0 < <

In view of the boundary conditions of F (see (2.2)) we obtain for U the following
boundary value problem:

02U 02U

(2.5) Ot---T + - 0 in B,

U(t, O) (t), U(t, ) O.

Solutions of the Laplace equation in the strip B with Dirichlet boundary con-
ditions can be obtained by using the conformal mapping r/= exp (rr/), which
gives a potential problem in a half-plane. In the underlying case we choose a
more direct method.

Suppose U(t, b)= Re f(0, + ib. Then the singularity of U in 0
may be represented by (i/zr)(1/O and f may be constructed by the principle of
reflection.

f(O= + +-kZ e.=1 717 -1

where

(2.6) # z/e.

The real part off is then given by

1 sin #(2.7) U(t, b) 2- cosh #t cos

Hence

sin
F(x y) | e iar sinh dt

cosh/t cos
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This function is bounded by the expression

sin #b( dt
)_2 cosh #t cos #b

and hence the conditions for uniqueness are fulfilled. With this function F the
solution of (1.1) is

(2.8) q)(x y) sin// eCOrsin4 e_iCorsinh
dt

2 cosh #t cos #p"

This representation of the solution of the singular perturbation problem
(1.1) will be the starting point of the Investigations on the asymptotic behavior
of ,(x, y) for e --. 0 (i.e., co o). The integral in (2.8) will be evaluated by saddle
point methods. The saddle points of the function e -i’sinh’ are located at the
zeros of cosh t, i.e., at t, i(1/2n + nn), n being an integer. The steepest descent
lines are lines parallel to the real t-axis through t,. If convergence is not disturbed,
the path of integration of the integral in (2.8) may be shifted towards a steepest
descent line. With this condition, only the saddle point at -1/2in can be considered.

By shifting the path of integration of (2.8) downwards to the line Im -7n,

singularities of the integrand may be passed. The singularities in this case are
poles due to the zeros of

(2.9) cosh #t cos #b 2 sin (1/2#(b + it)) sin (1/2#(qb it)).

The zeros are -i( + 2k) and gk (the complex conjugate of tk) for integer
values of k. The following poles are important in our problem:

k= -i(b+2k) .fork=0,1,2,...,
(2.10)

gk=i(b+2ek) fork= -1,-2,-3,....

Only these poles may be located in [0, -1/2in], the number of which is dependent
on . We consider two different cases" 1/2n < < 2n and 0 < e < 1/2n. The first
case is simpler than the second one, and will be considered first.

3. The case 1/2n<<2n. For 0<b<, only the pole o= -ib of
(2.10) may be located in the interval [0,-1/2in]. For values of 4) close to 1/2n, the
pole to lies close to the saddle point at -1/2in. In order to obtain an asymptotic
expansion of which holds uniformly for all values of b in [0, ], we use the same
method as in [4].

Essential to this method is the regularization of the integrand in (2.8) by an
appropriate function. This will be done by determining a constant (i.e., independent
of t) c such that the function

(3.1)
sin # 1 c

2 cosh pt cos #4) sinh 1/2(t + ib)

is regular at -i. By calculating the residues at -iqb of both members
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of (3.1), we infer c i/4rt. The function of (2.8)can now be written as

(3.2) (I)(x, y)= +/ e ioor sinh dt
sinh (t + ib)

e’ e -irsinht g(t) dt,

where

(3.3) g(t) U(t, ok) +

and U is defined in (2.7).

4ti sinh (t + ib)’

The first integral in (3.2) can be evaluated by means of the following formula:

f rcoshu du

(3.4)
F(r, 7) e

sinh 1/2(u i7)

where

e-s erfc (x/ sin 1/27),

0<7 < 2rr,

(3.5) erfc (z)

_
e dr.

Formula (3.4) can be found in Lauwerier’s papers [3] and is also used in [4]. A
proof of (3.4) is easily obtained by verifying that

rr{ercs F(r, 7)} -2 sin 1/27 e-r(1-cs’)"

Now, letting u + 1/2irr, 7 5zt/2 b and using

erfc (- z) 2 erfc (z),

we obtain

eOrsinO f dt
(3.6) +

4i )- -iorsinht erfc (z)
oo sinh (t + ib)

where

(3.7) z x/r sin (,r- ).

Formula (3.6) holds for 1/2r < b < 2rr. But by considering complex values of q5
and by using analytic continuation, (3.6) can be shown to hold for 0 < Re 4 < 2zt.

The function g of(3.3) is regular for e [0, -1/2irr] and 0 < b < (-}z < < 2rr).
Hence, by shifting the path of integration in the second integral of (3.2) down-

1-!-71:wards to the line Im 2 we obtain

(3.8) O(x, y) 1/2 erfc (z) e’y e-’r cosh, g(t -irt) dt.

So far, large values of co (i.e., small values of e) have not been considered.
The representation (3.8) of the solution of the boundary value problem is the
exact representation. In order to get an asymptotic expansion of, we expand g
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into a series

(3.9) g(t 1/2in) cosh1/2 Ck(sinh 1/2t)k.
k=0

Substitution of this series in (3.8) and interchanging the order of summation and
integration yields

r(k + 1/2)
(3.10) O(x, y) - 1/2erfc (z) 2 e-’(-sin4’) E C2k (Ecor)k + 1/2

k=O

as cot - , uniformly with respect to b, 0 __< b _< .
The expansion in (3.10) breaks down if - 1/2n. Namely, the function

g(t-1/2in) has a pole at i(t+1/2n-2ct). For th=, this pole is located at
i(1/2n- ) and if - 1/2n this pole approaches the origin. As a consequence, the
coefficients Ck in (3.9) and (3.10) tend to infinity if - 1/2n. For this question the
reader is referred to 5.

The most important term in the asymptotic expansion (3.10) is

O)(x, y) =- 1/2 erfc (z)

with z defined in (3.7). This term exhibits the behavior of tI) in the neighborhood
of 1/2n, i.e., along the y-axis in the x, y-plane. Just as in the quarter-plane case,
this term leads to a oarabolic boundary layer, situated along the positive y-axis.
In this domain, tbr large values of cor, the function O) (and hence ) rapidly
changes from the value 1/2 to very small values (x > 0) or to values close to 1
(x < 0). This boundary layer is called a "free" or "internal" boundary layer,
since it is not located along the boundary of the domain A for which the boundary
value problem (1.1) is defined.

Along the boundary 0 boundary layers do not occur, as can be seen
from (3.10). Namely, if b

_
( > 1/2n),

O.(x, y) O)(x, y) O((oor)-n)

as cot - , for any positive N and all th, 1/2n + 6 __< =< 0, where 6 is a small
positive constant. For these values of 4) we also have

as follows from

O)(x, y) 1 O((oor)-N),

erfc (- z) 2 erfc (z)

and from the well-known asymptotic formula
1

erfc (z)
x/-z

e-z2(l -+- O(Z- 2))

asz +.

4. The acute angle. In this section we consider values of 4) and in the range

(4.) 0 __< __< < 1/2.
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First we determin th number of poles (2.14) located on the imaginary t-axis
between 0 and -1/2in.

We introduce

(4.2) 2
rt

so that 0 < 2 < 1. Consequently, we can choose an integer n _> 2, satisfying

(4.3) n 1 < 1/2 _< n.

We distinguish two cases"

(a) If in (4.3) n is odd, then we have with ko 1/2(n 1),

(4.4) 2ko < 1/2rt _< (2ko + 1).

Therefore, the pole

(4.5) to i(4 + 2=/o)

passes through -1/2irt when changes from 0 to . If 4 + 2ko < 1/2t, then
toe[0,-in]; if + 2ko > , then to[0,-in]. For all values of
(0 ), we have

t,te[0,-in] fork=0,1,...,ko- 1, l= 1,2,...,ko.

(b) If in (4.3) n is even, we have with lo n,
(4.6) (2/o 1) < 2/o.
Therefore, the pole

(4.7) -o i(- 2/o)

passes the point -in if changes from 0 to . If + > 2=/o, then -o
e [0, -in] ;if + < 2/o, then -to [0, -in]. For all values of (0 ),

t,_e[0,-in] fork=0,1,...,lo-1, l= 1,2,...,1o- 1.

As in } 3, the poles to and -o ((4.5) and (4.7) respectively) can be split off. In this
way error functions are introduced. Afterwards the path of integration will be
shifted downwards to the line Im -. The residues of the poles being passed
turn out to be exponential functions. A simple calculation gives the following
results. (We distinguish again the two cases (a) and (b).)

ko ko-(a)
(x, y) e-{"’--" e-{"’+-"

(4.8)
erfc(z)e-i("+*-i*/- ei* e-’ g(t) dr,

where ko is specified in (4.4), z sin 7,
1

(4.9) g(t) U(t i, ) +
4i sinh (t i7)’

and 4 2eko.
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(b)

(4.10)

lo- lo-

(I)e(x’Y) 2 e-r{sin(2ak-ck)-sinck} e-r{sin(2k+4)-sin4}
k=l k=l

+ 1/2erfc(z)e -r{si"(2t-4’)-si"e}- ersin4 e -’res"’ g(t)dt,

where l0 is specified in (4.6), z 2x// sin 1/27,

(4.11)

and 7 1/2rt + b 2cz/0.

g(t) U(t 1/2irt, dp)
4rci sinh 1/2(t i7)

The representation (4.8) (resp. (4.10)) of (x, y) is the exact solution. In
order to get an asymptotic expansion of for small values of e, the function g
in (4.9) (resp. (4.11)) may be expanded in the same way as was done for g in (3.9).
The asymptotic expansion obtained by interchanging the order of summation
and integration (cf. (3.10)) is uniformly valid in 0 =< q5 =< . Just as in the foregoing
section, if --. 1/2r, the expansion must be reconsidered (see 5).

We conclude this section with some remarks concerning the boundary layer.
If - , the asymptotic behavior of tI) is determined by the first term of the first
finite series in (4.8) (resp. (4.10))" the other terms are of lower order. Hence

(4.12) (x, y) e -r{sin(2a-4’)-sin4’}

as cot o, b --, , b =< 0. If q < , the right-hand side of (4.12) is very small,
explicitly

(x, y) O((cor)-),
where N is an arbitrary positive number. This estimate, however, is not uniformly
valid in b. If q5 a, the exponential function in (4.12) may not be small at all. We
can determine the locus in the x, y-plane on which the argument of the exponential
function in (4.12) is constant. We infer from

-ogr{sin (2 b)- sin b} -c (c > 0)

that the locus is a straight line

(4.13) y x tan c/co,

which is parallel to the boundary y x tan of the sector A. From these aspects
we conclude that along the line y x tan a boundary layer of thickness O(e)
is located.

The term with the error function in (4.8) (resp. 4.10)) is asymptotically of
lower order than the term in (4.12). The error function part, however, is of great
importance. The error function changes rapidly at tk 1/2r 2ko (resp. 2Io 1/2n),
but the effect is damped by the exponential function contained in this term. This
term is gaining in influence if --* 1/2r and the (hidden) internal boundary layer
due to the error function comes to light if 1/2n (see 5).

5. The almost right angle. In 3 and 4 we discussed the asymptotic behavior
of * (e ---, 0) for values of larger, respectively smaller than 1/2n. However, the
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expansion in (3.9) and the expansions which can be derived from (4.8)(resp. (4.10))
in an analogous way, are not valid if 4, e--+ Ut, since the function g(t) has a
singularity, which tends to zero for q, e --+ 1/2r. In this section we shall give the
asymptotic representation of holding for all e [1/2rc 6,1/2rt + 6], where
0 < < 1/4zt.

Suppose first that 1/4re < < 1/2zr. In this case the results of 4 can be used. In
(4.2) we have 1/2 < 2 < and in (4.3) we have n 2. Hence, the (b)-case applies and
from (4.6)it follows that 1o 1. Thus (4.8) becomes

(5.1) (I)(x, y) 1/2 erfc (z) e -r{sin{2a-4,)-sin4,} + e’rsi"4, e -rcsh‘ g(t)dt,

where z 2x sin 1/27, 7 05 + 1/2r 2e and g is defined in (4.9). The function
g has a pole in i(1/27 ), corresponding to k in (2.14) with k 0. In (4.8) this
pole has no influence since is constant. If, alternatively, e

_
1/2r, this singularity

is close to the origin for values of b close to . This pole can be split off and so
another error function is introduced.

Suppose next 1/2r < e < 2re. The function g in (3.3) has a pole in i(4 + 1/2r 2),
corresponding to fk in (2.14) with k 1. Again, for e

_
2 this pole is close to

the origin for values of 4) close to e.
Combining the two cases, we have

(I)(x, y) 1/2 erfc (() + 1/2 erfc (z) e -r{sin(2a-4,)-sin4,}

(5.2) fe’rsi’4, e -’’csh’ h(t) dt,

where

h(t) V(t 1/2ir, )
4rti sinh 1/2(t i7) 4zti sinh 1/2(t i(1/2rt 4))’

7 b + 1/2zt 2o, z 2x/ sinh 1/27, 2x/ sin11(rt- b).

The asymptotic expansion of (I) for large or may be derived by expanding
h in the same way as was done for g in (3.8). The asymptotic expansion so obtained
holds uniformly in 0=<4__<0, 1/2r-6__<a_<_1/2rt+6, where 0</5<1/4re. If

-zt (the quarter-plane, see [4]) we have 4 1/2zt and

(I)(x, y) erfc 2x/ sin 1(1 b))- eOrsin4’ f e-’csh’ h(t) dr,

where the integral equals the corresponding integral of reference [4] (formula
(4.6)).

The significant terms of (5.2) are the two terms with the error functions. For
< 1/2rt, the second term may be connected with the "linear" boundary layer

along q and the (hidden) internal layer at q 2 1/2ft. The first one may be
connected with an external parabolic boundary layer outside the sector A. This
boundary layer has no influence since it is situated outside the domain of defi-
nition. If however 0 --+ 1/2rt (e < -r) this boundary layer enters the domain A, and
coalesces (in the limit e 1/2rt) with both the "linear" boundary layer and the
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(hidden) internal layer at q5 2 1/2n (see Fig. 1).

external parabolic boundary
layer

linear boundary layer

hidden internal boundary
layer

FG. 1. <1/2n

-n the first term in (5.2) may be associated with the internalFor > 2

parabolic boundary layer inside the sector at b 1/2n. The second one may be
connected with a boundary layer outside A, which is situated at b 2- 1/2n
and which enters the domain if --, 21-n. In the limit ( 1/2n) the two types of
boundary layers pass into the parabolic boundary layer along q5 1/2n (see
Fig. 2).

internal parabolic boundary layer

hidden external boundary layer

FIG. 2. > 1/2n

From our remarks on the coincidence of the boundary layers it may be
established that the parabolic boundary layer of the quarter-plane is a particular
case of parabolic boundary layers for the almost right angle. For other aspects,
the reader is referred to Grasman [2], where the case of almost characteristic
boundaries is treated with coordinate-stretching techniques.
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6. An analogous problem. An analogous, but much simpler, problem is en-
countered in looking for the asymptotic expansion of the solutions of the
boundary value problem

(6.1) aA(x, y) -/Xxx(x, y) 2y(x, y) 0

in the quarter-plane A {x, ylx >-_ O, y >= 0} with boundary conditions

(0, y) 1, I)(x, 0) 0.

In (6.1), # and 2 are numbers independent of x and y. The characteristics of the
reduced equation (e 0 in (6.1))

(6.2) Pxx + 2y 0

are the lines y (2/)x + c. For small values of , the characteristics of (6.2) are
nearly parallel to the boundary line x 0. Therefore, for small values of it is
expected that again two error functions appear in the asymptotic expansion of

(for e 0). As can be verified by the methods of 2, the function can be
written down as follows:

(x, y) ersin(+g) e -iwrsinht U(t, )dt,

where

x=rcos, y=rsin, 2=pcosfl, #=psinfl, og=p/(2e),

U(t, )= 1Re {tan1/2(it + + fl) + tan1/2(it + fl)}

sin ( + fl) sin ( fl)
r cosh + cos ( + fl) r cosh + cos ( fl)"

7. Concluding remarks. In this paper we used analytical methods which only
can be applied on singular perturbation problems with simple differential oper-
ators, boundary values and suitable domains of definition. The methods cannot
easily be generalized for other problems. In treating the relatively simple prob-
lems, however, we have a different aim.

For instance, our approach of the problem gives results which are not easily
noticed by using the usual singular perturbation techniques. We allude to the
existence of the hidden boundary layer along the line 2 1/2re (see Fig.
and the conclusion of 4). This aspect is not discussed in boundary layer tech-
niques, since the function is asymptotically of order zero in the neighborhood
of this internal layer. In order to obtain a uniform asymptotic expansion with
respect to b (in 0 _< b =< a < 1/2t), the error function corresponding with this
layer cannot be omitted.

Further we shall point to the case of an almost characteristic boundary
(see 5). In a clear and simple way the asymptotic behavior of can be described,
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using our methods. Also the way in which the various boundary layers pass into
each other is apparent.

An important disadvantage of our methods is the following. The asymptotic
expansions are derived for large values of ogr. Hence, the results of our paper do
not hold in an e-neighborhood of the origin. This domain is very small but it is
very interesting, since in this part of the x, y-plane the boundary layers arise. It is
possible to give expansions which represent the behavior of close to the origin,
but it seems better to us to tackle this problem with coordinate stretching tech-
niques. This aspect, however, falls outside the scope of this paper.

Our results can successfully be applied in general singular perturbation
problems, which yield reduced problems with relatively simple differential oper-
ators, boundary values and domains of definition. With these reduced problems
the local behavior of the solutions are investigated.

Acknowledgment. The author wishes to express his gratitude to Professor
H. A. Lauwerier for suggesting this investigation and for helpful discussions.
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DISTRIBUTIONAL WATSON TRANSFORMS*

A. DIJKSMA AND H. S. V. DE SNOO+

Abstract. For all Watson transforms W in LZ(+) a triple of Hilbert space ’ c L2([+) 5(’
is constructed such that W may be extended to 5%. These results allow the construction of a triple
o L2(+) z,, where is a Gelfand-Fr6chet space. This leads to a theory of distributional
Watson transforms.

Introduction. Guinand [2], [3], Miller [5], [6], [7] and Goldberg [1] have
considered linear manifolds, dense in L2( +), which are invariant under Watson
transforms and equipped with a suitable inner product form a Hilbert space.
These manifolds were generalized in [11].

Miller [7], [8], [9] has constructed the dual of such linear manifolds, which
is of course a Hilbert space, containing a copy of L2(+). By means of this dual,
Miller [7], [8] extended Watson transforms beyond L2(+).

In this note we wish to show that the results in [11] make it possible to con-
struct a linear manifold in L2(+), which is invariant under Watson transforms;
however, this linear manifold is not a Hilbert space, but a Gelfand-Fr6chet space.
This leads to a theory of distributions and Watson transforms defined on them.
For all Watson transforms we may choose the same Gelfand-Fr6chet space.
Specialization of the Gelfand-Fr6chet space in L2([ +) leads to a theory analogous
to the distributional Fourier transform on the space of tempered distributions.

1. Preliminaries. For K L() the linear operator M[K] on L2() is de-
fined by M[K]f Kf. The operator P on LE(+)is given by (Pf)(x) (1/x)f(1/x).
By//Z we denote the Mellin transform, which is an isometry from L2(+) onto
L2(), cf. [13]. In [10] it was shown that every Watson transform on L2(+) can
be written as

(1.i) W /g-’M[K]///tP, K L().

To denote the dependence on K we shall also write WK instead of W. In [11] the
operator V (= V) on L2([+) was introduced by

v - G L(O).

In the sequel we shall consider a sequence of functions Gi L(), 1, 2,....
We therefore introduce the following notation"

if Gj/G e L(N),

and

=v,v

Received by the editors February 12, 1973.
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where

G’(x) G(- x).

In [11] it was shown that V’W WV and hence W maps La into La,, where La
and La, are the ranges of Va and Va, respectively.

If G 4:0 a.e., then V (= Va) is injective and equipped with the inner product

(Vf, Vg)Lo (f g)L2(R+), f, g e L2( +).

L then is a Hilbert space, isometrically isomorphic to L2(+). In this case W
maps L continuously into L,. Instead of the notation (.,.)L, we shall also
use(-,.).

PROPOSITION 1. Let G 1, G26L() satisfy G 0 a.e., i= 1,2, and Gz/G
L(). Then

(1.2) L L
(1.3) the injection I :LG LG, is continuous and has a dense range.

Proof. If geLG, then for some f eL2(+), g= V2f and g Vlh with
h V2 f L2(+). Hence (1.2) holds. Using the same notation, we obtain

L2() L()

This implies the continuity of I in (1.3). The remainder of (1.3) follows from

(Vxu, g)(, (u, h)L2(R+) (u, (G2/G1)#f)L(n), u 6 Lz(N+), g e L2.
Since M[G2/GI] has a dense range in L2(), it follows that if the left-hand side
equals zero for fixed u L2([+) and arbitrary g e L, then the right-hand side
shows that/gu 0 and thus Vu 0. This completes the proof.

For G e L(N), G 4:0 a.e., denote by L. the dual of L.
PROPOSITION 2. Let G L(N) satisfy G 4:0 a.e. Then L’ is (isomorphic to) the

completion of Lz(N + under the norm Pf[[ L2(N+)"

Proof. Denote by A and B the antilinear isometrics from L onto L and
L2(+) onto L2’(+) respectively. Then the restriction of Bf to L belongs to

Lb and A-Bf VVf,f e Lz(N+), for

and

I(Bf)(Vg)l I(Vg, f)L(+)[ [(g, Vf)L+)I <= IIvfll(+)ll Vgll

(Vg,A-1Bf)c, (Bf)(Vg)= (Vg,f)L(U+) (Vg, Vf)o,

where g L2( +).
If w e L and A- 1W Vh, h L2(+), then with f L2(+),

(Bf W)L, (A- 1Bf, A- 1W)G (Vf Vh)c, (Wf h)L2(U ).
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From this it follows that BL2(N+) is dense in L. Also,

(Bf, Bf)L, (Vf, Vf)L,(n+).
If we identify Bf with f in L2( +), the theorem follows.

2. The space &’ anti its dual ’. Let (G)%x be a sequence of functions on
such that

(2.1) G; L(N), j 1,2,...

(2.2) G; : 0 a.e., j 1,2,...

(2.3) G+/G L(), j 1,2,...

and

(2.4) Gk/G is locally bounded on , k 1,2, ..., j j 2, 3, ....
The conditions (2.1), (2.2) and (2.3) imply that we have obtained a descending
chain of Hilbert spaces:

L2(N+) LI L L+I
Put Lj=l

PROPOSiTiON 3. is dense in all L, k 1, 2,....

Proof. Denote by C0(R) the space of all continuous functions on N having a
compact support. For each b Co(R), let u Gb. Then

u G(Gk/G)dp, j 1,2, ....
By (2.3) and (2.4), (Gk/G)dp LE(N), j 1, 2, .... Thus

/// uck Vj/ G /G (/) j 1,2,....

Consequently, //- lu e a. Since for all g e L2(N+) and b e Co(R),

(2.5) (///- u4, Kg) (b, /f/g)L(),
and since Co(R) is dense in L2(N), it follows that if the left-hand side of (2.5) equals
zero for a fixed g e L2(N+) and arbitrary b e C0(R), then the right-hand side of
(2.5) implies that /g 0 and consequently Vg 0. Hence o is dense in L,
k= 1,2,....

PROPOSITION 4. a iS dense in L2(N+).
Proof. We use the notation of the proof of Proposition 3. Proposition 4

follows from

(f, /f/- lU,)L2(R +) (k/f, b)L2(R +), f e L2(N+).
We equip with the initial topology, that is the coarsest topology such that

all identity mappings --, L are continuous. A consequence of Proposition 3
is that 2 is complete. Hence 2’ is a Fr6chet-Gelfand space. The dual o, of &a is
given by
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Here equality means that if f 6 L, then f restricted to 5 belongs to Lf’ and,
conversely, that if g 6 50’, then for some integer j, g can be extended to the whole
space LG and thus belongs to Lbj.

We equip " with the strong topology fl(50’, 50). Since 5e is bornological,
50’ is complete (see [4, p. 223]).

3. The distributional Watson transform. Let

g= N LG,

equip oug with the initial topology, and give the dual ’ of Jog’ the strong topology.
The Watson transform W WK given by (1.1) is a mapping from 50 into 5g.

For, if g 50, then there exists a sequence (f)j_ in L2(R/), such that g Vf
and Wg WVf VjWf. Consequently, Wg o’/g. Furthermore, W’50 --, is
continuous. For, with the same notation,

Wgll Wfll,,/) _-< WIl,/)llfll,/) Wll,/)llgll.
The adjoint W* of W is a Watson transform given by

W* l- M[I,’]P.
Let tW* be the transpose of W*. It maps of’ continuously into 50’ (see
[4, p. 256]). We call the distributional Watson transform. The following
proposition says why.

PROPOSITION 5. //’1L21+) W.
Proof. Let B be the antilinear isometry from L2(R+) onto its dual. Then

Bf d,’, f L2(R/). For each g 50 we have

(tW*Bf, g) (Bf, W’g) (W’g, f)L:(a/) (g, Wf)L2(a /) (BWf, g).

Hence tW*B BW. If we identify the elements of L2(R+) and BL2(R+) the
proposition follows.

Remark 1. If with K L(R), also 1/K L(R)(R), then Wr maps 50 onto f
and hence W" maps t onto 50’.

Remark 2. If K(x)K(-x) l and if L6 L6 for all j l, 2, ..., then W
is involutory and hence /C is involutory.

4. Remarks. Let 4) be a measurable function on E+ for which the integral

1/214,(t)1 dt

is finite. Let G be defined by

G(x) t- /2 + ixqb(t dt, X [.

Then G 6 L() and

(Vcsf)(x) dp(xt-a)t- f(t)dt
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(see 12]).
For each integer j, we choose 4 to be the function qSj defined by

IFJ)(1- t)J- ’ O<t< 1,
(t)

O, t_>l.

Then

F(1/2 + ix)
Gj(x) F(1/2 + ix + j)’

x e ,
and the sequence (Gj)j= satisfies the conditions (2.1), (2.2), (2.3) and (2.4). Further-
more we have

{ f If)(t)Lj fe LZ(N+)lf(x) -fi (t x)- dt

for some function fJ)(t) defined on N+ with tJfJ)(t)e Lz([R+) }.

These spaces have been considered by Guinand, Miller and Goldberg. Since 4j
is real, we have Lj L) and therefore 5 W. Hence Watson transforms
map 50 into50.
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BROUWER’S FIXED-POINT THEOREM" AN ALTERNATIVE PROOF*

KIYOSHI KUGA’

Abstract. This paper gives an alternative proof of Brouwer’s fixed-point theorem. The expected
preknowledge on the part of the reader in following the proof is the continuity of the roots ofpolynomial
equations with respect to the coefficients, and the standard compactness argument.

This note gives an alternative proof of the following theorem.
BROUWER’S FIXED-POINT THEOREM [3]. Iff is a continuous mappingfrom the

simplex S,_ 1: {x],".:l xi 1, x __> 0} of the Euclidean n-space into itself then
there is a point x* S,_ such that f(x*) x*.

The fixed-point theorem is now an indispensable tool for the study of mathe-
matical economics. Its proof requires, however, a number of preliminary concepts
and related lemmas, and is fairly complicated. As several attempts have been
made to simplify the proof, an additional effort will be meaningful only when it
gives a much simpler and self-contained account. The author assumes this has
been done in the following Steps I-III.

Step I. Extension of Bernstein’s polynomial approximation to S_ 1.
2

Let N be the set of n-dimensional nonnegative integer vectors of which
elements add up to v, that is,

where

a Jail ain], n(n + 1) (n + v 1)Iv!, aij v
j=l

and the airs are nonnegative integers.
Let

v!
g(x a)

all !ai2 ain

Then g(x;ai) satisfies the following relations:

(1) g(x ai) 1,
aiN

(2) vxj Z aij g(x ai),
aieN

(3) v(v 1)(xj)2 aij(aij 1)g(x ai),
aieN

ail.v, ai2 ainX1 "2 Xn

xSn-

j ,... VI, x.Sn_

(1) is the multinomial expansion of (,".: xi)V on S,_ (2) and (3) can be derived
by differentiation of the expansion formula.

Received by the editors February 12, 1973, and in revised form October 23, 1973.
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We shall show that ifj’(x) is continuous on S,_ 1, then given an e > O,

(4) f(x) f(aJv) g(x a)l[ < 2e
aiN

holds uniformly on S_ for a sufficiently large integer v. 3

It is noted that we may set IIf(x)ll _-< K for x S,_ , and that there exists
6 > 0 such that Ill(x) f(Y)ll holds uniformly for IIx Yll ,x,y S_

By (1), the 1.h.s. of (4) becomes,

We shall evaluate this expression by partitioning N into N and N such that

N {ai[ x- (ai/v)ll < 6,aie. N

and

Nz ={ai[ x-(aJv)[] >=6,aieN}.
For N1, we have

[J’(x)- f(aJv)].g(x; ai)11 =<e g(x; a,)__< e.
alaN1 aiN

For N2, as f(x)ll _-< K,

"’’v [f(x) f(ai/v)] g(x ai)

<= 2K ., g(x;a)
alaN2

< 2K Z ,’=1 (x- aijv)2

(2 g(x ai)
aiN2

<= Z (VXj aij)2g(x ai)
aieN j=

2K Iv2 (xj)2-2v xj aij.g(x’ai)+ .,
j= j= ai.N j= aiN

=2K II--j=I(Xj)21/V(2 (by (2) and (3))

__<e if v>__2K(1- 1/n)/f2e.
Step II. Let J(x)= ,,nf(ai/v)g(x;ai), the polynomial approximation

obtained in Step I. Sincef(aJv) belongs to S,_ 1, f(x) is also a continuous mapping
from S into itself by (1).

If the theorem is proved forf(x), then for each v, there is a point x such that
J’(x) x S_ . Since S,_ is compact, some subsequence {x’} converges to a
point x* in S,, 1. As limi_oof’(x)=f(x) uniformly on S,_l,f(x*)=
limi_.oo f’(x’) limi_oo x’= x*. Therefore it suffices to obtain a proof for the
case off’(x).

311z [ (zf31/z.
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Step III. We can prove the fixed-point theorem for S by using the intermediate
value theorem on continuous functions. We shall prove the general case by in-
duction.

Let f(x):S,_ S,_ be continuous and fV(x) be the polynomial obtained
0in Step I. In casef,( ,..., 0, 1)= 1, then (0,..., 0, 1) is the fixed point forfV

since fv(0, ..., 0, 1) is in S,_ 1, and therefore we may assume that

(5) f,(0,.-., 0, 1) < 1.

Now consider, for given ( 1, "’", ,- 1) e S,_ 2, the following polynomial
equation in x,"

(6) f,(, x,) x,(1 + x,) 1.

We obtain v roots as solutions to (6), and designate the real and imaginary
parts of these roots by Rl( and 11(), 1,..., v. Let us then put

p(, t) max [R() tlI()l],

which is continuous for e Sn_ 2 and >__ 0. By (5) and the intermediate value
theorem for univariant continuous functions, equation (6) yields a real and non-
negative root for any e S,_ 2, and hence p(, t) >= 0.

Studies on mathematical models of general economic equilibrium have been
centered around the continuity of excess demand functions, say E(p) [El(p), ...,
E,(p)], with prices p (P 1,’", P,) as the variables, and the so-called Walras’
law [-8] 7=lpiEi(p)=_ 0 that holds identically on price space. Among others,
Uzawa [7] established that Brouwer’s fixed-point theorem [3] is equivalent to
stating that for continuous excess demand function E(p) defined on S,_ there
exists an equilibrium price constellation p*e S,_ such that E(p*) <= O, using a
transformation Ei(p)= 4h(P)- Pi(.Pjd2/Pj); dP(P)’S,-1 S,_ 1. Motivated by
this observation, let us now introduce for given value of >= 0,

(7) hi( f’

where

p(,t) )) _2i, i= n-
+ p(,t)’l + p(,t

n-1 p(, t) I/"-S ()it Z jf.i + p( t)’ -- -p-( t)ll =j=l

This mapping satisfies Walras’ law, that is, the identity
n-1

(8) .h,(;t)0 for eS,_ 2.
i=1

Then the following mapping used by Nikaid6 [5] in establishing the existence
theorem of a general equilibrium price"

i + max (hi, O)
di(;t) + "-1 max(hj,O)’

1,..., n
j=l
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is a continuous mapping from S._ 2 into itself, given t. Therefore, by the induction
hypothesis, it admits a fixed point ’ for given >_ 0 such that

(9) d(’, t) ’ e S._ 2.

Equation (9) implies
n-1

max (hi(" t) O) ’ max (hj(’ t) 0), i= n-
j=l

and hence together with (8),
n-1 n-1 n-1

[max (h,("t) 0)]2 E h,("t). ’. max (hj(t;t) O)
i=1 i=1 j=l

--0.

(10) hi(’;t <__ O, 1, ..., n 1.

In view of (8), (10) is subject to a restriction

(11) h,(’;t)=O if ti>O.
Since there’s are nonnegative, (10) and (11) must lead to

’ P("t)
=2,, i=l n_(12) f’ + p(’, t)’l -(-Y, t) i, ,’"

where 2’ is defined by the formula in (7) with
We now take a nonnegative sequence {t,} such that lim,_o t. + , and

the corresponding fixed point :’.. By the standard compactness argument, we may
assume lim._ ’" * S._ z.

On the other hand, there is an index 0 such that p(’., t.) is attained infinitely
many times by Ro(’. tn[lo(")[. Again by taking a subsequence {t.,} of {t,} and
{t.,} of {’.}, we may put

p(’.,, t.,) Ro(’., t.,llo(’.,)l for all tn,.

Since p(, t) >__ 0 and Ro() is bounded on S._ 2, Ro(’"’) >= t,,llo(’"’)l implies

(13) Io(* O.

As (6) has a real nonnegative solution for
such that

Ro(’., max
l< v,lt(tnt) =0

infinitely many times. Taking again a subsequence {’.,’} of {’.,}, we may put

Ro(’"") >= Ro(’"") t,,,llo(’"")l >= Ro(’"") for all t,,,.
This, with (13), leads to

(14) lim t,,,llo(’.,’)l O.

This leads to
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Thus by (6), (12), (13), and (14), we have

*1+..o,, +R(*))Ro(*)’f’ tY*’ A*’, i-- 1,..., n- 1,

()
’v )J,( ,Ro(*)) Ro( .[1 +Ro(*)]’’-

where 2"
As f, is homogeneous of degree v with respect to (, x,), we have

* Ro( *) *)J’ 1 + Ro( *) + Ro( *)]
R(
+ Ro(*)"

This with (1) and (15) yields 2* 1/[1 + Ro(*)]. We have thus proved that

xV=I * R0(*) )]+ R0(*)’ + Ro(*
is a fixed point forf
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BRANCHING SOLUTIONS OF EQUATIONS
CONTAINING SEVERAL PARAMETERS*

DAVID W. ZACHMANNf
Abstract. Let ’ be a complex (or real) Banach space and

F(L, , u, w) 2[Lu + N(u, w)] + fliSi(k, p, w)
j=l i=1

be a bounded map from cm+nx 2 (or Rm+n /2) to where the Lj are linear and the Nj are
higher order in u. Assuming Ifll and IIwll small a generalization of the method of Lyapunov and Schmidt
is used to establish the existence of solutions u to u F(k, [I, u, w) near those 2o (201, "’", gOm) s cm
(or Rm) for which is a simple eigenvalue of L =1 2ojLj" The branching equation is examined
by employing the Weierstrass preparation theorem. An example of a physical problem which leads
to such equations is given.

Introduction. In this paper we use a generalization of the method of Lyapunov
and Schmidt to establish the existence of solutions of a class of operator equations.
Let 9 be a complex (or real) Banach space. Let F be a function which maps
cm+n )< /2 (or Rm+n 2)into .

F(21, "", 2m, ill, "’", ft,, u, w) ,. Lu + ,- N(u, w) + ]1. S(,, ]1, w), where-- (1, "’", m); ’-- (ill, "’", fin);

k. Lu 2jLju; ,. N(u, w) 2jNj(u, w)
j=l j--1

and ]1. S(,, 1, w) 7= fliSi(, , w). Explicit hypotheses will be given later, but
for now we require each of the operators Lj to be linear and completely continuous
while each Nj and Si is to be analytic and, in some sense, bounded. We seek values
of , [I and w for which the equation u F(k, [I, u, w) has solutions u in . It will
be shown that near any ,0 for which 1 is an algebraically simple eigenvalue of
,o" L there exist u in satisfying

(1) u ,. Lu + . N(u, w) + [I. S(:L, [I, w).

Such equations arise quite naturally when one attempts to establish the
existence of solutions of certain boundary value problems of mathematical
physics. The terms ]1. S usually account for forcing terms or may arise when the
geometry of the problem does not quite fit a standard coordinate system. The w
is included here so that when m 1 and//= 0 we have an equation of the type
Sather considers in [3] near eigenvalues of multiplicity greater than one. An ex-
ample of a problem connected with the steady state Navier-Stokes equation
which leads to (1) with m n 1 can be found in [8].

The following example, although interesting in its own right, is presented
primarily to further motivate the study of equations like (1).

* Received by the editors January 4, 1972, and in final revised form September 4, 1973.
"}" Department of Mathematics, Colorado State University, Fort Collins, Colorado 80521.

898



BRANCHING SOLUTIONS OF EQUATIONS 899

1. An example. Consider a simple pendulum with unit length and unit mass
which is free to swing in the xy-plane. Suppose that the pendulum is supported
at the origin, that the gravitational force g -gj and that u u(t) measures the
deflection from the negative y-axis in radians. Further assume that fixed on the
lines x d, d > 1, are two wires of infinite length, that the wires carry c units
of positive charge per unit length and that the bob of the pendulum carries unit
of positive charge. It is known [2] that 2c/r is the magnitude of the force exerted
on a unit point charge r units away from an infinite wire whose linear charge
density is c. Thus the force E on the pendulum due to the field set up by the two
wires is given by

-4c sin u
E-- io

d2 sin2 u

Assume, in addition to the gravitational and electrostatic.forces, there is a forcing
term whose tangential component is

f(t) -fll sin 2 sin 2t.

If we equate the tangential component of the acceleration /i to the sum of
f(t) and the tangential components of g and E we have

(2) /i + 21 sin u + 2 sin 2u
d-2 sin2 u

+ fll sin t + 2 sin 2t 0,

where 21(g)=g and ,,].2(c)-- 2cd -2. In connection with the problem of finding
periodic solutions to (2) we seek values of 21, 22, ill, 2 for which (2), subject to
the boundary conditions

(3) u(0) u(n)= O,

has solutions. If fll 2 0 We will be interested only in nontrivial solutions to
(2)-(3).

Recalling that the Green’s function for -dZ/dt2 on the manifold defined by
(3) is

+ t’ It t’l tt’
g(t, t’)

2 2 n

we have the following equivalent formulation in C[0, n] of our boundary value
problem (2)-(3)"

ff [ 22 sin 2u(t’)
t’ ](4) u(t) g(t, t’) 1 sin u(t’) +

d- 2 sin2 u(t’)
+ fll sin + f12 sin 2t’ dr’.

If we let

L,u g(t, t’)nu(t’) dt’, n 1,2,

Nl(u f g(t, t’)(- u(t’) + sin u(t’)) dt’,



900 DAVID W. ZACHMANN

N:(u) f

then (4) is equivalent to

sin 2u(t’)
g(t, t’) 2u(t’) +

d- 2 sin2 u(t’) dr’,

g(t, t’) sin nt’ dr’, n 1,2,

(5) U 21L1u -Jr- 22L2u --[-- lNl(U)-[- 22N2(u q- illS1 -[- fl2S2,

which is (1) with m n 2 and CI0, n] with the uniform norm. In the next
two sections we examine the general equation (1) and then later apply some of
our results to (5).

2. The complex case. We now consider (1) in the case when F:C"+" x- and is a complex Banach space. Regarding the operators in (1) we make
the following hypotheses"

H1. L, j 1, 2,..., m, is linear and completely continuous.
H2. N(u, w) (N(u, w), N2(u, w), Nm(u, w)) is higher order in u and

analytic at (0,0), i.e., N(u,w) Aw + 2r+s>_2AnS(u,w), where Aw-(Alw,A2,

", Amw) and each Aj’ is bounded and linear" ArS(u,w)= (A’(u,w),
AzS(U,W), ..., A(u,w)) and each A(u,w) is a homogeneous polynomial of
degree r in u and s in w.

H3. There exist functions Qj’R3 R + such that [[N(u 1, wl) Nj(uz, W2)I[
Qj( u ,[[u2 w )llUl -uz[andliml,loQJ(xl,xz,x3)= O,j= 1,2,...,m.
H4. For every bounded subset of Cm+" there is a constant si such that

Si(k, , w) si, 1, 2, n.
H5. Si(k, f, w) is analytic, 1, 2, n.

Suppose ko (,o,2o2, "’", 2o,,,) 6Cm is such that is an algebraically
simple eigenvalue of the linear operator L0 defined by Lo 2ojL ko L.
By simple we mean dim A/’(I- Lo)k-- 1, k 1, 2,.-., where .A(I- Lo) is
the null space of (I Lo). To simplify the notation, set A/ - A/(I Lo) and
let denote the range of I- Lo. Since the linear operator Lo is completely
continuous and is a simple eigenvalue, we know [6, 5.4] can be expressed as
the direct sum of the invariant subspace V and . Let P be the projection defined
by Pu ua, where u u + u2, ul A/, u2 , is the direct sum decomposition
of u. Since V and are closed, P is continuous.

We now introduce some quantities which are relevant to our study of
equation (1). Let Uo A/ be such that Uo[ 1. Any u in can be written un-

ambiguously in the form u Uo + v, where C and v so that Pu Uo
for any u . In our later work it is sometimes helpful to look at 11 as a measure
of how much of u is in A/. Since we are interested in solutions to (1) for k near

ko, we introduce the vector z (,- ,o) C". Finally, as a convenience, we
normalize w by setting w aWo, where a C and [[Wo[[ 1.

Remark 2.1. If happens to be a Hilbert space fig with inner product
(.,.), we can define the projection P as follows. Let ,A* be the null space of
I L, where L is the adjoint of Lo. From the Riesz theory for completely con-
tinuous linear operators [4] recall dim A/" dim* and g"*+/-. Moreover,
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since is a simple eigenvalue of Lo, A and are complementary subspaces
and we can select Uo e V and Vo e /’* such that IlUol and (Uo, Vo) 1. We
can then define Pu

To establish the existence of solutions of (1) using our generalized Lyapunov
and Schmidt method, it is necessary to invert I Lo on . One way to do this is
by constructing an invertible linear operator I Lo which agrees with I Lo on. Following E. Schmidt 7, p. 29], we set

{I-Lo, u,
I Lo I, u U,

which holds if we define Lo by

Lou Lou Pu, u .
Since I Lo maps onto in a one-to-one manner [6, 5.4], I Lo is a one-
to-one mapping from onto itself, so from the open mapping theorem we have
the following lemma.

LEMMA 2.1. T (I Lo)-1 exists and is a bounded linear operator.
Using Lemma 2.1 we can put (1) in a form which admits an application of

the contraction mapping principle. We begin by rewriting (1) as

(6) (I Lo)u x. Lu + k. N(u, w) + 11. S(k, [I, e),

which in turn is equivalent to

(7) (I Lo)U Pu + . Lu + ,. N(u, w) + [I. S(L, [I, w).

If we let L’ TL, N’- TN, S’= TS and note that TPu Pu, then applying
T to both sides of (7) we have

(8) u Pu + x. L’u + k. N’(u, w) + [. S’(L, [, w).

Recalling Pu Uo we see from (8) that (1) is equivalent to the pair of equations

(9) u uo + x. L’u + k. N’(u, w) + I" S’(L, II, w),

(10) Pu Uo
in the sense that if u* u*(, x, [I, a) is a fixed point of (9) and *(x, [i, a)
satisfies Pu* *Uo, then u*(*, x, II, a) is a solution of (1).

LEMMA 2.2. There exist positive numbers o, to, o, ro, 6o such that for fixed, , [I, r satisfying 1[ < o, [1 < to, [[1[ < /o, [a[ < ro, the right side of (9) defines
a contraction map on the ball [[u[[ < 6o.

Proof. The norm of the right side of (9) is clearly bounded by

(11) Il+llZl I,,Is,+ItT Uj Zj + jQj( u 0, ) u
i:1 j=l

In view of the boundedness of the operators Lj and H3, we can choose to, ao,
6o such that iflrl < to, [a[ < ao ui[ < 6o, i= 1,2, then

(12)
j=l
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where 0 < c < 1. Next take o,/30 so that if ]l < o and ]/] </o,

(13) [(I + [Irl[ lglsi < (1 C)6o.
i=1

Now if , z, II, a and Ilull satisfy (12) and (13), it follows kom (11) that the right
side of (9) maps B(6o) {u" Ilull < o} into itself.

If we let Ul, u2 B(6o) and use (12) we see

II(uo + , L’u + . N’(ux, w) + . S’(g, , w))

((no + x" L’u2 + . N(u2, w) + -S’(L, , w))ll

Zll [j ILj + AjQ(I Ul l, IIu2II, )]IIux U2II < cIlux U2II,
j=l

so that the right side of (9) is a contraction map on B(6o) for fixed , , , a satis-
fying (12) and (13).

From the contraction mapping principle and the analyticity assumptions
H2 and H5, it follows that if we choose , x, , a, 6o satisfying (12) and (13), then
(9) has a unique fixed point u* in B(6o) and u* is expressible as a convergent
power series in N.

(14) u*(, , , a) UjpkJxPakq, Ujpkq ,
where the summation is over j + IPl + k + lql > 0 and

x= zf, = fl’, Ipl 2 Pj and Iql qg.
j= i= j= i=

Remark 2.2. If (, x, a, and 6o satisfy (12) and (13), then u* is the limit of the
sequence u uo and, for k 0, 1, ...,

u + (Uo + . L’u + k. N’(u, w) + . S’(k, , w).

We now turn to the problem of determining the number of small solutions
to (1). Since, for any choice of (, x, , a, 6o satisfying (12) and (13), equation (9)
has a unique fixed point, it follows that the number of solutions of (1) in B(6o)
coincides with the number of small solutions ( ((x, , a) of

( 5) Pu*((, , , a) (Uo.

Before proceeding we rewrite (15) in a form which displays its dependence on
the operators L, N and S. From equations (9) and (15) we have

P[(uo + . L’u* + . N’(u, w) + -S’(, , w)] (Uo,

which is equivalent to

r[P(. Lu*) + P(. Nu, w) + P(. S(, , w))] 0.

Since T is invertible we see (15) is equivalent to

(16) P(x. Lu*) + P[(ko + x)" N(u*, w)] + P(. S(k, , w))= 0.

Thus, to determine the number of small solutions to (1) we examine equation (16)
which can be viewed as a generalization of the usual branching equation in the
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method of Lyapunov and Schmidt. A discussion of the branching equation can
be found in [5, 93.

LEMMA 2.3. If
(17) P( ko A’(uo, O)) O, r 2, 3, ..., p 1,

and

P(ko" AV(Uo, 0)) -Y= 0,

then, if I1, I[1 and [al are sufficiently small, (16) has p small solutions (, [, a)
vanishing at (0, O, O) and each (, [, a) is continuous in , and a.

Proof. H2 and H5 imply that (16)can be put in the form (a,&a[)Uo 0
or

(18) ajrkq(Jy,ro’kflq O,

where the ajrkq are calculable scalars and the summation is over j + Irl + k + Iql
> 0 [7]. From the form of the right side of (9) it follows that u* Uo + h.o.t.,
where h.o.t, stands for any term in (14) which contains to a power greater than
one or vanishes with r, a and /I. Since

N)(u*, O) N)(uo + h.o.t., 0) A(Uo + h.o.t., 0)= rArO(uo, 0) + h.o.t.,
r>_2 r_>2

we see from (16) and (17) that aooo 0 for j 2, 3, ..., p 1 and avooo - 0.
The Weierstrass preparation theorem [1] implies that for I1, I1, I11 and Iol suffici-
ently small, (18) is equivalent to

(19) (v + Av_xv-, + + A, + Ao)D(,x,ll, a)= O,

where Aj A(x, 11, a), j 0, 1, ..., p- 1, is analytic and vanishes at (0, 0, 0),
while D(, x, [I, a) is analytic and nonvanishing in a neighborhood of (0, 0, 0).
Since the zeros of the "polynomial" part of (19) give the small solutions to (16),
this completes the proof.

Remark 2.3. The coefficients of the power series for A and D can be deter-
mined from certain recurrence relations. From (16) we see the coefficient of zj
in (18) is given by PLuo. Since

Uo Louo PLouo P 2oLuo 2oPLuo,
j=l j=l

PLuo 4:0 for some values ofj and (18) contains terms of the form z. Thus in
(19) there is some A 0.

Collecting the results in the above lemmas we have the following result
when is a complex Banach space and P is the projection of onto Y deter-
mined by the decomposition @ .

THEOREM 2.1. Suppose H1-H5 hold and that o cm is such that 1 is an
algebraically simple eigenvalue of Lo ko" L with Uo Louo, Iluoll 1. zf (17)
holds, then for all sufficiently small values of [k ko[, IIII and Ilwll, equation (1)
has p solutions counting multiplicities. Moreover, each solution is continuous in
k o, 11 and w.
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If we set a IIl 0 equation (1) becomes

(20) u k. Lu + ,. N(u, 0).

u 0 is a solution of (20) for any , C’, but, according to Theorem 2.1 and
Remark 2.3, every neighborhood of ko contains , for which (20) admits non-
trivial solutions. We make the following definition for use here and in the next
section.

DEFINITION 2.1. If every neighborhood in C x (or R ) of (,o, 0)
contains a pair (,, u) with Ilu - 0 satisfying (20), then ko is said to be a bifurcation
point of (20).

Roughly stated then, Theorem 2.1 says that if IIll and wll are small, equation
(1) has solutions near certain bifurcation points of (20). We conclude this section
with some immediate consequences of Theorem 2.1.

COROLLARY 2.1. If 2oj is a simple characteristic value of Lj, then (61j2ox
t2j,02,""" (mj/],Om) is a bifurcation point of (20).

COROLLARY 2.2. Suppose k of the linear operators, which without loss of
generality we take to be L 1, L2, Lk, are related by L L1, j 1, 2,..., k.
If 2ol is a simple characteristic value of L 1, then each point (21, 2k, 0, ..., 0)
in R such that

1 (Z2/]’2 -’1" (Z3/]’3 tkk .ql_ O" /]’k+ "’"-4- 0" /I’m 01
is a bifurcation point of (20).

3. The real case. In this section we take to be a real Banach space and the
parameters 2j, fie, J 1, 2, ..., m, 1, 2, ..., n, in (1) to be real numbers. In
Theorem 3.1 we give conditions which are sufficient to insure that (20) has a real
bifurcation point. As a corollary we will see that on certain lines in R" can be
found values of , for which (20) has a nontrivial solution. Finally we indicate how
the methods of 2 can be used to obtain results regarding the existence and
multiplicity of solutions to (1) for real.

THEOREM 3.1. Suppose H1-H3 hold. If ,o (2ol, 2o2, "’", 20m) R is such
that is an algebraically simple eigenvalue of Lo ,o" L, then ’o is a bifurcation
point of(20).

Proof. Without loss of generality we can assume 2oj 4:0 if j 1, 2,.-., k,
while 2oj 0 if j k + 1, ..., m, where __< k __< m. Let F be the line passing
through the origin and 20.

F’, #,o, #6

On the line F, (20) can be written as

(21) u #Lou + #No(u),

where we have set No(u)= =1 2ojNj(u, 0) for convenience. From H3 we see
that Lou + No(u) is strictly differentiable at 0 [5, p. 310]. Since/ 1 is a simple
eigenvalue of Lo, it follows from Theorem 6 5, p. 311] that/ is a bifurcation
point of (21) so that Z,o is a bifurcation point of (20).

COROLLARY 3.1. If the hypotheses of Theorem 3.1 are satisfied, then on the
line F :, #,o, # R1, there are values of , for which (20) admits a nontrivial
solution.
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If H1-H5 hold and we again assume ko R is such that ko" L has 1 as an
algebraically simple eigenvalue, we can apply the methods of 2 to the case that

is real as follows. Lemmas 2.1 and 2.2 can be repeated for real to establish
the existence of a unique fixed point u* of (9) with a power series representation
(14). In analyzing the branching equation we must now ask, how many real
solutions does (18) have when the ajrkq are real? If we assume (17) holds, we can
apply the Weierstrass preparation theorem as before to show (18) equivalent to
(19). The analysis of the branching equation can thus be reduced to finding the
real zeros (, [L a) of the polynomial part of (19) when Il, I[l and ]a] are small.
In this context we have the following theorem.

THEOREM 3.2. Suppose the hypotheses of Theorem 2.1 hold with ko e Rm. If
(17) holds, and p is odd, then for all sufficiently small values of Ik- k0l, ]fll and
w II, equation (1) has at least one real solution.

Since the complex roots of the polynomial part of (19) appear in conjugate
pairs, we have the following.

COROLLARY 3.2. Under the hypotheses of Theorem 3.2, equation (1) has q
solutions counting multiplicities where q is one of the numbers p- 2k, k- O,
1,... EP/2].

4. Remarks on the example. We now return to the example of to illustrate
some of the above results. It can be shown that H1-H5 are satisfied by the oper-
ators in (5). Since n2, n 1,2,..., is a simple characteristic value of L and

L2 2L1, it follows that 1 is a simple eigenvalue of Lo 2olL + olL2, when-
ever ko (2ol, 202) is on the line F, :21 + 22 hE, n l, 2, .... From Corollary
2.2 it now follows that any point on one of the lines F, is a bifurcation point of
(5) with fll fiE 0. In what follows we take ko to be on F, and, for physical
reasons, assume 2ol and 202 are nonnegative. With this choice of ko it is clear that
u,(t) sin nt is a basis for V, the null space of I Lo. If we introduce the notation

[u,v]--(2/n)foU(t)v(t)dt, we can define the projection P’CI[O, n] -, 4 by Pu
[u,u,]u..
Recall from 1,

Nl(u ff
and

g(t, t’)sin u(t’) u(t’)] dt’

f [ sin 2u(t’)
Nz(u g(t, t’) d-2 sin2 u(t’) 2u(t’)] dt.

By slightly modifying the notation introduced in H2 we can write

N(u) At(u),
n=2

where At(u) A] (u), Az(U)) and A(u), j 1, 2, is a homogeneous polynomial in u
of degree r. If we expand in a Taylor series about zero the bracketed terms in the
integrands of N and N2, we see AZ(u) (0, 0) and

A3(u) g(t, t’)u3(t’) dt’, g(t, t’)u3(t’) dt’
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We now show that if 0 ’’02 ----( n2/3, then, in (17), p 3, while if n2/3 < )1,o2
<= n2/2, then p 3 for all but one value of d > 1. To establish this we note that

+ 202 g(t, t’)u(t’) at’, u,(t) u,.

Using u -n2u, and -g,,(t, t’) 6(t t’), we see, after integrating by parts,
that

g(t t’)u3.(t’) dt’, u.(t) 2 u4.(t) dt7lrl2

Thus p 3 unless

which holds on F, when

62ol + 202 0,

12202d2 /,/2
__

6202"
The above equation yields a unique d > 1 if and only if n2/3 < 202, which estab-
lishes our claim regarding p. If p 3, Corollary 3.2 implies that for small fll and
f12, (5) has either one or three small solutions for any , near one of the lines F,.

We conclude with some qualitative remarks about the branching solutions
to (5). For simplicity, take fll f12 0. The parameter I(I can be viewed as a
measure of the maximum deflection of the pendulum from rest so that ( 0
corresponds to the static case, u 0. The sign of ( serves to determine the initial
direction of the pendulum. Consider the plane S in 222(-space which passes
through 2o and is orthogonal to F.. If k near ko is in S, then we must have
2 21" From (16) we see that for k S, if we include only the lowest order
terms, the branching equation is

(22) 5z + -g2o + - 202 0.

In [5, p. 313] it is shown that the sign of the coecient of (3 in (22) determines
the direction of the branching. Applying this result we have"

(i) If n2/3 < 2o2 n2/2 and d2 > 122o2/(n2 + 62o2)or 0 2o2 < n2/3, then
in S [([ increases with z t, i.e., branching from F, is away from the origin.

(ii) If n2/3 < 2o2 n2/2 and d2 < 122o2/(n2 + 62o2), then in S, [([ increases
with -z, i.e., branching from F, is toward the origin.
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ON A SEQUENCE OF LINEAR TRIGONOMETRIC
POLYNOMIAL OPERATORS*

R. K. S. RATHORE"

Abstract. A sequence of linear trigonometric polynomial operators is constructed with the help
of the operators Lnp_p, which are generalizations of Jackson operators, and is shown to have the
order of approximation given by Jackson’s theorems. With the help of these operators, Jackson’s
theorems may be given a direct proof, without resorting to the relation E,(f) <= CE,(f’)/n.

1. Introduction. In this paper we give an explicit construction of a sequence
of linear trigonometric polynomial operators of the best approximation order
as given by Jackson’s theorems. P. P. Korovkin [4] has shown that the order of
approximation by linear positive trigonometric polynomial operators does not
exceed 1In2 where n is the degree of the polynomial. Seemingly this has had a
retarding effect on the studies of linear positive operators. Nevertheless, as will
be clear from the technique employed in the sequel, there is a way out. Implicitly,
this technique has already been exploited by P. L. Butzer [1] for Bernstein poly-
nomials.

F. Schurer [6] has studied the approximation of functions belonging to C2
by means of the operators L,p_p (n, p positive integers) defined by

f ’[sin 1/2t

2p

f(x / t), dr,(1) L.p_p(f x) A.p_p
where

A._= /sin1/2t
at.

For 2n-periodic functions L,v_ n is a trigonometric polynomial of degree at
most np p. Schurer proves the following results.

THEOREM I. The sequence {L,p_p(f; x)}, n 1, 2,..., converges uniformly on
[- n, n] to the function f(x) C2.

THEOREM II. If f(x) C2 and if f(x) is twice differentiable at the point
xo [-, ], then

(2) L._(f Xo) f(xo) 1
p.p_p) f"(Xo) + o

where pnp-p) and pnp-p) are defined by

/sin nt]2n l p.p p) 1" p"P-P)cos kt

Theorem II has given a partial motivation for our investigations. In the next
section we derive some properties of the operators L_.

* Received by the editors March 8, 1973, and revised form November 30, 1973.
Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-29, India.

Now at Department of Mathematics, Technological University of Delft, Julianalaan 132, Delft-8,
The Netherlands.
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2. Basic results. In [6] Schurer has shown that

(4) AnP-P Sin 1/2t
dt >__ Cpn2p-1

where Cp is a positive constant depending on p.
LEMMA 1. Let m be a positive number and 2p > m + 1; then

(5) Lp_p(Itl; O) <= C,pn-,
where Cm,p is a constant independent of n.

Proof. Using Isin ntl <= nlsin tl, -o < < c, and sin >= 2tier, 0 <= <= 7r/2,
we have

2p

dt

=< 2m+2 tmn2p dt + tin(sin nt)2p dt
JO r/2n

<_ 2zm + -1

m + 1 + 2p- m
?12p-m

and using (4) the inequality (5) follows.
LEMMA 2. For each fixed k the coefficients p(knp-p) in the expansion (3) can be

written as polynomials in n of degree 2p 1.

Proof. We know that

sin..1/2nt/2 n-1

sin1/2t]
=n+ 2=1 (n-k) coskt.

Hence the result is true for p 1.
Let us assume that pk"p-p)= O(?/2p-1), k--0, l, "-’, np- p. Multiplying

the respective sides of (3) and the above identity and bearing in mind how the
terms in cos kt are formed, we see that

)Ok((p+ 1)(n- 1)) O(n2p 1. n n) O(n2(p+ 1)- 1).
Thus by induction it follows that the above assumption is true for all p. Now,
following the method of Schurer [6, Chap. 3, 2.1] for calculating p(k3"-3) from
p(k2"-2) and using induction over p, it is easily proved that the p(k"p-p) are poly-
nomials in n and k in the ranges r(n- 1) <_ k <= (r + 1)(n 1), r 0, 1, 2, .-.,
p 1. Thus in particular for each fixed k it follows that p(k"p-p) is a polynomial
in n of degree not exceeding 2p 1. As from (4), p(Onp-p) Cp?12p-1; hence it is
indeed a polynomial of degree 2p in n. Since

p(knP- p)

p(0np- p)
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for each fixed k, it follows that p"P- p) is a polynomial of degree 2p in n. This
completes the proof of the lemma:

It is clear that in (3),

I"-/#o"-1 =<
for all n, k and p, and so by Lemma 2 we conclude that

pnp p)
a2(6) P"-P) a= n

for each fixed value of k, where the aa do not depend on n. It is clear that

(7) Lp_p(f; x)= _1 f(x + t)u(t)dt,

where

Un(t) -- k=l P(OnpZ - COS kt.

Let us consider the determinant Ak)(t, x), k 0, 1, ..., m + 1, of (m + 1)th
order defined by

A(k)(t, x) (k)luiJ
where

j=l,

,,k) sin [j/2]t j even’lj

cos [j/2]t, j odd,

j--l,

a!k) sin [j/2]x j even+lj

cos [j/2]x, j odd, k-0,

di-
a(k) r(k) 4 4: k +ij dxi- k + j,

Here [j/2] denotes the largest integer not greater than j/2.
Let us define the quantities fk) by

2 A)(t, x)
A(x, x)"

It is readily verified that the expansion of ")(k) about the point x has the form

(8) fk)__ (t- x) / O(It- xlm+ ).

Thus it is clear from Lemma that

(9) L,p_p(f(k) x) O(n -k)

provided that m < 2p- 2. Since Dk) is a trigonometric polynomial of degree
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[(m + 1)/2] in t, we conclude from (6) and (7) that

b)(x)
(1 O) L,v_ p(f(k) x) ,

gl
)t

where b)(x) are functions in x independent of n.
In the sequel, by the 2-neighborhood of x we mean the closed interval

[- + x, + x]. Let f(t) be a function bounded in the 2-neighborhood of x
and having rth derivative at the point x where r N m < 2p 2. From (8)
we then deduce that

(k)
(11) f(t) f(x) f(k)(X)-k + h(t)(t x),

k=l

where with hx(x) O, hx(t) is bounded and is continuous at x. From Lemma
and the linearity and monotony of L,p_p, it can easily be shown that

L.p_ p(h,(t)(t x)" x)

where le.I 0 as n --, oe. Hence denoting L,v_v(Ft();x) by/,; we have

f()(x)
L,p_ p(f; x) f(x) ,, + n.

Thus from (10) we have the following lemma.
LMMA 3. Let f(")(t) exist at x and let f be bounded in the 2-neighborhood

of x. lf r N m < 2p- 2, then

(2) L.._.(f; x)- f(x)= n, + n.k=l

where a(x) are functions in x independent of n and e, 0 as n .
Using (t x) in place of fl) in (11) we find that a(x) 0.

3. Linear combinatiom of L,p_ v. Let

where

ao v- 1, i,j 1,2, ..., m + 1,

and denote by Am+ l(Lnt,_t,) the determinant obtained from Am+l by replacing
all by Linp_p(f; x), 1, m + 1.

We shall consider the following combinations:

(13) t’x Am+ x(LnP-P)
n,p,, Am +

It is clear that _tm is a polynomial operator of degree (m + 1)rip p. We
note that by utilizing the fact that el(X) 0 in (12) we could have used another
combination, obtained by deleting the second columns and the last rows from
both determinants in the definition of tml(x’l which would then have been of
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degree mnp p. In the sequel it is immaterial which definition we choose, except
for minor changes in the proofs.

Obviously tm] inherits the property of L,p_p given in Theorem I.
The following is our main result giving approximation of r-times differentiable

functions by the operators [m].,v(x).
THEOREM 1. Let f(t) be bounded in the 2g-neighborhood ofx possessing an r-th

derivative at x, r m < 2p- 2. Then

(14) l[.7(x) f(x)[ o(n-) and I; X](x) f(x)l O(n-").

Proof. From Lemma 3 and the definition of .,p we have

[m] A(

where +A) is obtained from + by replacing a by

(x) .= n
i= 2 m+

Multiplying the (j + 1)th column of +a(x) by j(x)/n, j 1, 2,... r, and sub-
tracting from the first column we have

[m] A(2)6+ ,[.,.(x) f(x)]

where +A(2) is obtained by replacing a in + by e,/n. The first relation of
(14) follows. The second assertion can also be proved in a like manner.

4. Approximation of funetiom th eontinuom r-th derivative. Applying (12)
to the function (t x), r m < 2p 2, we have

(15) L,_p((t x); x)
(x) 8n

k=r k + ’where the (x) are independent of n and e, 0 as n . It is also clear that if r
is odd, then the left-hand side of (15) is identically equal to zero.

In the sequel (a, b) denotes an open neighborhood of [a, b].
THEOREM 2. Let f()(x), r m < 2p 2, exist and be continuous on

having modulus of continuity (6)(0). Further, let f be bounded on the 2g-

neighborhoods of a and b. Then

(16) t (n-
for x [a, b], where A A(r) is independent of n.

Proof. With the given hypothesis on f we can write

f()(x)
f(t) f(x) (t x)

k!
(17)

k=l

(t x)+ ,(f()(r/)- f()(x))2(t) + (t x)m+ lh(t, x)r!

for e [- + a, b + 7], x e [a, b], where r/= r/(t, x) lies between and x, ,(t) is
the characteristic function of (a, b), and h(t, x) is bounded, by M, say.
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We can write
rn+l

[,n],,p(X) f(x) oj(Lj,p_p(f x) f(x))
j=l

m+l
Oj rt [sinkjnt]

j=l Ajnp_ p

(f(t + x)- f(x)) sin

= Aj.p_p = k r

2p

+ x, x))

/sin 1/2jnt 2p

f’)(x))2(t + x) + m+lh(t + x,x)
sin1/2t

dt.

Denoting the three terms of the sum by El, 2 and E3 respectively and using
Theorem 1, Lemma 1, Lemma 3 and the boundedness of h(t, x) we easily have

"1 O(n-m- 1), ]3 O(n-m- 1).

Now for an arbitrary 6 > 0,

Hence by Lemma we have

:2 =< o(,) I11 n"j=l

Cr+ 1,p

where C is a number independent of n. Since the order of o(n- 1) cannot exceed
1/n, the inequality (16) follows from these estimates of E Ez and Z3.

It is clear that if 09(6) 0 then we have

,,p, f(x)l O nm/l

Immediately we have the following corollary.
COROLLARY. Letfr)(x) Lip on (a, b), where 0 < <= and r __<_ m < 2p 2,

and let f be bounded on the 27t-neighborhood of a and b. Then

I,,p(x) f(x)l -<_ Mn-" x [a, b],

where M is a constant independent of x and n.
The following theorem gives the convergence of L,p_p and consequently

that of _tml for continuous functions.
THEOREM 3. Let f be continuous on (a,b) having modulus of continuity

09(6) 0). Further let f be bounded on 2n-neighborhoods of a and b. Then for
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x e [a, b],

IL,,_v(f" x) f(x)l < Aoo(n-’)
and

,,p, f(x)l _-< Boo(n-1),
where A and B are positive numbers independent of x and n.

The proof can be given on lines somewhat similar to those for Theorem 2,
and we omit it. We note that in the case (6) 0 both moduli in Theorem 3
will be O(1/n2p- 2). The following corollary is evident.

COROLLARY. Let f z Lip e on (a, b>, where 0 < then for x e [a, hi,

and

IL,p_p(f; x) f(x)l =< Mn

[m]lSv,,p(x)- f(x)l =< Nn ,
where M and N are constants independent of x and n.

5. Approximation of functions of class C2. So far we have considered the
approximation of a general function without specializing it to belong to the class
C2. If this is done, however, there is an additional advantage of enabling the
constants in various error estimates to be independent of the functions concerned.

To prove this we shall use the following lemma, which G. Freud [2] proved
for the case m 2 and conjectured for arbitrary integer m which was subsequently
proved by G. I. Sunouchi [8, Remark, p. 183]. The continuity modulus m,, of
mth order of smoothness occurring in the sequel is defined by

mm(f; 6) max Cv( 1)f(x + vh).
Ihl =<6 v=0

LEMMA I. Let B be a linear operator C2 C2,, Btm the restriction of B to
the space C of 2x-periodic functions having a continuous 2x-periodic mth deriv-
ative; then for an arbitrary f C2 and an arbitrary integer v we have for all

IIB(f)llc= max IB(f; x)l -<_ K,,(IIBII + vmllB(m)ll)OOm(f; v-),
where the norms of the linear operators B, respectively B"), are defined as

IIBII sup [IB(f)[Ic2=, lIB(m)ll sup
J’lt c2,_- feC’’,llft’n)ll <=

For f C(2=, k => 2, G. Freud [3] proved the relation

f(k- i)l[ <= 2re f(k)I1"
i.-.,(k)By repeated use we have for f -2r,

f(i)[[
/(k) ThenLet f ,2.

(t- x)’
f(t) f(x) (t x)f’(x) + f"(x)

2!

i= 1,2,...,k- 1.

(t- x)-’ (t- x)"
+ + --f-l(x)+

(k- 1)! k!
--f)(),
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where lies between and x. Denoting L.p_p((t x)i; x) by/tl") we then have

IL.p-p(f x) f(x) #l")f’(x) . f"(x)

f-’(r)l<
(k- 1)! =-k--f-. Mk’

where Mk maxx If(k)(x)l and *#") L.p_p(lt- xlk; x).
Since we have

m+l

[ml(x] E oqLinp p
i=1

where +11.= oi 1, we find that
"+’ f"(x)’Itmli f(x) f’(x) aip]"i) aip’i)

=1 2 i=

f*-l(x) %’ M, +1

(k 1) i=1 i=1

Thus by (13) and (15) it easily follows that

],v(x) f(x)[ [f’(x)[O ,nmQ + [f"(x)[O n+

+...+ ,f(u-’)(x),O(lnm f + MO (1)

because of norm inequalities for the derivatives of f. Here the O-term holds
uniformly in x.

Hence we can write

[mlI.,p(X)- f(x)l <- AkMffn
[m]where Ak is an absolute constant. Thus taking B .,p(x) f(x), we find that

B()II- sup

< Ak
Hk"

Also
m+l

B ,,,,sup B(f) c= <= I.,12 B. say.
IIJ IIc2r <- i=

Then by Lemma for an arbitrary f e C2 and m + >__ k we have

[m],n,pl,X) f(x)ll max [tml/xi f(x)[

V o(f; n
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that is,

[rnl.’,,.,(x) f(x) <= C,co,(f n 1),
where C, is an absolute constant independent off and n.

Using

(-Dr +l(f; t) _<_ "co(f t)
t(k)[7, p. 56], we have for f e 2,

[m] Ck+l

Thus the operators ,(x) provide us with a direct proof of Jackson’s
theorems.

6. Derivatives of [] f,p(x). Let be continuous in Ix- ,x + ]. Dif-

ferentiating (1) k-times using Theorem in [9, p. 59], we have

By linearity it follows that

Hence the derivatives of ,,(x) approximate the continuous derivatives off in
the same way that --,n, approximates the derivatives off, enabling the results
of the preceding sections to be applied. We note that this technique is also
applicable to the partial sums of Fourier series, etc.

In summary, the linear operators we have used give the best approximation
order for Jackson’s theorems [4], [5]. By S. N. Bernstein’s theorems [4], [5] it is
clear that approximation orders given by Theorems 2, 3 and the corollaries thereof
cannot be improved. Without proof we remark that there is an infinity of linear
combinations of L.n_ p which give the same order of approximation as
but none gives a better order.
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SOLUTION OF A CLASS OF PARTIAL DIFFERENTIAL EQUATIONS
WITH INITIAL CONDITIONS’

L. BILLARD, AND NORMAN C. SEVERO

Abstract. A class of partial differential equations with initial conditions is considered. Conditions
and a method for obtaining the exact solution, when it exists, are presented.

Denote by I the set of integers and by A/ the nonnegative integers, and let
f be a finite subset of I x I A/ A/. We consider the partial differential
equation

(1) c3(w,iot Z, t)
WuZ

Ol +

WIz
Z, t)

where the summation is over all (u, v, l, m) s f and

l=m=0

l+mTr’ 17
owlOzm W/, > 0 and m 0

c3mx
-Zm, l=0andm>0.

We let N be a finite positive integer and define the set

Su {(i,j)6 x ’i + j N}.
We shall present conditions and subsequently a method for obtaining the exact
solution, when it exists, of (1) subject to the initial condition

(2) (w, Z, 0) wizJaij,
(i,j)esN

where the aj are constants.
The method of solution will lead to a triangular system of differential-

difference equations if one of the following conditions holds.
Condition A. For each (u, v, l, m)s , we have

2(N+ 1)(m-v)+2(/-u)-(m-v)(2r- +m-v)0

fort 0, 1,..., N.
Condition A*. Same as Condition A with replaced by .
For example, Condition A holds for

W2 2
t zW)

owOz + (1 W)w,
Received by the editors August 2, 1973, and in revised form November 1, 1973.
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representing the famiIiar general stochastic epidemic (see [1] for the solution of
this equation using the methods of this paper); but neither Condition A nor
Condition A* holds for

t7
(W2 Z2

27
+ W)Uw

To obtain the exact solution of (1) subject to (2), we begin by setting

z, t) Z
(i,j) eSN

Then substituting t(w,z, t) in (1) enables the partial differential equation in
rt(w, z, t) to be expressed as a system of differential-difference equations in fij(t),
for (r,s)

f;s(t)=(s+l-u)(s+l-u- 1)...(s-u+ 1)(r+m-v)
(3)

(r + rn- v- 1)... (r- v + 1)f+,_v,s+t_,(t),
where the sum is over (u, v, 1, m)e f and fo(t) 0 whenever (i,j) SN, subject to

fij(O) aij for (i, j) SN.
Using the approach of [2] we represent each pair (i,j) S by the positive

integer

k =_ k(i,j; N)= (N + 1)(N + 2)/2 -(N + 1)i- j + (i- 1)i/2.

Setting f/j(t) e(i)e(j)e(N -j)xk(t), where e(y) 1 for y _>_ 0 and 0 for y < 0,
enables us to write (3) as the system’ for (r, s) e S,

x,(t)- [(s + 1- u)(s +, 1- u 1)... (s u + 1)(r + m v)

(4) (r + rn- v 1)... (r- v + 1)e(r + rn- v)e(s + 1- u)

e(N- r- m + v- s + U)]Xkr+,,_v,+t_,;m(t),
again the sum being over (u, v, l, m) e f, subject to Xk(O) aij.

We now note that the system (4) is lower triangular whenever k(r + m v,
s + u; N) <= k(r, s; N) for all (r, s) e Su and (u, v, l, m) e f; this, it is easy to
check, is equivalent to Condition A. Obviously Condition A* is equivalent to
the system (4) being upper triangular. Thus the solution for the Xk(t) readily
follows by, say, application of [3, Thm. 1]. Consequently the solution for
and hence rt(w, z, t) is given.
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A DIFFERENTIAL TRANSFORM*

ABRAHAM UNGAR"

Abstract. This paper contains a definition of a linear operator T, referred to as a differential
transform. The differential transform T commutes with differentiation and as a result, T can be applied
for the solving of some linear partial differential equations. Two illustrative examples for the appli-
cation of T are introduced.

1. Introduction. In a previous paper [1], a linear operator T has been defined
and shown to be related in some sense to the Laplace transform operator. The
operator T transforms functions of a specific type of the variables x (x l, x2,
.., x,), 2 and s into functions of the variables x and # and satisfies the following
two relations" Ttgxp tgxPT and Ts" tgT. These relations make T useful in solving
some boundary value problems. Usually, the operator T is defined in terms of
differentiation rather than integration, and hence it is referred to as a differential
transform. In this paper the definition of T is generalized, and its properties are
proved by using integrals in the complex plane. The need for a generalization of
the definition of T has been pointed out in [1]. For the definition of T we need
the notion of "continued integrals", which are defined in 2. These integrals
are analytic continuations of ordinary ones. The definition of T, its properties
and applications are given in 3. Two illustrative examples for the application
of T are given in 4, and an "inverse" of T is introduced in 5.

2. Continued integrals. In this section we define the "continued integrals"
which are analytic continuations of ordinary ones.

DEFINITION 1. Let F(o, s) be an analytic function of o, regular on a domain
D for each s > 0. Let

(2.1) F(co, s).e ds f(a, co), a > O,

be uniformly and absolutely convergent in every compact subset of D. Then, for
an analytic function h(o) of co, regular in D and satisfying

(2.2) Ih(co)l > a

there, we define the continued integral

(2.3) F(co, s) e -ht) ds f(h(co), co).

Obviously, if the range h(D) of h cuts the positive real axis, then (2.3) is the
analytic continuation of

ff F(u, s) e -h(") ds,

where u is the restriction of co to the curve in D. for which h(u) is positive. The
letter C on the integral sign in (2.3) refers to analytic continuation.

* Received by the editors September 25, 1973, and in revised form February 14, 1974.

" Department of Environmental Sciences, Tel-Aviv University, Ramat-Aviv, Israel.

920



A DIFFERENTIAL TRANSFORM 921

3. A differential transform. Consider the triplet F {X, Du, D(x)} where
X is a domain of the n-dimensional complex space, D, is a simply connected
domain of the complex t-plane whose boundary is Du, and D(x) is a simply
connected domain of the complex -plane whose boundary is D(x). D(x) is
dependent on the elements x of X. Let M and N be two sets of analytic functions
related to F as follows. M is the set of all analytic functions t* regular on X x D(x)
onto Du such that ft* #*/2 : 0 and p* maps D(x) onto Du for every x in X.
N is the set of all analytic functions regular on X Du onto D(x) such that
,[* c3*/# 0 and A* maps Du onto D,(x) for every x in X. There exists a one-
to-one correspondence between elements of M and elements of N correlating
p* in M to the element/* in N such that p p*(x, *(x, p)) and 2 A*(x, p*(x, ))
are identities on Du and on D(x), respectively, for every x in X. In this sense,
#* and * are regarded as inverses of each other with respect to the triplet F.

For the triplet F we assign two linear spaces A, B and a linear operator T
from A onto B.

DEFINITION 2. A is the linear space generated by all functions of type
F(x, 2, s) e -"* such that

(i) x X, 2 D(x) and s s S, where S is a domain in the complex s-plane
including all positive values of s;

(ii) * M;
(iii) F is regular on X x D(x) S (X x Dz(x) is the set of all points (x, )

such that x X and 2 D(x));
(iv) the integral f F(x, 2, s) e- ds is uniformly and absolutely convergent

in every compact subset of X x Dz for every a > O.
B is the linear space generated by all functions of type

where

J.* d#’ F(x, 2", s) e -(u’-") ds,
2hi

(i’) xeX,#eDuandseS;
(ii’) 2* e N;

(iii’, iv’) F satisfies (iii) and (iv).
DEFINITION 3. Let T be a linear operator from A onto B given by

(3.1) T{F(x 2 s) e -su*} * d#’ F(x, 2" s) e -s(u’-u) ds,
Dtz

where * and * are inverses of each other.
The operator T will be redefined in Definition by means of differentiation

rather than integration for the particular case in which F is entire in . In Defi-
nition $ one can transform to the variable of integration through the sub-
sitution *(x, ), obtaining

(3.2) r{F(x 2 s) e -u*}
1

d2 F(x, 2, s) e -(u*’-") ds
DMx) 0

as an equivalent definition of T, where dD(x) is the image 2*(x, dDu) of dDu in
the A-plane for x X.
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From (3.2) it follows that T is well-defined, that is, if F(x, 2, s)e -su* and
G(x, 2, s)e -sv* are two representations of the same element of A, i.e., if

F(x, 2, s) e- "* G(x, 2, s) e-*,

then their images under T in B coincide.
For an index exponent p (P l, P2,"", Pn) of order n whose components

are nonnegative integers, IPl P + P2 + + P,- Let t3p be the differential
operator on A and on B

p= cx’ox &,p,"

From (3.2) the following relations are immediately deduced.
THEOREM 1. Tc3PP, t3PxT and Ts c3kTfor k O, 1, 2,....
The relations in Theorem make the operator T useful in solving some linear

partial differential equations, as we shall see in two forthcoming examples.
Fgrmally expanding F(x, 2, s) in (3.1) in power series in s, let

k=O

Applying the operator T, we get

T{F(x, 2, s)e su*} T s*fk(x, 2)e
k=0

o fk(x, 2"),* dff sk e -(u’-u) ds
k= D

k! fk(X,
k= 0 Du0.3)

k=0

The formal operations in (3.3) can be justified in some cases. For example, they
are justified when F(x, 2, s) is entire for s and

F(x, 2, s) O(e), Isl ,
for every positive e. This is a consequence of [7, Chap. II, Cor. 14c]. Here 2" is a
function of x and/’ inside the integral sign or a function of x and/ after integration
is performed. From (3.3) the differential nature of the operator T is evident, trans-
forming s into c3u. Hence, T is referred to as a differential transform. It should be
noticed that T is not one-to-one, as nonzero functions can be transformed into
zero. In the definition in (3.3) we treat the operational symbol cu for differentiation,
as if it were a variable throughout a calculation. We give the symbol c3, its original
meaning after expanding its function in power series in c3. Then t3 performs
differentiation with respect to/ of order k of the whole expression in which it
appears.
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Adopting the notation in (3.3), we may rewrite the definition of T in the
following form.

DEFINITION 4. For F(x, 2, s)e -s"* in A,

T{F(x, 2, s)e -s"*} F(x, 2", 8.)*,
where 2" is the inverse of/t* with respect to the triplet F.

The source under T is regular on X x Da as a function of x and 2 and its
image is regular on X x D,. We note that usually the image of T is given as an
infinite series as in (3.3). When the series does not converge, we use the integral
representation (3.1) for the image of T. From Definition 4 we see that the in-
dependent variable 2 is transformed into the dependent one 2", the variable s is
transformed into the operational symbol 8,, and e -"* is transformed into ,*.
The "operational calculus" as presented in Definition 4 and Theorem can be
extended to a more general one which considers s, 2 and fl as vectors ofL variables.
This generalization, which has been introduced in [1] for a particular case, can
be treated by the present method with no difficulties, though details are not given
here.

As a particular case, let Dx =.D, be a domain in the complex plane and let
/**(x, 2) it and 2*(x, ) =/,. Then 2" and

To{F(x, 2, s)} ae2 T{F(x, 2, s) e -x} F(x, I,

F(x,2,8a),

since the variables 2 and/t are regarded here as two notations for the same variable.
Here F(x, 2, s) is entire in s, and both F(x, 2, s) and F(x, 2, 8) are regular on
X x D4. Obviously, To also possesses the relations in Theorem 1, and we have the
next definition and theorem.

DEFINITION 5. For F(x, 2, s) e- in A,

To{F(x,2, s)} F(x, 2, Ok).

THEOREM 2. ToOVx 8To and Tosk 8TO for k 0, 1, 2,

4. Examples.
Example 1. Let X be the complex plane. The function 4 F(2)cosh (v/- x)

satisfies the Helmholtz equation 2d])/X2 SdD for an arbitrary analytic function
F of 2 regular in some domain D, where s e S and x e X. By Theorem 2, the image
0 of, , To { q5 F(/,) cosh (V/-, x),

satisfies_the heat equation

cqx2

Expanding in power series in ,, we get

F(n)()x2n’ =,= (2n)!

This solution of the heat equation has been studied by Widder [6].
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Example 2. Consider the function

t*(r, 0, z, 2) r sinh 0 sinh (2 + iO) + z cosh ,
and its inverse [4], [5],

2*(r, 0 z, t) sinh-I It zcoshcz
r sinh

The derivative * of 2" with respect to "time" t,

* [(t z cosh )2 + r2 sinh2 ]- 1/2

iO.

a>0,

is finite and different from zero for < < , < z < and 0 < r < .
Hence, there exists a domain X of the 3-dimensional complex space of the variables
r, 0, z and a domain Dt of the complex t-plane such that (a) X includes all real
values of 0 and z and all positive values of r, (b) Dt includes all real values of t,
and (c) * # 0 on X x D,. Let D(x) be the range 2*(x x D) of t* for x in X.
Thus we have a triplet F {X, Dt,Dx(x)} for which t* and 2* are elements
of M and N, respectively. Let b F(2)e-* be an element of A. tp satisfies the
reduced wave equation Atp s2tp, where A denotes the Laplacian operator in
cylindrical coordinates:

2 2A tg2 + -tgr + tg + z-
Hence, by Theorem 1,

0 T{F(2)e -s’*} F(2*)*
satisfies the wave equation

A typical application of the differential transform T to the theory of wave
propagation is the representation of a progressing wave J,* in terms of a plane
progressing wave e -’* by )* T{e-s’*}. A boundary value problem is solved
first for the plane wave e -t* and then, by applying T, for the progressing wave

* (see [2]-[5]). In a simple case, assume that the solution includes the expression

T
-ke-he

h>0, 0<k < 1, Re(s)>=0.

This expression represents a sum of infinite reflections:

,T 2) k" e s(t*+nh) k f(2,),,,
n=0 n=0

where

2,*(r, 0, z, t) 2*(r, O, z, nh).

5. The inverse of T. From (3.2) it can be seen that T is not one-to-one, as
nonzero elements of A can be transformed into the zero of B. As an example, let
us consider the two elements of M" p]’ x sinh 2 and # (e x2e 4)/2, where
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x is a single variable. Their inverses, respectively, are these elements of N"
/t’ sinh- (l/x) and 2’ In (p + v/#2 + x), and we have

T{e-SUr} T{e-S,} ], (p2 + xZ)-,/2.
However, it is obvious that T{f(2, s)e -"r} and r{f(2, s)e -su} are not equal for
an arbitrary function f of 2 and s. Hence, we make the following definition.

DEFINITION 6. T{F(x, 2, s) e -u*} and T{G(x, 2, s) e -s’*} are said to be
equal, in symbol

T{F(x, 2, s) e -su*} --- T{G(x, 2, s)

T{f(2, s)F(x, 2, s) e -s"*} T{f(2, s)G(x, it, s) e -s*}
for an arbitrary function f(2, s) for which the operand of T is an element of A.

From (3.2) it is obvious that T is one-to-one under the equality relation =,
and hence the inverse T- of T can be defined. When all functions of s are entire
in s, the definition takes the following form.

DEFINITION 7. For F(x, 2", c,)* in B,

T- {F(x, 2", c,),*} F(x, 2, s) e -s"*,

where p* is the inverse of i*.
For T-1, Theorem implies Theorem 4 as follows.
THEOREM 3. T- t? t?T- and T- ck, skT 1.
As an application of the definition of T-1, we shall prove the following

theorem. Let D be a linear differential operator performing differentiations with
respect to x (i 1,2,..., n) and let x (x,x2,..., x,).

THEOREM 4. Let l*(x, 2) be an analyticfunction ofx and 2 such that * #*/2
is different from zero in a region. For an arbitrary analytic function g of p*, regular
over the range of #*, DE(#*)= 0 if and only if De-s"*= 0 in the region for
0<s<.

Proof. By assumption, Df(2, s) e -s"* 0 for an arbitrary function f(2, s) (this
arbitrariness is understood to be restricted to those functions for which the ap-
propriate expressions are elements of A). By Theorem 1, T commutes with D,
and hence

DT{f(2, s) e -s"*} Df(),*, c,)* 0.

This implies that

Dg(lu)f(2* cu)i* =- O.

The arbitrariness of f permits one to apply T-1 to the last partial differential
equation to obtain

DT- ’g(p)f(2*, c.)* =_ 0

on using the commutative relation between D and T- x. Hence
Dg(la*)f(2, s) e -su* O.

This equation reduces to the statement of the theorem for s 0 and f(2, s) 1,
and hence the result is obtained.
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Example 3. Let be the wave operator in cylindrical coordinates (r, 0, z)
given by

and let

[--] c32 + !c3.+ 2c302 + c32 c32

a sinh-l(.t-zcsh) >0, r>0,
r sinh

and b 0. Then [S]e -s(a+ib) 0. Hence, by Theorem 4, [-lg(a + ib) 0 for an
arbitrary analytic function g of a + ib.
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A LINEAR VOLTERRA EQUATION IN HILBERT SPACE*

KENNETH B. HANNSGEN"

Abstract. We determine the limit, as , of the solution of the equation

x(t) + A(t s)x(s)ds x + tk

in Hilbert space. Here A(t)= _A(t, 2)dE, where the spectral family {E} corresponds to a fixed

self-adjoint linear operator L and A(t, 2) has certain monotonicity properties as a function of t. The
results generalize our earlier work on the special case A(t)= A(t)L with A(t) scalar. The main new
step is a continuity result for a related scalar equation depending on the parameter 2.

1. Introduction. We consider the equation

(1.1) (t) + A(t s)(s)ds o + tk, >= O,

where A(t) is a positive self-adjoint linear operator with domain containing the
(fixed) dense subspace D of a separable Hilbert space H. The initial data are the
prescribed elements 0 and of D. A solution of (1.1) is a continuous function
x:R + H (R + [0, )) with values in D such that A(t s)x(s) is continuous
in s and (1.1) holds. We find conditions under which limt_o x(t) exists.

We assume that

(1.2) A(t)y A(t, 2) dEy, y e D.

Here {Ex} is the spectral family [10] corresponding to a fixed self-adjoint linear
operator L :D H with spectrum A = (-, ); A(t, 2) is continuous in for
fixed t, and A(t, )= toa(S, 2)ds with a(t, ) nonnegative (2 s A). (All integrands
in formulas like (1.2) will be interpreted as zero when 2 A.)

We represent solutions of (1.1) as linear combinations

(1.3) y(t) U(t)Xo + W(t)k,

where U and W respectively are formal solutions of the resolvent equations

(1.4) U(t) + A(t- s)U(s)ds I (=identity),

(1.5) W(t) + A(t- s)W(s)ds tl.

If H R {reals}, A A, (1.4) and (1.5) reduce to scalar equations with
solutions U(t) and W(t)= to U(s)ds. In this case, recent results of D. F. Shea
and S. Wainger [11] imply that if A’ a L (0, 1) f3 C(0, ) and a is nonnegative,
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Virginia 24061. This work was supported in part by the National Science Foundation under Grant
GP-27973.

927



928 KENNETH B. HANNSGEN

nonincreasing, and convex, then U e LI(0, oe) f’l C1[0, oe) and U’(t)
It is then easy to use resolvent formulas to study the asymptotic behavior of
solutions of variants of (1.1) with more general forcing terms.

Our results in the vector case are less complete; we do not determine whether
I[U(t)ll is in L or obtain limits in the norm topology as --, oe for U(t) and W(t).
We do, however, find conditions under which x(oe) exists and IIU(t)ll and IIW(t)ll
are bounded. These results, combined with suitable resolvent formulas, yield
some results for variants of (1.1) (see Remark (iv) following Theorem 1).

In Theorem we use spectral decomposition to reduce the problem to con-
sideration of the scalar equation (2.2) with parameter. This reduction is possible
because of the special form (1.2) of A(t). Theorems 2, 3 and 4 show how the solution
of (2.2) depends on 2; they give conditions on a(t, 2) ensuring that the hypotheses
(2.5), (2.6) and (2.7) of Theorem hold.

Our results apply, for example, to the equation

(1.6) u,(t, y) + [e(t s)L + (t s)L1/2]u(s, y)ds g(y)

with initial condition u(0, y) f(y), where L is a positive Sturm-Liouville oper-
ator and a(t, 2) e(t)2 +/(t)21/2 satisfies appropriate conditions, including (2.11)
below (integration puts (1.6) in the form (1.1)). More generally,

a(t, 2) j(t)2j
j=l

(with suitable ej, fl) is a possible kernel for (1.6). The unusual kernel,

(1.7) a(t,2) (t + 1)-12 + 2(t+l)/(3t+2)

is admissible if L >= I (see the last paragraph of 2).
The particular concern.of the present work is illustrated by the kernel

A(t) (1 + t)l/2L q- (1 + t)l/3L 1/2 L L 1/2

where a(t, 2) tends to zero (t --, oe) but is not in LI(0, OO). Even in the scalar case,
this situation leads to analytic difficulties, studied most successfully so far by
means of the Fourier transform. Levin and Nohel [8] used this method; later
versions appear in [4], [11] and in our proofs of Theorems 3 and 4 below.

In [7] we determined an asymptotic formula

IIx(t)- (t) lO (t

for the special case of (1.1) where a(t, 2) 2a(t)(A(t) A(t)L, L >= 2oi > 0) and
a(t) is nonnegative, nonincreasing, and convex on (0, oe), a(t)dt < oe, and
a(t) a(oe). Here f(t) A-l(oe)L-lk, except when a(t) is piecewise linear and
of a special form. Earlier [5], [6] we developed boundedness and continuity
results analogous to Theorems 3 and 4, but with a(t, 2) 2a(t); generalizing these
results to the present case is the main analytic task in this paper. Our hypotheses
will exclude the possibility that a(t, 2) is a piecewise linear function of t.

A. Friedman and M. Shinbrot [3] study the operator equation

R(t) + A h(t- s)R(s)ds I
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in Banach space. They use complex spectral decomposition to determine con-
ditions under which, for example, ]lR(t)]l e LP(0, )(1 __< p < c). They also dis-
cuss the existence (in various senses) of solutions of equations with variable
operator kernels.

C. M. Dafermos [1] studies equations like (1.1) (but with kernel A(t, s) not
necessarily of convolution type) by means of Lyapunov functionals and discusses
applications to linear viscoelasticity.

R. M. MacCamy and J. S. W. Wong [9] study the equation

u,(t, y) + a(t s)Lu(s, y) f(t, y),

where L is a strongly elliptic partial differential operator with discrete spectrum
and a is a strongly positive (scalar) kernel. They, too, use certain functionals in H.

2. Statement of results. Following Friedman [2], we shall study (1.4) by
means of the spectral representation

(2.1) U(t)y u(t, ) dExy,

where u(t, 2) is the solution of the scalar resolvent equation, which we write in
the differentiated form

(2.2) u’(t, 2) + a(t s, 2)u(s, 2) ds O, u(O, ) 1.

(Primes denote differentiation with respect to the first variable, in this case.) We
let w(t, 2) u(s, 2) ds and

(2.3)

Then

(2.4)

W(t)y U(s)y ds w(t, 2) dEy.

w’(t, 2) + a(t s, 2)w(s, 2) ds 1, w(0, 2) 0.

Throughout this paper we write A-1(, 2) =( a(t, 2)dr)-1; if the integral
is infinite, A- 1(, 2) 0.

THEOREM 1. With A(t) as in (1.2), suppose

(2.5) lim u(t, 2) 0, lim w(t, 2) A- 1(, 2),

and there exists a C < such that

(2.6) lu(t, A)I + Iw(t, A)l C,

Assume further that

(2.7) u(t, ) u(t, 2), w(t, ) w(t, 2)

uniformly in 0 < .

2eA,

O=<t < c, 2eA.

(/ 2, peA),

Then (2.1) and (2.3) define operators U(t), W(t)’H H with IIU(t)ll C,
IIW(t) <- C. U and W are strongly continuous in t, and both map D into D.
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If Xo and k belong to H, and if y(t) is the function defined by (1.3), then

(2.8) y(t) -+ A- 1(oo, ,/) dEak (t -+ oo).

Suppose in addition that

(2.9) A(t, ) <_ (1 + 121)o(t) (2 A),

where o(t) is bounded on compact subsets of R +. If xo and k belong to D, then y(t)
is the unique solution of(1.1) and

(2.10) lim Ly(t) L[lim y(t)].

Remarks. (i) If L-1 exists and is compact, hypothesis (2.7) may be omitted;
see the remark following the proof of Theorem 1.

(ii) If x0 (or k) belongs to H D, y(t) is a weak solution of (1.1), in the sense
that

lim A(t s)y,(s)ds lim [x, + tk. y,(t)] x0 + tk y(t),

where x,, k, D, x, Xo, k, k, y, U(t)x, + W(t)k,.
(iii) Equation (2.10) tells us that y(t) y() in the topology on D determined

by the norm( yil 2 + IILyl 2)/2.
(iv) If a forcing term h(t)g is added to (1.1), the resolvent formulas

x(t) y(t) + U(t- s)gh(s)ds

y(t)+ h(0)g + W(t- s)g dh(s)

can be used to study the solution.
The next three theorems give sufficient conditions for (2.5), (2.6) and (2.7).

For each 2 A we assume that as a function of t, a(t, 2) satisfies the following
condition"

a(t, 2) e C(0, ) L(0, 1);

(2.11) a is nonnegative, nonincreasing and convex on {0 < < },
0<a(0+,2) N m and a(,2)=0.

Our first result merely restates some earlier results.
THEOREM 2. If (2.11) holds, [u(t, 2)1 N (0 N < ); moreover, u(t,) 0

and w(t, 2) A-(,)(t ).
Proof. The first conclusion is Theorem 2 of [5]; the second is included in

the main result of [4].
THEOREM 3. Suppose (2.11) holds, and let there exist positive numbers T, M,

such that (for a particular 2)

(2.12) A(T, 2) 4M;
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suppose with p min {M, rc/3T}, a(t, 2) is twice differentiable (in t) on a closed
interval J of length 4re and

(2.13) 0 < rla(O+,/l) <= a"(t, 2) < , t J.

Then there exists a constant C C(T, M, ) such that

(2.14) Iw(t, 2)1 C, 0 < .
In [7] we show that when a(t,2)=/la(t), /l => 20 > 0, (2.11) alone implies

(2.14), even ifa C is replaced by a C and the condition a(, 2) 0 is dropped.
We conjecture that a(,/l) 0 is unnecessary here, too it appears more difficult
to determine what happens when a(t, 2) is merely continuous in t.

Our proof of Theorem 3 follows the method used in [5] for the special case
a(t, 2) 2a(t),/l _>_/10 > 0 (to prove a weaker result than that in [7]). (2.12) and
(2.13) replace the following condition of [5]:

a(t) L 1(0, ); or a(t) is twice differentiable, a"(t) is bounded
(2.13a)

away from zero on finite intervals (0, R], and a(0+) < .
Note that when a(t, 2)= 2a(t), the present result introduces one technical im-
provement" the fixed interval J replaces arbitrary intervals (0, R]. Moreover, by
introducing the constants T, M, r/, we obtain uniform estimates for kernels a(t)

a(t, 2) having graphs with different shapes. From this point of view, the result
may hold interest independent of Theorem 1.

The results of 5] permitted the following alternative to (2.13a)" a"(t) is non-
increasing and either (i) a(t) O(t-), [a’(t)]- O(t) (t 0) for some fl, 0 < fl
< 1, or (ii) [a’(t)]- O(t) (t 0). A version of this alternative (made uniform in
2) would suffice in place of (2.13) in Theorem 3.

THEOREM 4. For each 2 A, suppose (2.11) holds. Assume that

(2.15) la(s, 2)- a(s, #)1 ds 0 (p 2, > 0),

(2.16) A- 1(, 2) is continuous on A.

Then (2.7) holds.
In [6] we proved that in the special case a(t, 2)= 2a(t), 2 __> 2o > 0, the

maps/l - u(., 2),/l w(., 2) (from [2o, ) to the space of bounded continuous
functions on 0 __< < with the uniform topology) are differentiable if (2.11)
holds; the proof is much simpler than the one we give below for Theorem 4.

We can now verify that the kernel (1.7) satisfies the hypotheses of Theorem
if L >_ I (so that/l => 1,/l A). Direct computation shows that (2.11) holds so by
Theorem 2, (2.5) and [u[ __< C are satisfied. For (2.6) we take

T= 1, M= (1 +t)-dt/4=(log2)/4, J= [,fl

any interval of length 4rc/M.
Now a(0 +, 2) 0(2)(2 c), while a"(t, ) >__ 2(1 + )-2 on J; thus can

be chosen so that (2.13) holds. By Theorem 3, hypothesis (2.6) is satisfied. (2.15)
and (2.16) are easy to check, so (2.7) holds, by Theorem 4.
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3. Proof of Theorem 1. The estimates on IIUI[ and [IWl[ follow immediately
from (2.1), (2.3) and (2.6). For strong continuity, we have

liEu(t)- U(s)]yll z iu(t, 2)- u(s,A)lZd(Ezy, y);

this tends to zero (s -, t) since u is bounded by C and continuous in t. Next,

IILU(t)yll 2u(t, 2) dEzy liLy

so U(t)’D D. W is handled similarly. Let e > 0, and choose R so large that

(3.1) C2(llFnxol[ 2 + 411Fkll 2) < ,
where FR I ER + E-R. By (2.5) and (2.7), there is a T > 0 such that

(3.2) u2(t, 2) + Iw(t, 2) A- x(, R)12 < e([ xoll 2 / k 12)

whenever T and 121 R. For such t,

A- (, 2) dEk u2(t, 2)d(Exo, Xo)y(t)
d

(3.3)
+ Iw(t, 2) A- (, 2)lZd(Exk, k) + e 2,

-R

and (2.8) holds.
Now suppose (2.9) holds. Without loss of generality, we assume that is an

increasing function. If Xo, k D, we have

llA(t- a)U(a)Xo A(t s)U(s)Xoll 2

IA(t , 2)u(a, 2) A(t s, 2)u(s, 2)12d(Ezxo, xo) 0 as a s,

since the integrand tends to zero for each 2 and is dominated by 4(1 + 121)2C22(/).
Thus A(t s)U(s)xo is continuous in s; a similar argument holds for W(s)k.

Next we verify that y(t) solves (1.1)"

U(t)Xo + A(t s)V(S)Xo ds

U()xo + A( s, )u(s, ) dExo

U(t)xo + lim {...} ds
Rm -R

u(s, ) + A(t s, 2)u(s, X) ds dExxo
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where (2.2) (integrated), Fubini’s theorem, and the estimate

+ A(t s, 2)u(s, 2) dExo

_--< + 02(t)(1 + ],l)2C2d(E;txo, Xo)

<= 2a2(t)cZ(IIFRXo 2 + IIFRLXo 2)
0 (R o, uniformly in 0 =< s =< t)

have been used. Similarly,

W(t)k + A(t- s)W(s)k ds tk.

In view of (1.3), this shows that y(t) is a solution of (1.1).
If yl(t) is another solution of (1.1), set z y yl, I(I Fu)z[ (p > 0).

Then

(I- Fu)A(t- s)z(s)ll 2 A2(t- s, 2)d(Ez(s), z(s))

(l]l + 1)202(t)2(S), 0 S t.

But (I Fu)z(t) - (I Fu)A(t s)z(s) as, so 0 _<_ (t) __< (Ip] + 1)z(t)] (s) ds,
and Gronwall’s inequality shows that _= 0. Thus y

Finally, the proof of (2.10) is similar to that of (2.8), except that we estimate
]Ly(t) ]_ 2A- 1(o, 2) dExk] 2 and a factor of 22 appears in the integrals. This
proves Theorem 1.

Remark. Hypothesis (2.7) was used only for (3.2). If L- is compact, the
integrals in (3.3) are finite sums and can be made < e without (2.7)

4. Preliminaries for Theorems 3 and 4. In this section we develop integral
representations for the solutions to be estimated in 5 and 6. We first collect
some facts proved in [4] concerning the Laplace transform

0*((, 2) lim e-ta(t, 2) dt

of a. In this section we regard 2 as fixed.
LEMMA 4.1. /f (2.11) holds, then a*((, 2) is analytic in {Re( > 0} and can be

extended as a continuous function to Z {Re ( _>_ 0, 4: 0}. Moreover, [0*((,- A-1(o, 2) (--+ O, Z), a*(a + iv)--+ 0 ([z[ o) uniformly in 0 <-
and Re a*((, 2) > 0 (" e Z).

Proof. Each of these results is either well known or is contained in Lemmas
3 or 5 of [4].

We shall write a*(iz, 2) q(z, 2) i(z, 2), and we define

n/2r

(D 1(T, ) a(t, 2) cos zt dt,
.0

(492 =(./9--(/9
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LEMMA 4.2. If (2.11) holds, we have the following inequalities"

(4.1) 0 <__ -q2 _-< _-< 4q91,

(4.2) qg(z, 2) <= A(t/3z, 2) =< 41a*(iz, 2)1 =< 18A(Tt/3z, 2) =< 36q9(,2).

Proof. The last inequality is obvious. The others were proved in [4, Lemma 3
and lines (3.22)-(3.24)].

We shall write D(z, 2) la*(iz, 2) + izl. Since o(:, 2) Re a*(iz, 2) > 0,

(4.3) 0 < qg/D <__ 1, z > O.

LEMMA 4.3. If (2.11) holds, then q9 (z, 2) O(D(z, 2)) (t ---, 0 +).
Proof. As z 0 +, a*(iz, 2) A(, 2) > 0, so D(z, 2) > la*(iz, 2)1/2 for small

z, and our result follows from (4.2).
LEMMA 4.4. Suppose (2.11) holds. Then

;oo 8
irt Q(r, 2) & > 0(4.4) v(t, 2) ,-o+lim Re iz[i + ir]J

where

Q(,, 2) A-1(, 2)a*(iv, 2), v(t,,) rc[w(t, 2) + A- x(o,&)(u(t,&) 1)].

Remark. In the following we shall use without explicit mention the obvious
fact that ]Q(r, 2)1 _-< 2 (z > 0).

Proof. Integrating (2.4), we see that

w(t) + A(t s)w(s) ds t, >= O.

(Here and below, we suppress 2.) By a standard result on Volterra equations, w(t)
satisfies an inequality Iw(t)l =< bt exp (b2t)(b, b2 > 0). Taking Laplace transforms,
we obtain

W*(() [((( + a*(())] -1 Re ( > b2.

A similar argument starting from (2.2) shows that for some b _>_ b2, lu(t)l
<_ b’ exp (bt) and

u*(0 [( + a*(0] -1, Re ( > b.

Then

v*(0 [w*(O + A-(,,)(u*(0- (-)]
(4.5)

r[1 A-’(oo)a*(0][(’ + a*(Q)] -1, Re(> b.

By Lemma 4.1, (4.5) defines v*(() as a continuous function in Z, analytic in
{Re( > 0}. Because v(t) is continuously differentiable, the complex inversion
formula

iR

(4.6) 2niv(t) lim ev*(O d, > O,
Rov d a-iR

a>b
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holds. By Lemma 4.1 and (4.5), v*(a + ir)= O(r -2) (11 ), uniformly in
a _> 0. Moreover, if A-1() 0, la*(()l --, ( --, 0, ( Z), so v*(() o((-);
if A-(m) > 0, A- (c)a*(() 0 (( 0, ( e Z), so again v*(() o((- ).
Therefore we can shift the contour in (4.6) to obtain

2nv(t) lim + eitv*(iz) dr,
e"* O

and a change of variable z -, -z in the first of these integrals, together with
(4.5), yields (4.4).

We can represent u(t, 2) similarly.
LEMMA 4.5. If (2.11) holds, then

(4.7) rtu(t 2)= lim Re dr, > 0.
-o a*(ir-, - + ir

This was proved in [4]; see line (3.3) of that paper.
Finally, we prove an important consequence of Lemma 4.4.
LEMMA 4.6. Suppose (2.11) holds and 0 < R < oo. Then

(4.8)
r 0(r, 2) dr fo

R Re Q(r, 2)
--( 2) D2- -2 dr Iz(O, 2),

where

I2(t,2)= Re ir[a-(--,--ji + ir]
dr, t>0.

Proof. Taking real and imaginary parts in (4.4), we obtain

cos rt 0(r) Re Q(r)
drv(t) lim dr cos rt

Dz(re--,0 rD2(r)
(4.9)

zt
+ D2i) [q(z) Re Q(z) (if(z) z)Im Q(z)] dr + I2(t).

Here we know the second integral exists, because D-2(z) is continuous at z 0
(Lemma 1). The third integrand is bounded by a constant times tD-(z), by
Lemmas 4.2 and 4.3; thus the third integral exists (and tends to zero as --, 0 +).
These facts imply that the indicated limit in (4.9) exists. Moreover, for small t,
the first integrand is nonnegative, and it increases to (z)/zDZ(z) as $ 0. Thus we
may pass to the limit in (4.9) (using dominated convergence in the second and
fourth terms on the right) and obtain (4.8). This proves Lemma 4.6.

We note for later reference that the third integral in (4.9) can be written

sin rt
{ }

(4.10)
sin rt

[q9 I(T 2) A- 1(o 2)] dr + E(r 2)sin rt dr
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where

E(27,2) [q)z(Re Q q)lA-1(oo)) (ff 27) Re Q]/27q)2

+ [2q91qg2 _+_ (p2 _+_ (I/t 27)2] [(0 27)Im Q q9 Re Q]/27q)ZD2.

5. Proof of Theorem 3. Throughout this section, C denotes a constant de-
pending only on T, M and r/. We shall suppress 2.

By Lemma 4.4 we must show that the integral in (4.4) is bounded by C. We
use the representation (4.9) with R p. Consider first I2(t). If

co max {p, [2rca(0)]l/2},
then r -> co implies 0 _< k(:) -< a(O)rc/27 <= 092/227 =< 27/2, so

D(r) >= IIm [a*(i27)+ it31- I: (r)l->_ r/2.

Then

ei’Q(r)
dr < 4 27-2 d’ C.(5.1) Re i27[a*--- i27]

For p < 27 < co, let T 2jrt/27, j 0, 1, where Tv, Tv+ 1,"" T+u de-
note the paicuar Tj which belong to the interval J of (2.13). Then N N(27)
>= 27/p. Since a(t) is convex, a’(t) is nondecreasing, and integration by parts shows
that

27q(r) a’(t) sin.rt dt

-2
j=0 ,0

sin 27t[a’(t + T + rt/27)- a’(t + T)] dt

v+ N- frtlr,_>- sin 27t[rla(O)rt/27] dt,
j=v ,0

by (2.13). Thus 27q9(27) >__ 2rca(O)rlN/27 >= co2rl/27p (p __< 27 __< co), so

Re/.i27[(-r)r) 7 i27] 27q)(27) r/

Together with (5.1), this establishes

(5.2) lI2(t)l < C.

When 0 < 27 p,

(5.3) q91(27 __> 1/2A(rt/3p) >_ 1/2A(T) >= 2M >= 227

by (2.12). But the modulus of a complex number is at least 2-1/2 times the sum
of its real and imaginary parts, so (using (4.1)) we see that

D(27) >= 2-1/2[@1(27 -’[- @2(27)-Jr- 0(27)- 27]
(5.4)

2-1/2[(491(27 27] 2-3/2(p1(27 2-I/2M, 0 < r <= p.



A LINEAR VOLTERRA EQUATION IN HILBERT SPACE 937

Then

(cos zt) Re Q(z)
D2(z)

dr < 4p/M2 C.

Now (5.2), (5.5) and (4.8) imply that

O(r) dr < C.(5.6) rD2(r)
Our proof will be complete once we find a bound for the third integral in

(4.9). Here we refer to (4.10). Note that by (4.1), (5.3), (5.4) and the fact that
q91(r)A- 1(o) =< 1,

E(z) C rDZ(r----, 0 < z <= p.

By (5.6) and (5.4), Ij’f) E(r)sin rt drl < C.
Finally, since q)’(z) _j-)/2 ta(t) sin rt dt =< 0, qg[ (z) A- (o) + 0 as z $ 0.

By the second law of the mean,

fo f,sinztP sin zt
[qg- (z) A-1()] dr [q (p) A (o) dr

where 0 < < p. Since ox(p) >= 1/2A(T) >_ 2M and

we have

sin zt

and our proof is complete.

sin zt

[q9 - 1(:) A l(v)] dr < C

6. Proof of Theorem 4. This proof follows the same outline as the preceding
one, except that in each step we establish continuity instead of boundedness.
Throughout this section we fix 2 A and let C4 and 64 denote constants de-
pending only on 2. We write IV 21 < 64 or A, tacitly requiring # A. Our
main tool is the following convergence lemma.

LFMMA 6.1. Suppose that for each > 0 and 1#- 21 < 64, f(r,/) and
are integrable as functions of r on {0 < r < r with f > O. Suppose

(6. l) f(r,/) dr f(r, 2) dr (,u 2),

(6.2)

(6.3)

f(r,/z) f(r, 2) (p 2) uniformly on any set 0 < ro =< r _<_ r 1,

Ig(z, )l -<- Ca (l 21 < 6z), g(z,/) g(z, 2) ( --, 2).

Then

If(r, #)g(r, f(r, 2)g(r, dr 0k/) (, 2).
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Proof. First assume g_--1. Let e>0 and choose r0>0 such that

.o f(r, 2)dr < e. Choose 6 such that l# 21 < 6 implies If(r, st) f(r,
(o =< r =< ) and IJ’ If(r, )- f(r, 2)] drl < . Two applications of the triangle
inequality show that if [st- 2[ < 6, If(r, st)- f(r, 2)1 dr < 5e. For arbitrary g
we note that

If(r, st)g(r, st) f(r, 2)g(r, 2)1 -< If(r, st) f(z, 2)lCz + f(r, 2)lg(r, st) g(r, 2)1

and use Lebesgue’s dominated convergence theorem. This proves Lemma 6.1.
Choose r > 0 so that A(n/3r 1, 2) > 10r 1. We fix this value of r for the

remainder of this section. By (2.15) and estimates like (5.3), (5.4),

(6.4) A(n/3rl, st) > 8rl, Ist 21 <
(6.5) D(r st) > 2- 3/zq9 (z) > z, I/ 21 <
Similarly, by Lemma 4.2,

(6.6) D(r, st)q-l(r, st) < CA, Ist 21 < 6, 0 <

LEMM, 6.2. a*(ir, st) a*(ir, 2), uniformly for 0 < ro <= r <= r 1. The same
conclusion holds for qg(r, st), p 1(:, st), and if(r, st).

Proof (for 09; the others are similar). Let e > 0. Choose T > 0 such that

a(t, 2) < e,
2n/to

dt

and choose > 0 such that Ist 21 < implies
v+

la(t, 2) a(t, st)l < .2n/to

dt

Then if r >= o, choose an integer v such that o (2v + 1)n/2r is in T, T + n/Zo].
Then if Ist 21 < , }o(r, st) a(t, st)cos zt dtl < ,+/ a(t, St) dt < 2e, so

Iq)(r, st) q)(r, 2)1 < 3e + la(t, st) a(t, 2)1 dt < 4.

The estimate is uniform in r __> to, so our proof is complete.
Turning to Theorem 4 itself, we express (4.7) as

nu(t, 2) + lim Jl(t, st) + J(t, st).

Using (6.5) and Lemma 6.2, we see that J1 is continuous in st, uniformly in t. Now

J(t, 2) J(t, st) Re [a*(- ir] [-*() +
Here, for Ist- 21 < 6x,theintegrandisdominatedby2D-(r, 2)=
since a*(ir,)--, 0 (r ) and ir + a*(ir, 2) 0. (Lemma 4.1). By Lemma 6.2,
the integrand tends to zero as st 2. By Lebesgue’s dominated convergence
theorem, J(t, st) J(t, 2) (st -- ), and the convergence is evidently uniform in t.
This establishes the first conclusion of Theorem 4.
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Since A-1((30, ) and u(t, #) are continuous in/, our proof will be complete
if we show that

(6.7) v(t, 1) ---’ v(t, 2) (g ---, 2, uniformly in > 0).

where v is the function defined in Lemma 4.4. Define I2(t,/) as in Lemma 4.6,
with R r l. Then

lI2(t, 2) I2(t, /)1 < f Q(z, 2) Q(z, #)
dr

r [a*(ir, 2)+ iz] [a*(ir,/) + iz]

But by Lemmas 4.1 and 6.2, the latter integrand is dominated by the integrable
function 6/rD(r,/l) (12- Pl < 6z) and is pointwise convergent to zero (#--, 2).
Therefore

(6.8) I2(t, #) - I2(t,

It is likewise clear that

(/ --, 2, uniformly in _> 0).

Re Q(r,/) ’-" Re Q(r, 2)
(6.9) cos zt "- Jo COS zt

D2(z 2)o D2(z #)
dr (/t 2, uniformly in >_ 0).

Referring to (4.8), we reach the important conclusion that the function f(t,
I//(Z, #)/zDZ(z,//) >-- 0 satisfies hypotheses (6.1) and (6.2) of Lemma 6.1. Then

10) ’ cos ,t(,, ,)
(6.

30
cos rt(,

as/ 2, and the convergence is uniform in t.

Finally, consider (4.10) with # in place of 2 and R zl. Using (6.6) and
Lemmas 4.2 and 6.2, one sees that

g2(z, k/)

where g and g2 satisfy hypothesis (6.3) of Lemma 6.1. But each of t/’cD2 and
q) 2 satisfies the first two hypotheses of that lemma (the latter obviously since
tp-[ 2 <_ 8/z2 on (0, z 1], by (6.5)). Therefore

(6.11) [E(z, la) sin zt E(z, 2) sin zt] dr <_ IE(z, la) E(z, 2)1 dz 0
o o

as # 2, with convergence again uniform in t.
To treat the other integral in (4.10), recall that p- l(z, #) A- 1(, #) $ 0 as

"r $ 0. Let e > 0. Choose 0 > 0 such that q - 1(0, 2) A- 1(, 2) < e, and choose
fi > 0 so that IP -/ll < 6 implies

[[q - l(z,/) A- 1(oo, #)] [q - I(T, )].) A- 1(oo, 2)]1 < e0

(z >= 0). This is possible, by Lemma 6.2 and (2.16). By the second law of the mean,
with (,/) q- (,, #) A- (oo, #),
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sin zt
[(z, 2) (z, #)] dz

sin

z

zt zt f’ sin zt
dr 0(0,/a) dr +

=< 3e sup f Sinx x. dx + ,f,T

[I)(, l) (I)(, #)] d

Hence

sin zt sin rt(r(I)(r, p) dr -, ,2) dr (p --+ 2, uniformly in > 0.)

Assembling (6.8), (6.9), (6.10) and (6.11) and comparing these to (4.9) and (4.10),
we see that (6.7) holds, and the proof is complete.
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ON AVERAGES OF A FUNCTION AND ITS APPLICATION TO
BOUNDARY VALUE PROBLEMS WITH INSUFFICIENT DATA*

CHIN’HUNG CHING-

Abstract. We prove that a periodic function is uniquely determined by its averages over some
equally spaced points. Also we show how to recapture a function from its averages and give some
application to boundary value problems with insufficient data.

1. Introduction and results. Let f be a continuous periodic function on the
real line with period one. For any , 0 =< =< 1, we define the -means off to be

S,.(f)
n k=l

n 1,2, We denote

R.,.(f) S,.(f)- lim S.,.(f)

S,.(f)- S,o(f)

_1 f + f(t) dr.
k=l

Some properties of So,.(f) have been discussed in 6, and {R0,.(f)} are defined
to be the Riemann coefficients off in [3]. For any s > 0, a periodic function with
period one is defined to be in B (cf. 4]) if the Fourier coefficients of f satisfy the
following condition"

a(f) f(t) e-ia" dt 0

To 1. Let and be any two real numbers in [0, 1].
(i) Suppose - is irrational and f is in B with s > such that S,(f)

S,,(f) 0 for all n > O. Then f is the zero function.
(ii) Suppose is rational. Then there is a trigonometric function g 0

such that S,(g) S,(g) O.
(iii) Suppose - is irrationai. Then there exist trigonometric polynomials

P, such that

R,.(P,) S,.(P,) O,

,.(P,) s,.(P.,)= ,..
for all positive integers m and n.

We remark that iff B, s > 1, and f is an even function, i.e., f(t) f(- t), then
the function f is uniquely determined by So,.(f) (cf. [6]). On the other hand, we
can extend any function f in [0, ) to be an even periodic function and then apply
theorems in 6] to f. This procedure has been carried out (cf. [1]). The defects

* Received by the editors May 7, 1973, and in revised form October 18, 1973. The editors regret
to report the recent death of Dr. Ching.- Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia.
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of such "reflection" methods are that the extended function is no longer smooth
and the first derivative of the extended function cannot be an even function
which gives considerable difficulty in application (e.g., Proposition 2). Our
representation formula for an even function f in terms of So,,(f) holds under the
condition that f is in B 1+, e > 0, yet the extended function is usually in B 1.
Furthermore, So,,(f’) vanishes for all n since the extended f’ is odd even when

f’ is smooth.
We let #(k) be the M6bius function (cf. [8]) defined on positive integers, i.e.,

if k= 1,

#(k) 0 if p21k for some p > 1,

(-1)" if k P1 P,, with distinct primes Pj.

(Here j]n means that j is a factor of n.)
THEOREM 2. Let a and fl be any two reals in [0, 1].
(i) Suppose fl is irrational. Let f be in B with s > 1. Then

ao(f) lim S,,(f)= lim S,,(f),

am(f
k= 2i sin 2nm(a fl)

for all m _+ 1, +_2,....
(ii) Let fl be an algebraic number of degree q >= 2 and f be in B with

s > ,. Then

f(t) R,(f) + [R,,,(f)P,(oe, fl, t) + R,,(f)P,(fl, a, t)],
n=l

where the series converges uniformly with the rate Nx-, x/ < x < s,
and

() sinSin 2j(0e2rcj(t-- fl)fl).P,,(a, fl, t) #

Finally, we would like to mention some applications of the above theorems
to boundary value problems with insufficient data.

PROPOSITION 1. Let u(r, O) be a solution of the following boundary value prob-
lem in R2"

Au 0 forr < 1;

1,-n + 2r b,k,kn
u

j=l

kn
u 1 + 2rc b

j= ’’""
for some fixed positive integer k and all n 1, 2, 3,.... Suppose a- is an
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algebraic number of degree q >= 2 and u(1, 2rtO)e B with s > x/2q. Then

Soo(u(r, 2rt)) lim

R.k(u(r, 2rot)) b,,.. # rInk
m=l

for all n 1,2....
It follows from Theorem that for k # l, the data {b,,} and {ba,,} fail to

determine u(1, 0), and hence the solution u(r, 0), uniquely. However, the cor-
responding averages of the solutions are uniquely determined when the data are
smooth. Ofcourse we can use Theorem 2 and Proposition to construct the solution
u from {b,,k} and {bt,,} for the case k 1.

PROPOSITION 2. Let o and fl be any two real numbers such that - [3 is an
algebraic number of degrees q >= 2. Let u(t) BS, s > x/ 1, be the solution of
the following boundary value problem:

au" + bu’ + cu f feBp, p> 1; u(O) u(1), u’(O) u’(1),

where a, b and c are constants satisfying

(1) c + 2rcinb 492nZa - 0

for all integers n 0, + 1, + 2, .... Then

R,oo(u) Rt,oo(u)= B,oo(f)/c,

for all k 1,2
We remark that the condition (1) is necessary in order to guarantee the

existence of the solution for the problem.

2. Proofs of theorems and propositions. To prove Theorem 1, we let

f(t) = a, e-i2"E It is easy to verify that

(2) S,,,(f) ao +
k=l

and

(3)

Applying the M6bius inversion formula to (3), we obtain

(4) a,. ei2" + a-m e -i2rtm E la(k)R.,m(f ),
k=l
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(for details, see [6, Thm. 1]). From the hypothesis on f, we have am ei2’m
k- a_ e -izrtm 0 and a,, ei2mfl -b a_ e -izrtmfl 0, which imply that a,, a_,,

0 for all m 1, 2..., as e fl is irrational. Furthermore, we have

ao f(t) dt lim S,.(f) O.
0

So f is the zero function.
If e fl is equal to q/p for some integers p and q, we let g(t) sin 2ztpj(t fl),

where j is any nonzero integer. Then S,,(g)= Sfl,,(g)= 0 for all n 0, 1,
_2"’. If e- fl is irrational, we let

sin 2ztj( fl)

Then we have

Sa,,(P,m) Z P si.- )3)1 0,
jl l=

Sa,n(Po,m)--" E#(’) ( sin2j(-+l/n)’
jl 1=1 sin 2zj( fl)

p COS
jim l= n

Here we have used the identity

0 if n :/: 1,

if n= 1.

To prove Theorem 2, we use (4) to obtain

a ei2rm _+_ a_ e-iZm= #(k)B,mk(f)
k=l

a, ei2m# + a_ e -i2’m# #(k)R#,m(f).

Thus we have

k=l

e- i2nmflR ’ i2nmaD
,mkl,J! e- *fl,mk,J]

This completes the proof of (i).

2i sin 2ztm( fl)

ei2rcma ei2rtmflRa_,. /a(k) Ra,,,,k(f)- ,ink(f)
k= 2i sin 2ztm(a fl)
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If cz -/3 is an algebraic number of degree q >__ 2, we can deduce easily from
Dyson’s theorem (cf. [8]) that for some constant C,

(5) le fl- a/bl >- C/b
for all integers a and b and any real number x > x/" From now on, we use C
to denote various constants. It follows from (5) that

(6) Isin 2nj( fl)l => C/jx-.
From (3), we can easily obtain

(7) R,j(f) O(1/j),

(8) R,j(f) O(1/j)

for f e B, s > 1. Now, for any x, x/ < x < s, we can prove from (6), (7) and
(8) that

N

If(t) R,o(f) R,.(f)P.(a, fi; t) + R,.(f)P.(fl, a; t)
n=l

., o jl. sin 2j(e fl)
N

R,,(f) () sin 2nj(t ),,=
jl. sin 2j(fl )

a.(f) e’z"t- E ei2nnt
,o ,,o I,I/,, 2i sin 2nn(a fi)

tu/I,l (m) e-2"R -i2""Ra
,o

ei2""’a"(f) m=2, 2i sin 2n(e fl)

o m>[N/InI1 2i sin 2n(a fl)

2[ IR,,,I + IR,m.I IB,.I + IR,m.I
= tN/,llsin2n(a--fi)l

+

C _1 + n --x
n=N+

C
NS--X

We remark that the proof of Theorem 2(ii) works for any a and fl which satisfy
the estimate (6). However, it is well known that such estimate does not hold for
any Liouville number (cf. [10]), for example, fl 2= 10-.

To prove Proposition" 1, we observe from Theorem 2(ii) that

()rlsin2l(t--fl)u(, o) u. (1,2t) + 2 R m(U(1,2t)) 2= *1 sin2/(a-fl)

rl sin

= 1 ] sin2l(fl-a)
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From the mean value property of harmonic functions, we have u.(r, 2nt)
u..(1, 2rtt). Thus we obtain

R.k.u(r, 2rot) 2 R..,.(u(1,2m)) p R [r sin 2l(t

,(u(,0 r
m=l

llm

lira
We remark that a similar formula holds for analytic functions in the unit disk
(cf. [5]).

To prove Proposition 2, we observe that

(9) a,,(u)
a.(f)

c + 2tinb- 47z2n2a2"

Using Theorem 2, (2) and (9), we have

/,.(u) a.(.)e
k:O

i2 rknx

kO C + 2niknb- 42nza2

El 2nkn -i2nknaR#(l)e R,Iknl l(f) e !...f)
= 2iSin 2kn(a fl)

[(c 4n2nZkZa) 2nknb cot 2nkn(a fl)]p(l)R,,.
C2.= + 42kZnZbi Z n2s

#(l)2knb csc 2kn(a
+

C2 2kZn2b2 k2, = + 4n 8n2 nZa + 16*h4n4a2

C2 2k2n2b2 k2k= + 4 82 n2a + 164n4a2

+
c knb= + 4 8kna + 164n4a

3. Final rer. It can be seen from the above proof that the double trans-
lation is quite essential, as the above series will be meaningless if e is equal to .
That is why we introduce two sequences of means instead of just one as in [1]
or [6]. Mean boundary value problems arise from consideration of boundary
value problems with discrete data instead of continuous data, and the solution
here can be readily used in computation. Also due to the fluctuation of obser-
vation under various conditions, the errors in measuring the average data of
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input (e.g., the forcing term in Proposition 2) or the temperature on the edge of
a circular plate in the equilibrium state is in general less than that at some single
points, thus we can hope to obtain a more accurate solution. Of course, from the
physical point of view, it is more desirable to consider averages over an arbitrary
sequence of points than just the equally spaced points the difficulty for this rather
general choice of points is that we do not know any other "good" choice of
points except the conformal images as mentioned in [1]. Also it would be inter-
esting to find some analogous results for some boundary value problems whose
data is not compatible at a few points on the boundary.

Using a result of Davenport (cf. [7]) and the proof of Theorem l(i), we can
prove a similar uniqueness theorem for periodic functions of bounded variation
in its period (cf. 2]). It is easy to see from the proof of Proposition 2 that we can
find the - and fl-means of f’ in terms of the - and fl-means of f for smooth f:

R,,.(f’) 2rcm R,kn(f) t cot 2rclm( fl)
k=l

2m = R, csc 2lm(e )

R,(f") 4m R,(f)
k=l
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THE ENERGY EQUATION FOR THE NAVIER-STOKES SYSTEM*

MARVIN SHINBROT"

Abstract. It is shown that a weak solution of the Navier-Stokes equations lying in a space
Lq(O, T; LP), where lip + 1/q <= 1/2 and p >_ 4, satisfies an energy equality rather than the usual
energy inequality. This is true regardless of the dimension of the underlying space.

1. Introduction. Let V be a domain in R". Write Lp LP(V) LP(V)
(n times). A weak solution of the Navier-Stokes equations is a function s:t s(t)
with values in L2 and satisfying a certain functional equation. It is known
[2], [4], [5] that a weak solution s exists satisfying the energy inequality

(1.1) IIs(t)ll + 2v [IVs()ll dr <= Is(0)ll,

whenever s(0) s L2. Here Is(t)[[22 denotes the norm ofs(t)in L2, IVs(t)ll the Dirichlet
integral of s(t), and v a certain constant that appears in the equations (the kine-
matic viscosity).

Formally, solutions of the Navier-Stokes equations satisfy, not merely (1.1),
but the stronger energy equality

2(1.2) Ils(t)ll + 2v IIVs()lld- IIs(0)l12

and it is of interest, therefore, to ask when a weak solution satisfies (1.2), not least
because (1.2) implies the continuity of s as an L2-valued function [3], [5].

Naturally, s satisfies (1.2) if it is a classical solution of the equations. The
question is how badly behaved s can be in order that it still must satisfy (1.2).
The best result is due to Serrin [3], who showed that if s Lq(0, T; LP), where

(1.3) nip -t- 2/q <= 1,

then s satisfies (1.2) for 0 _<_ _<_ T.
In this paper, we derive the same conclusion if s Lq(0, T; LP), where

(1.4) 2/p + 2/q <=
and

(1.5) p >= 4.

Notice that the hypothesis (1.4) is weaker than (1.3) in all cases, and that both
(1.4) and (1.5) are weaker than (1.3) if n >= 4, since then (1.3) implies p >= n.

What is perhaps most interesting about the conditions (1.4)-(1.5) is not that
they are weaker than (1.3), but that they do not depend on n. This means that it is
no harder for a weak solution to achieve the degree of smoothness measured by
(1.2) in three dimensions (for instance) than in two. Conditions (1.4)-(1.5) are the
first smoothness criterion for weak solutions with this property.

* Received by the editors August 24, 1973.

f Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada.
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2. Notation. Let V be a domain in R", bounded or not, but with a sufficiently
smooth boundary. The set of all infinitely differentiable functions having compact
support in V and taking values in R" is denoted by C. Let V be the usual symbol
for the gradient. We define

c {c.v. o}.
If b e C, we denote its Euclidean length by Ick[- For q5 e C, define

(f /P

(2.1) 114’11,, 14,1 ’ dx

and

(2.2) IIVll Ivl dx

If __< p < oe, we denote the completion of C with respect to the norms (2.1)
and (2.2) py Lp and Ho’p, respectively. The completions of C with respect to
these norms are denoted by Lp and H’.

The spaces L2 and H’2 are clearly Hilbert spaces. We denote the scalar
product of two elements, b and , of L2 or H’2 by (q, ) and (Vb, V), respec-
tively. Orthogonal projection of L2 onto the subspace L2 is denoted by P.

If B is a Banach space with norm [[. lib and b’t b(t) is a measurable
function defined on an interval I taking values in B and if

14(t)Idt < <= <oO, q oO,

we write 4) e L(I; B). The set of essentially bounded, measurable functions from
I to B is denoted by L (I; B).

If b e Lq(O, T; LP), while T is fixed and its value understood, we often write

(;o114’ Ip, 114’(011, dt q < ,
and

4) I,,,oo ess sup 05(0 p.
0<t<T

Similarly, if q5 e Lq(0, T; H’P), we write

V p.-- IlVqS(t) qpdt <= q < .
Finally, if q5 is infinitely differentiable with respect to t, has compact support

in the interval I, and takes values in C, we write 4 e C(I; C).

3. The Navier-Stokes equations. The Navier-Stokes equations are

(3.1) ?,(t) + Ps(t) Vs(t) vPV2s(t) O,

(3.2) V. s(t) O.
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These equations must, of course, be supplemented by boundary and initial con-
ditions. The usual boundary condition can be written in the form

(3.3) s(t) H’2 > 0,

which implies that s(t) 0 on the boundary of V if s(t) is smooth. In addition,
one wants

(3.4) s(0) So,

where so is given. We refer to the problem of solving (3.1)-(3.4) as the Navier-
Stokes initial-value problem.

The problem is hard and, indeed, it is likely that in general no classical
solution exists for all > 0. Because of this, one often considers weak solutions
of the problem. A function s’t s(t) is called a weak solution of the Navier-
Stokes system (3.1)-(3.4) if

(3.5) s L(0, o ;L2) L2(0, o H’2),
and if

(3.6) (So, b(0)) + [(s(t), (t)) (s(t). Vs(t), ok(t)) v(Vs(t), Vck(t)) ]dt 0

for all b C([0,
E. Hopf, in a most important paper [1], was the first to show that (3.1)-(3.4)

has a weak solution whenever So L2. (For an alternative proof, see [4] where,
although the proof of existence is correct, there is an error in the later 5.) It is
also shown in [1] and [4] that the weak solution constructed satisfies the energy
inequality (1.1).

The following result is also due to Hopf [1] (see also [3]). A proof based on
the methods of [4] can be found in [5].

THEOREM 3.1. Let so L2, and let s be a weak solution of(3.1)-(3.4). Then, after
suitable redefinition of s on a set of values of of one-dimensional measure zero, we
have

(st)

(3.7)
(So, 4(0)) + [(s(z), (z)) (s(z). Vs(O0 4(z)) v(Vs(z), V4(z)) dr

for all 4) e C([0, oe); C) and all >__ O.
In all that follows, whenever we speak of a weak solution, we assume the

adjustment of the theorem has been made, so that (3.7) holds for all >__ 0.
In addition to Theorem 3.1, we need the following corollary.
COROLLARY 3.2. Let so e L2, and let s be a weak solution of (3.1)-(3.4). Then,

as a function of t, s is continuous in the weak topology of L2.
Proof. Let C. Let O’t O(t) be a real-valued function equal to unity

on a sufficiently large interval and having compact support. Writing q 0@ in
(3.7), we find

(s(t), g,) (So,
.Jo
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The right side is obviously continuous. Since s(t)is bounded in L2 (cf. (3.5)), the
corollary follows.

4. The energy equality. Our main result is the energy equality (1.2). The
proof follows closely one of Serrin’s [3], with a different treatment of the non-
linear term in (3.1). This treatment depends on three easy lemmas.

LEMMa 4.1. Let dp Lp, t H’2, Z L2 CI Lp, where p _> 4. Then

(4.1) I(q" V, DI =< 114ll,,tlV011211zll-/2llzll%/2-
where q is defined by

(4.2) 2/p + 2/q 1.

Proof. If X 6 Lq, then H61der’s inequality and (4.2) give

But (4.2) entails 2 _< q =< p if p _>_ 4. Therefore, xeLq since xeL2 f) Lp, and
another application of H61der’s inequality gives (4.1).

LEMMa 4.2. Let

b 6 Lq(0, T; LP), L2(0, T; H’2), Z L(0, T; L2) I’q Lq(0, T; LP),

where p >= 4 and p and q are related by (4.2). Then

(4.3) (b(t). VO(O Z(t))dt < llp,lVOI 2,2 zl 2,oo2-/lzllq/2-1p,q
0

Proof. Replace 4, 0 and X by b(t), 0(t) and Z(t)in (4.1). Integrating with
respect to and using H61der’s inequality once again, we obtain (4.3).

If the functions involved lie in the appropriate spaces, the roles of b and Z
can be interchanged in the proof of Lemma 4.1 and, therefore, in Lemma 4.2.
Thus we have the following lemma.

LEMMA 4.3. Let

b e L(0, T; L2) Lq(O, T; LP), e L2(0, T;H’2), Z e Lq(O, T; LP),

where p >_ 4 and p and q are related by (4.2). Then

(4,(t). vo(t), z(t)) t < 14, /2 4, /2-’llVO12,21xllP,q P,q

We are now in a position to prove our main result.
THEORZM 4.4. Let soL2, and let s be a weak solution of (3.1)-(3.4). If

s Lq(O, T; LP), where p >_ 4 and

(4.4) 2/p + 2/q <= 1,

then s satisfies the energy equality

(4.5) [[s(t)ll. + 2v tIVs(’c)ll] dr IlSoll], 0 =< __< T.

Proof. First, notice that we may assume T < oo. Then, we may reduce q
(if that is necessary) to obtain a pair (p, q) satisfying (4.2) rather than (4.4).
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When 0, (4.5) is true because of (3.7). Let o be fixed, 0 < o T. Let

be a mollifier, so that k is a C, real-valued, nonneative function, supported in
-,, and interatin to unity. Let {s C(0, ); C) be a sequence con-
vergin [o s in L2(0, T; L) L(0, T; H’) L(0, T" L). Such a sequence
exists because of (3.5) and the assumption T < . Set o and k s in
(3.?). One obtains

k(to t)(S(to), si(t

(- t)(So, si(t)) dt + (t r)(s(t), si(r)) dr dt

Vs(r))] dr dr.
o

In this formula, we want to send to infinity. The only term that gives any trouble
is the nonlinear one, but it can be estimated using Lemma 4.1. Indeed, since
is bounded,

k(t-)(s(t).Vs(t),s()-s())ddt

by (4.1), where c is a positive constant. The first integral here is bounded by
Is ,allVsl,, which is finite since q 2 and T < . The second integral does
not exceed a constant (depending on to) times

si sl a-q/a q/-
2,2 S

and this goes to zero. Thus, we obtain

(t to(S(to, dt

(4.6 (- O(so, s(Ol +

The term here involving the derivative of vanishes if k is chosen to be
even. We send e to zero in the remaining terms. Because of the usual properties
of mollifiers,

iio i ( rI(Vs(0, Vs(r) dr t Vs(t)ll d.
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Also,

k(to t)(S(to), s(t)) at k(t)(S(to), s(to t)) dt

if e < to, since k is supported in [- e, el. By Corollary 3.2, then,

k(to t)(S(to), s(t))dt k(t)[l[S(to)ll + O(1)] dt -
by the Lebesgue convergence theorem and the fact that k is even and integrates
to unity. A similar argument shows that

fo ks(- t)(So, s(t)) dt -+ -
(4.7)

Finally, we consider the nonlinear term in (4.6). We have

fifl flk(t z)(s(t) Vs(t), s(z)) dz dt (s(t) Vs(t), s(t)) dt

(s(t). Vs(t), (k * s)(t) s(t)) dt.

By Lemma 4.2, this is bounded by

Ilsll,. IVsl12,2 * s s 72/llk s sll /-p,cl

This goes to zero because of the usual properties of mollifiers. Thus, the ex-
pression (4.7) goes to zero. On the other hand,f (s(t). Vs(t), s(t))dt vanishes. To
see this, notice that Lemma 4.3 says that the function F defined by

F(, X) (s(t). V(t), Z(t))dt

is continuous on L2(0, to; H’2) Lq(0, to; LP). On the other hand, integration
by parts shows that F(O, )= 0 if is smooth. Let {si} be a sequence from
C(I0, );C) converging to s in the appropriate spaces. Then we find
0 F(si, si) ---, F(s, s). All of this shows that

fl fl k(t z)(s(t) Vs(t), s(z)) d dt - 0

as e goes to zero.
Now let e go to zero in (4.6). What we have proved is that in the limit,

-llS(to)ll2 + v IIVs(t)ll dt llSoll ,
which is (4.5) for o Since to is arbitrary, the proof of Theorem 4.4 is complete.
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ON FREDHOLM INTEGRAL EQUATIONS OF THE
FIRST KIND WITH CONVEX CONSTRAINTS*

LENNART BRYNIELSSON"

Abstract. A Fredholm integral equation of the first kind is an incorrectly posed problem. In
order to make it correctly posed, we lay constraints on fof the formfe B, where B is convex and closed
and where B-B (or sometimes B itself) is boundedly compact.

Introduction.Consider a Fredholm integral equation of the first kind"

go(t) K(t, s)f(s) ds Kf, oe < a < b < + c,

which we know has a unique solution fo for fixed go, but where we know go only
approximately. For instance, g can be a measurement of go with some error.
The equation g Kfis not always solvable. However, we may look for fo among
those f which make the difference small, and among those we surely find j3 if
the error g- go is small enough. But among those are also, for instance,
fo(t) + k. sin nt for arbitrary k if n is large enough.

If it is desired to construct from g an f near to j, it is evident that further
information aboutfo or g go is needed. If we requirefto belong to some subset
B of possible solutions, are there natural and reasonable conditions on B which
guarantee that IlKf-gl[ min, fB, implies that f approximates fo, if g
approximates go?

We will show that if K is one-to-one and 11" stands for L2-norm, then the
problem "minimize IIg- Kfll with constraint f B" has a unique solution
/?,g, and/ is continuous on L2(a, b) if and only if B is convex and B f’l (ll f =< r}
is compact for every r > 0. If we want/ to be uniformly continuous, then B has to
be convex, closed and such that (B B) f-I {11 f =< r} is compact for every r > 0.

Observe that the condition "/ is continuous on L2(a, b)" is somewhat strong.
In order to solve the integral equation problem, it would be sufficient to know
that/ is continuous on KB.

Finally, we show that almost all results are valid in LP(a, b), where =< p =< oe,
or in other Banach spaces.

1. Proof of the main theorem. Let K" H H be a one-to-one compact linear
map on the Hilbert space H. (H is evidently separable.) We put E

{x H" IIxll _-< r} and say that a set B c H is boundedly compact if B fl E is
compact for every r > 0.

Our main theorem is as follows.
MaIN THF.OREM. If R’H B H is defined by Ry the element x in B

which minimizes Ily- Kx[I, then ( is well-defined and continuous (uniformly
continuous) ifand only ifB is convex and boundedly compact (B is convex and closed
and B B is boundedly compact).

* Received by the editors February 6, 1973.
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For the proof we need some lemmas and theorems.
LEMMA 1. If B is convex and boundedly compact, then to every s > 0 there

is an r > 0 so that K(B f’l Er) (KB) f"l Es.
Proof Assume the contrary" there is an So > 0 and a sequence bi e B such that

bill > but Kbi <=so. Put

ci bi + b.

We have that c e B fl E for + IIb and therefore there is a subsequence
c which converges to c bl since IIc- b tends to 1. But Kc lim_o Kc
Kb, which is impossible since K was one-to-one.
LFa 2. IfB is convex and boundedly compact, then KB is closed.
Proo Let Kx converge to y with x e B. Since Kx is bounded, Lemma

gives that x is bounded, too. Hence there is a subsequence converging to x and
Kx y.

LEMMa 3. IfB is closed and B B is boundedly compact, then so is B.
Proof Let b e B. The set B b is a closed subset of B B, and therefore

B b is boundedly compact. So is B since it is a translate of B b.
LEMMA 4. K maps every bounded, convex and closed set M onto a compact set.

Proof Since every convex and closed set M is the intersection of all closed
half-spaces {x e H’(x b, a) 0, a, b e H} which contain it, a bounded convex
and closed set is the intersection of all "half-balls" {x e H" (x b, a) 0, x b]l

r, a, b e H, r > 0} which contain it. Further, K can be written K QS, where Q
is isometric and S is self-adjoint (see, for example, [1]). Thus it is sufficient to
prove the lemma for K self-adjoint and M {x H’(x, a) O, [Ixll 1}.

Let {e}?= be a complete orthonormal base such that Kei 2e and let
{x}=, be a sequence in M. Since K is compact we may assume that y Kx
converges to y. Thus lim (y, el) (y, el) and lim (x, ei) (y, ei)/2i i.
For n fixed we have

--lim Zl(x,e’)l2 Itx =< 1.
ko i=

Hence Zi=l Ii [2 1. If we put x ,1 ie,, then x < and

Kx iKei= Z (y, ei)ei =y.
i=1 i=1

It remains to prove that (x, a) > 0, i.e., if i (a, ei), then Z?=I ii O. This
follows from the inequalities i (xk, ei) >= 0 for all k and

i=n

since the last term is smaller than any positive number as long as n is large enough.
THEOREM 1. Let B be a convex and closed subset ofH. Then K- I:B is continuous

if and only if B is boundedly compact.
Proof Necessity. Since B f-] Er is bounded, convex and closed, Lemma 4

gives that K(B f’l E) is compact. The continuity of K-].:B implies that K-]Kn
(K(B f’l E)) B f’l E is compact.
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Sufficiency. Since B gl Er is compact, and K is one-to-one and continuous,
K-IlK(BcEr is continuous, too, and so is K-II(KB)cE if (KB) (q Es K(B f’l Er).
Because of Lemma 1, there is to every s > 0 such an r, and hence K- Kn is contin-
uous.

THEOREM 2. Let B be a convex and closed subset ofH. Then K- IlKn is uniformly
continuous if and only ifB B is boundedly compact.

Proof Necessity. We show that K-llKtn-n) is continuous, from which the
assertion follows by virtue of Theorem 1.

Let x X’l- x and x2 x2- xz, where x’, x, x2 and x2 B. Put
y KxI, Y2 Kx2, and so on. Since K--]Kn is uniformly continuous there
is to each e > 0 a 6 such that

X1 X2 211 r(xl / / xh)ll < 2e

Thus K-ln-n)is uniformly continuous.
Sufficiency. Put N(e) inf Kx ’x e B B, x e} for 0 =< e =< diam (B).

Since the infimum is attained and K is one-to-one, N(00 > 0 if z > 0. Further,
N(e) is nondecreasing since B B is star-shaped. The definition of N now gives
that IIKx-Kyl K(x-y)[I =>N(lx-YII)for x, yeB. From this follows
that to everye>0thereisf=N(e)>0suchthat x-yl] <eifKx, KyeKB
and Kx Kyl < 6, i.e., K-1 is uniformly continuous.

THFOREM 3. Let M be a subset of H. If Pt’H M is defined by y Pt(x)
the y M which minimizes Y- xll, then Pt is well-defined and (uniformly)

continuous if and only ifM is convex and closed.
Proof That the condition is sufficient is a well-known property of Hilbert

spaces. Asplund [2] has shown that it is also necessary.
Proofof the main theorem. Suppose that B is convex and boundedly compact.

Then KB is convex, too, and according to Lemma 2, KB is closed. Theorem 3
gives that PK is well-defined and continuous, and Theorem gives that K- ]Kn is
continuous, too. The assertion now follows from/ K- IK p.

Suppose that B is convex and closed and that B -/3 is boundedly compact.
According to Lemma 3, B is boundedly compact, foo. Hence Pn is well-defined
and uniformly continuous as above. Theorem 2 gives that K-1]:n is uniformly
continuous, and the assertion now follows from K-[ pn.

Conversely, suppose that / is well-defined and (uniformly) continuous.
Then P K o/ is well-defined and continuous, and Theorem 3 gives that
KB is convex and closed. Since K is continuous B is convex and closed.
=/ [n shows that K- lK B is (uniformly) continuous, and according to Theorem
(resp., Theorem 2), B (resp., B B) is boundedly compact.

2. Properties of N(a). The function N which was used in the proof of
Theorem 2 gives a quantitative description of the uniform continuity of/ when
B B is boundedly compact. We shall now investigate some properties of N and
we shall also give a theorem on how a convex, symmetric and boundedly compact
set can be represented. As before, we assume that K is a one-to-one and compact
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linear map on H. B is a convex and closed subset such that B B is boundedly
compact. The function N:[0, diam B] R+ is defined by N() inf Kxll’x B

B, Ilxll },
PROPOSiTiON. N has the following properties"
(a) N() =< . IlK
(b) N(oO/o is nondecreasing;
(c) N(00 is continuousfrom the left.
Proof Part (a) is trivially clear. Part (b) follows from

=inf{ Kxtl’oxB-B, Ix l} and the fact that B-Bis star-shaped. For
,o which increases towards 0o andthe proof of (c) we choose a sequence {=

x 6 B- B such that I]xll and N(0)= IIKxll, Since U- U is boundedly
compact, we may assume that x converges to Xo e B B and [IXol[ o. We have

N(o) <= IlKxoll lim IIKxll lim N(z)_<_ U(o),
k ’-+ao 0

and the continuity from the left is proved.
Let us define Bo {x H’nx B B for all n Z + and B {x H" there

is an n Z + such that (x/n) B
LEMMA 5.B0 and Bo are linear spaces, and Bo is oJfinite dimension and Bo {0}

ifand only ifdiam B < .
Proof. The first statement follows from the fact that B- B is convex and

symmetric. Since Bo B B, which is boundedly compact, the unit ball of Bo is
compact, which implies that Bo is finite-dimensional. The last assertion follows
from the following lemma.

LEMMA 6. If {Yk}k= is a sequence in S S such that [lYk[I and kyk S B,
then there is a subsequence {Yk} which converges to y Bo.

Proof. We have only to prove that y Bo. Choose rn Z +. We have that
myk B B when k __> m, and limi myk my gives that my B B. Since
.m was choosen arbitrarily, y Bo.

LEMMA 7. (B B) / Bo B B.
Proof. Let x B B and e Bo. Then

x +e= lim (nx+(ne))B-B.
n-oon+ 1

PROPOSITION. N has the following properties"
(d) lim_o (N()/)= inf {I]Kx "xB, Ilxll
(e) lim-o (N()/) > 0 ifand only ifB isfinite-dimensional;
(f) diam B implies that N is continuous;
(g) diam B implies that lim_ (N()/) inf {I Kxll "x Bo,
Proof Part (d) follows from the fact that (N()/) inf {llKx]l" x U B,

]xll l} and the definition of Boo. If Boo is finite-dimensional, then the unit ball is
compact. Therefore the infimum is attained for some Xo and Kxo > 0 since K was
one-to-one. If, on the other hand, B is infinite-dimensional, then choose an
orthonormal system {e}=a such that lim_ Ke b, and if b 4 0, put

(e e_ )/x/ and lim KJ 0.
In order to prove (f) we take Xo B- B such that o ]Xoll and N(o)

IIKxol]. According to Lemma 5, there is an e 6 Bo, e -# 0. Put , IIXo + tell,
which decreases toward % as decreases towards 0. (Otherwise change e to
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-e.) Lemma 7 gives that xo+ teeB-B. We now have N(eo)= Kxo[
limt-.o+ IIK(x + te)[I >= lim,_o+ U(et) lim,-.,o+O N(e) >= N(eo), and the con-

tinuity from the right is proved. Part (c) above now gives that N is continuous.
Now to consider (g)" put

t inf{l!Kxll’xBo, ]lx]l 1} and ’ lim (N()/).

Since Bo c {x’exeB B} we have ’ __< . Suppose that ’ < . Then there
should exist a y, such that Y, 1, ny, eB-B and Ky, <"< . Then
Lemma 6 gives that there should exist a subsequence converging to yo e Bo.
But Yoll and Kyoll =< to" < : gives a contradiction, which shows (g).

THEOREM 4. A subset M H is convex, symmetric and boundedly compact if
and only ifM Mo M’, where Mo is afinite-dimensional subspace ofM and M’
is convex, symmetric and compact.

Proof As in Lemmas 5, 6 and 7, we see that Mo {x H" nx M for all n e Z +

is a finite-dimensional subspace and that M + Mo M. Let M’ be the orthogonal
projection of M on the orthogonal complement of Mo. We see that M’ becomes
convex, symmetric and closed. Since Mo + M M, we get M Mo M’ and
M’ M. If there were arbitrarily large elements in M’, then as in Lemma 6, one
can show that M’ f-I Mo -, which contradicts M’ 2_Mo. Hence M’ is closed
and bounded, and since it is a subset of M, it is compact. Conversely, let M
Mo M’, where Mo and M’ are as in the assumption. It is evident that M is

convex, symmetric and closed. To every r > 0 there is an s > 0 such that Er fl M
c (Es f) Mo) (R) M’, since M’ is bounded. Now both terms of the direct sum are
compact, and therefore so is Er f’l M. Hence M is boundedly compact.

3. Examples.
Example 1. If B is a finite-dimensional subspace of H, we have B B Bo

Bo B, which is boundedly compact. Such constraints are used when one
knows that the solution of the integral equation is a linear combination of functions
from some finite set of functions, for instance, a polynomial of degree __< 26.

Example 2. If B is compact, so is B B. Such a constraint is, for instance,
B {x H’l(x, ek)l <= k}, where {ek}k=l is a complete orthonormal basis and

Example 3. If H LZ(a, b), we put B, f LZ(a, b)" f is absolutely con-
tinuous and f’eLZ(a, b) with ]f’[ =< co}. We have that
which is boundedly compact. To see this, let E {f e LZ(a,b)’llf <= r}, C

{f LZ(a,b)’f is constant} and let I be the compact operator defined by
lg(t) , g(s) ds. This gives B,, C’e IE,o, where C’e is finite-dimensional and
IEo is compact. According to Theorem 4, Bo is boundedly compact..

One can also use higher derivatives to construct similar constraints. Such
constraints have been used by Phillips [3] and Twomey [4] and similar methods
have been used by Tikhonov [5] and [6].

We have seen that if B is symmetric, then B B 2B and the conditions
"B is boundedly compact" and "B- B is boundedly compact" are equivalent.
Example 4 shows that this is not always the case when B is not symmetric.

Example 4. Let {ek}k%1 be an orthonormal basis and put B equal to the
closed convex hull of {0, 2el, 2e + e2, 3el + e, .--, ke + ek, ...}. Ifx e E f’l B,
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then 0 < (x, ek) r//1 + ]2. Therefore Er (3 B is a closed subset of a Hilbert
cube, and hence Er f3 B is compact. But nel limk_ (n/k)(kel + e) B, so
B B contains {ek}% and is therefore not boundedly compact.

Next we give an example which shows that in Theorem 2 it is essential that B
is convex.

e be an orthonormal basis in H and putExample 5. Let )=o

Y,= (eo+ei) and yo=0.
i=1

Then put B U=[y,,y,_], where Ix, y] {zH’z ex + (1 e)y,
0 _<_ e =< 1}. We can also write B {y j’t (eo + etsl) ds’t >= 0}. Now B is

closed, but B is not convex since 0 e B, 2e0 -B + e2 e B, but eo + 1/2(el + e2)) B.
B- B is not boundedly compact since B) f)Er contains r(eoek)//2 for
all k if r __< 1. However, one can show that if K is one-to-one and compact, then

K-IB is uniformly continuous. Thus the necessity part of Theorem 2 is false.
However, B B boundedly compact is sufficient even if B is not convex, and we
can use the same proof.

4. How about Banaeh spaces? In the previous paragraphs we have shown how
to get a "solution"fwhich is close to the true solution fo when we have adequate
knowledge of fo. The solution f has the property that Kf is close to Kfo in the
LZ-sense. In some problems this is perhaps not the natural norm, so in this para-
graph we shall investigate which results in the foregoing paragraphs are valid
if K’E F is a one-to-one compact linear map and E and F are Banach spaces,
for instance, Ll[a, b] or C[a, b].

First we assume that F is still a Hilbert space. If we examine the proofs, we
see that the Hilbert space property of E was only needed in Lemma 4, which was
used for the necessity part ofTheorem 1, which we used in the proof of the necessity
part of Theorem 2. Example 6 below will show that the necessity part of Theorem
is false for general Banach spaces. However, the necessity part of Theorem 2
can be proved directly.

THEOREM 2’.If K-IIB is uniformly continuous, then B- B is boundedly
compact.

Proof In the proof of Theorem 2, we saw that K- ]n(_ n) is uniformly contin-
uous, too, so it is sufficient to prove that B is boundedly compact.

Since K-] is uniformly continuous and B 71 E is closed, then K(B f’l E)
is closed and thus compact. This gives that B f’l E, K-[/ (K(B f3 Er)) is com-
pact.

We give some examples.
Example 6. Let E Co {x {xi}=. xie R and limi-xi 0} with

]x sup ]X and B {x E’I _>_ X >- x2 >=..-}. If K’E - 2 is defined by
K{xi}=l {2ixi}i=l with 2i :/: 0 and Z=I 2i]2 < , then K is a one-to-one
compact linear map. We prove that K- In is continuous by proving that point-
wise convergence in B is equivalent with norm convergence" if xk) and x e B, then

i<N

from which the assertion follows. But B is not boundcdly compact since it contains
(1,0,...), (1, 1,0,0,0,...), (1, 1, 1,0,0,...),....
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Example 7. Let E L l[a, b]_ and B,o {fe E: Var f < 09}. In order to see

that B,o is boundedly compact, we write B,o Cte Bo, where Cte the constant
functions of E and B- {fe Bo’f is left-continuous and lim,-.af(t)= 0}. As
before, it is enough to prove that B,o is compact.

There is a one-to-one correspondence between B and the Borel measures
of [a, b] with variation less than or equal to 09, and this correspondence is given by
f(t) p[a, t) and Varf= pl [#[[a, b]. Letfi e B and #, be the corresponding
measures. We can assume that/i converges weakly to/ with I1 11 -5 o, i.e.,

Put

b

lim 0 d(tti it) 0 for every o e C[a, b].

t"

=)1, s < t,
h(t, s)

ts,

1, st-,

t), Ixl <-_

0 t+e<_s,

and f(t) ba h(t, s)d#(s) #[a, t). Now g is a continuous function, and we have

h(t, s) d(la #i)(s) dt

_-< g(t, s)d(tt, t0(s) dt + Ih(t, s) g(t, s)l dt dirt, ttl(s).

The second term is less than or equal to r.. 209, and the first tends to zero for cach
fixed e, from the dominated convergence theorem. Thus fi converges to f and the
compactness ofB is proved.

Example 8. Let E C[a,b] with the supremum norm and
{feE’lf(t -f(s)] __< 09It- sl}, which is boundedly compact. Again put

B,o Cte Bo. The Arzela-Ascoli theorem gives that B is compact.
Example 9. Let E C[a, b] and B,o {re E’f is absolutely continuous

with ,b if,12 at =< which is boundedly compact. This follows from Example 3
and the fact the the supremum norm II" and the L2-norm I" 112 are equivalent
on Bo"

11f122 If(t)l 2 dt <= f [b al,

200 [f(to)l 2 ]f(t0)2[ 2f(s) .f’(s) ds

< 20911f 12--<__ 2 [f(s)l" =< 2 f ll2 f’12
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Example 10. Let E Ll[a, b] and Bt {fe E’lf(n)l _< 0,}, where Z= e,
< oc. Then B() C[a, b] is a compact set even in C[a, b]: let A e Bt,. We can
assume than limk fk(n) ,, where ,1 N e,. Put

+

We have

if k is large enough.
The Hilbert space property of F was only used in Theorem 3 which is valid

even in rotund (i.e., strictly convex) and reflexive Banach spaces. If F is not
rotundfor example, L or L then the closest point, if it exists, is not unique.
However ifM is boundedly compact, the existence of a nearest point in M is easily
proved, and if x is near M, all points which are nearest points to x are close to
each other. Thus if M KB with K-[ (uniformly) continuous, then is
perhaps not single-valued on the complement of KB bm "(uniformly) continuous"
on KB, which is enough to solve the integral equation problem.
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PROPERTIES OF LIRON’S POLYNOMIALS*

F. T. HOWARD,"

Abstract. For real nonzero k, put

S,,(k) - Z ; 2’’- 2,

where a, runs through the nonzero roots of tan a ks. Liron [5] found a generating function for Sin(k)
and showed that Sin(k)= (k- 1)-m-lP,,,+l(k), where Pm+(k) is a polynomial in k of degree m + 1.
Carlitz [1] showed that Pro+ (k) has coefficients that are closely related to tangent coefficients of higher
order. In the present paper additional properties of Pro+ (k) are derived. In particular it is shown that

Pro+ (k) can be expressed simply in terms of Pm(k), P,(k) and P,+ (k), and this result leads to a simple
recurrence formula for the coefficients. Also formulas for P,+ 1(1) and P+ 1{1) are found, and Carlitz’s
result that (3m + 3)!Pm+ (k)/{m + 1)! has integral coefficients is sharpened.

1. Introduction. For real nonzero k, put

(1.1) Sm(k) - Z 02 2m 2,
n:0

where a, runs through the nonzero roots of tan a ka. Liron [5] showed that

(1.2) Sm(1)t2,
3 sin

m=o 2t +
2(t cos sin t)

and pointed out that

S,,(1) a2,,+ 2(3/2),

the Rayleigh function of order 3/2. The early history of the Rayleigh function can
be found in [7, p. 502]. In more recent years it has been studied by Kishore [4]
and Lorch [6], among others. It should perhaps be mentioned that for m > 0,

(__ 1)m3.22m+
(1.3) Sm(1) (2m + 2)! V2m/2’

where V0, V V2, are the van der Pol numbers discussed by the present writer
in [2].

For k 4: 1, Liron showed that

(1.4) Sm(k)t2m
k k sin

,.=o 2kt2 + - kzt2 kt cos sin t"

He also showed that

Sm(k (k 1)- m-1Pm +l(k),

* Received by the editors July 16, 1973, and in revised form January 18, 1974.
]" Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109.
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where P+ x(k) is a polynomial of degree m + in k with rational coefficients, and

(1.6) Pro+l( 3-m-1.

Carlitz [1 then proved that

jr[( + ]’(r)
(1.7) Sm(k "2m+l -1--(m + 1) (k 1) "2re+r+2

2(2m + 1)I r(2m+ r + 2)r=l

for k 4:1 m > where U{r) is defined by

(1.8) (tant-ty= U.)
n=3r

1/l

Carlitz also proved that

(1.9)
(3m + 3)!
(m + 1)! Pm+l(k)

has integral coefficients.
In the present paper additional properties of Pm+ 1(k) are found. In particular

we prove that for m > 0,

3P+ x(k)= k2pm(k)+
k- k(k- 1)

P’ P’m(k)
m + re+X(k)

m

and this result leads to a simple recurrence formula for the coefficients of Pm + l(k)" In
fact the coefficients of k", 0 _<_ n _<_ 4, are computed in this paper and expressed in
terms of Bernoulli numbers. We also prove that if q x, "’", qs are all the odd primes
less than 2m + 4 and if

2m+2
ei= i=

qi--
,S,

then

2 e, (k)qi +1

has integral coefficients. Finally, we derive the following formulas"

p, 2[lm(1 + m)m+ 1(1) 5,3

2 (iv.-1(42m2 + 43m + 1)+ 1(1) -,

m>0,

2. A sequence of rational numbers related to Sm(k). We begin by defining
rational numbers Hn(k which generalize the van der Pol numbers V defined by

x3/6 o VnXn
x(ex+ 1)-- 2(ex- 1)--n-- ’
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Equations (2.9) and (2.14) in this section will show that the numbers H,(k) are
closely related to S,,(k) and S’,,(k). They will be used to prove some of the results in

3 and 4.
For real k, k -# 0 or 1, define H,(k, a) by means of

(2k 2)xe
(2.1)

kx(e" + 1) 2(e 1)
H,(k a)

x

n=O /7!

and let Hn(k O) H,(k). Thus

(2k 2)x
(2.2)

kx(e + 1)- 2(ex- 1)- n=0

and

(2.3) g.(k, a) Hr(k)a
rr=O\ /

It follows from (2.1) that

and so

H.(k, a) (-1)"H.(k, a)

(2.4) H,(k, 1) (- 1)"H,(k).
If we multiply the left side of (2.1) by kx(e + 1) 2(e 1) we see that

(2.5) (n + 1)kH,(k, a + 1) + (n + 1)kH,(k, a)
-2H,+ l(k, a + 1) + 2H,+ l(k, a) (2k 2)(n + 1)a",

and letting a 0 and replacing n by 2m we have

-2
(2.6) H2m(k) (2m + 1)k H2,, +l(k), m > 0.

Now by (2.1) and (2.4) we have

(2k 2)x(e 1) x2m +
(2.7)

kx(e + 1) 2(e 1)
2 H2m +l(k) (2m + 1)I’m=0

and thus,

sin x (- 1)’- 122m+
(2.8) H2m+ l(k)t2m.kt cos sin mL’o (k -2-nTt 7- -1!
Comparing (2.6) and (2.8) with (1.4), we see that for m > 0,

(2.9) S,,,(k)
(-- 1)m22m-1 (k2H2m(k) 4(k 1)H2m +2(k))k- \ ----i +

(2m + 2)!

In fact it follows from Carlitz’s examination of (1.4) that for m > O,

(2.10) H2,.(k (_ 1),.2-2,.(2m)I "2,,,+, (k 1)-’;)’r--1
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where Ur) is defined by (1.8). It follows that

(2.11) H,(k) (k 1)-[n/ZlQn(k), n > O,

where Q,(k)is a polynomial in k of degree [(n 1)/2]. It is clear from (2.6) that
Q,(0) 0 ifn is odd, n > 1.

If we multiply both sides of (2.2) by kx(e + 1)- 2(ex- 1) and compare
coefficients of x, we derive the recurrence formula

Ho(k 1,

l(n + l) (n + r)k- 2Hr(k(2.12) (n + 1)H,(k)=
=o r 2(k 1)

If we replace n by 2m in (2.5) and consider the two cases a 0, a 1, we derive,
form>0,

(2.13) Hzm(k)=2 2(k- 1)(2m+ 1)=o\ 2r
[(2m+ -2r)k-2]Hz(k).

Using either (2.12) or (2.13) we have

Hi(k) 2’ Hz(k) 6(k 1)’
k 6k-

H3(k) 4(k 1)’ H,(k) 30(k 1)2.

Though the numbers H,(k) may be of some interest in their own right, we
shall mainly be concerned with their relationship to Sm(k and P,,+ l(k). Of partic-
ular interest are (2.9) and, for m > 0,

k (_ 1),,22m+ 2

(2.14) H 2(k)rn + S’(k) (2m + 2)! 2,,+

which we now prove. By (2.1) and (2.4) we have

tcost v (_l)m22m
(2. 5)

kt cos sin m/-"o (k 1)(2m)! H2m(k)t2m

and Carlitz has proved

t2m+2tcost-sint
=(k- 1)S’m(k)(2.16)

kt cos sin m=O m +

Comparing (2.8), (2.15) and (2.16), and using (2.6), we have (2.14). This can also
be proved easily from (1.7) and (2.10).

(3.1)

3. The coefficients of P, + 1@). Differentiating (1.5) with respect to k we have

S’.,(k) -(m + 1)(k 1)-m-2Pm+ l(k)+ (k 1)-m-lP’m+l(k),
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and by (2.9), (2.14) and (3.1) we have for m > 0,

k(k- 1) k-
(3.2) 3/),+ (k)= k2p,(k)-

m
P’m(k) +

m + P’,,+ (k).

It follows that

P+1(1) 3-P,(1) 3-2p,,_(1) 3-’-1,

a result also proved by both Liron and Carlitz.
We can derive from (3.2) a recurrence formula for the coefficients of P,,+ l(k).

Let

kin+(3.3) Pro+ 1(k) Am+ 1,o + Am+ 1,1 k + -I- Am+ 1,m+l

It follows from (3.2) that, for r > 0,

(3.4) mrAm+ 1,r -m(3m + 4 r)A,,+ 1,r-1 + (m + 1)(r 2)A,,,_ 2

+(m+ 1)(m- r + 3)A,,,_ 3.

Here it is understood that Am+ 1.r 0 if r < 0.
It is possible, by means of (3.4) and a value for A,,+ 1,o, to express A,,+ 1, in

terms of Bernoulli numbers. We recall that the Bernoulli numbers Bo, B, B2,

can be defined by means of

X xn
n=0

or by means of the formula

Bo 1,

r=O r
n>l.

These numbers are well known and have been extensively studied. The first 60 are
listed in [3, p. 234].

To find a value for A,,+ ,o we use (2.11) and (2.12). If we define Qo(k) Ho(k)
1, we have

L (n+ 1)(-1)[/2IQr(O)=O
r=O r

and so

Q2n(0) 1)nB2,,.

It follows from (2.9) that

(3.5) Am+l.0

22m +

(2m + 2)! B2m+2

as was proved by Liron in another way.
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Thus by (3.4) and (3.5) we have

3.22m
Am+ 1,1 (2m + 1)! B2"+ 2,

3" 22m- 1(3m + 2)Am+ 1,2 (2m + 1)! B2"+ 2,

(3m + 1)(3m + 2)22m-1 22"(m + 1)
Am+l,3 (2m -+- 1)! Bzm+2 +

3"(2m)! B2"’

-3m(3m + 1)(3m + 2)22m-3 22"- l(m + 1)Am+ 1,4 (2m -+- 1)! Bzm+2 (2m 1)! Bzm"
It follows that

[(r+ 1)/2] EnB2m+4_2nm!r!A"+l,).= (2m+4-2n) I’
n-1

where E E2, are integers.
Formula (3.4) can also be obtained in the following way. From (2.14) and (3.1)

we have

(_1)"22"+1
(3.6)

(2m + 1)!
Qz"+z(k) + (m + 1)P,,+ l(k)= (k 1)Pn + l(k).

We differentiate (3.6) r times to obtain

(3.7) (k 1 ().) 1)(k) +
(- 1)"22"+ o().-1) /)P"+l(k)= (m r + 2)P+ (2m + 1)! 2m+ZV’,"

If we multiply (2.9) by (k 1)" + 1, differentiate r 1 times, and let k 0 we have

(3"8)
(- 1)m22m+ ( )()(r- 1)2(0) p- 11)(0 ._ (- 1) 122m /" 1

Q(2).n 3)(0)
(2m + 2)! X>2m+ + (---)i 2

Substituting (3.8) into (3.7), with k 0, gives us

t().- 1)/2] (’ 1)! p- 2s- 1)(01)(0)-(2m+2)
(r-2s- 1))

P().) 1(0) -(3m + 4 r)P7_ -s+1
s’-i

(3.9)

and so we have
[(). 1)/2]

(3.10) rAm+ 1,). -(3m + 4 r)Am+ 1,r-1 (2m + 2) ’. Am_s+ 1,).-2s-1"
s=l

If we subtract ((r- 2)/m)A",)._2 from (r/(m + 1))Am/ 1,)., using (3.10), we obtain
(3.4).

We note that (2.10) gives us the formula

(m +1)(-1)m+ li_rA" + 1,).
/. 2(2m +

U(1)
2m+1

(3.11)

+ (m + 1)
m + s (-1)m+ l-s-)"

U(s)

s=l r s(2m + 2 S-) 2m+2+s’
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where Us) is defined by (1.8). Thus from the series

t2n-
tan t=

n=l
where

(- 1)"+ 122n(22n 1)
T2,-1 2n B2n’

we have

Am+ 1,m+ 2(2m + 1)!’

-(m + 1)T2,.+ (m + 1)T2,.+ 3A,.+,m 2(2m + 1)!
+

(2m + 3)!

and by using the formula

(3.12) rUb,r+ 1) "n[’(r)+ 2rU,")- r7(-)v._ 2
n! n! (n 1)! (n 2)!

which was proved by Carlitz, it is possible to compute the coefficients A,,+ ,r in
terms of Bernoulli numbers.

4. Prime divisors of the coefficients. In this section we sharpen the result that
(1.9) has integral coefficients. We shall first prove theorems for the polynomials
Q2m(k) and then, using (2.9), look at the corresponding theorems for Pm/ (k).
We begin by stating as a lemma a well-known result concerning prime divisors of
factorials.

LEMMA 4.1. Let q be a prime number and let Vq(n) be the exponent of the highest
power of q dividing n! If

n ao + a q + + arq, O_<_ai<q,

then
S ao + a + + a,

n-S
vqtn) q 1"

THEOREM 4.1. Let q,..., qs be all the odd primes less than 2m + 2 and let

ci [2m/(qi- 1)], i--- 1, ..., s. Then

22m clqx
(2m)!

Q2m(k)

has integral coefficients.
Proof The proof is by induction on m. We first verify the theorem for m

0, 1, 2 using the values of Hz(k) given in 2. Assuming the theorem is true for
all values of Q2, 2r < 2m, we multiply (2.13) by

22"q]’ q"
(k 1)’.

(2m)!



970 F.T. HOWARD

By Lemma 4.1 we see that

1 q- 1 >vq(2m+ 1-2r),

2m- 2r- > Vz(2m + 2r),

and Theorem 4.1 follows.
COROLLARY. Let q be an odd prime. If 2m hq + t, 0 <= h < q 2, 0 <=

< q h, then Qzm(k) has coefficients that are integral (mod q).
We shall use the following definition. If f(x) and g(x) are polynomials with

rational coefficients and q is a prime, we define f(x) g(x) (mod q) if the coefficients
of f(x) and g(x) are integral (mod q) and if the corresponding coefficients are
congruent (mod q).

THEOREM 4.2. Ifq is an odd prime and <__ m < q + 1, then

qm
[m(p 1)]! Qmq- 1)(k) =- (- 1)"(k 1)"tq- 3)/2 (mod q).

Proof The proof is by induction on m. For m we have, by (2.13) and
Theorem 4.1,

qQq_ l(k) =- (k 1)tq- 3)/2Ho(k) =- (k 1)(q-- 3)/2 (mod q).

Assume the theorem holds for all Q,t_ 1)(k), 1 < n < m. it is easily seen by Lemma
4.1 that form<q+ landr<m(q- 1),m- [r/(q- 1)]=vq(m(q- 1)-r+ 1)
if and only if r (m 1)(q 1). Thus by (2.13) we have

qm (k 1)q- 3)/2qm-1

[m(q 1)]! Qm(q- 1)(k) =_
[(m 1) (q 1)]! Q(m-1)(q- 1)

_= (-- 1)m(k 1)re(q- 3)/2 (mod q).

Using (2.9) we can now write down the corresponding theorems for Pro+ l(k)
THEOREM 4.3. If q1,’’’, qs are all the odd primes less than 2m + 4 and if

e [(2m + 2)/(q 1)], 1,..., s, then
es2q’ q Pro+

has integral coefficients.
COROLLARY. Let q be an odd prime. If 2m + 2 hq + t, 0 <= h <= q 3,

0 <_ < q- 1- h, then (2m + 2)!Pm+l(k) has coefficients that are integral
(mod q).

THEOREM 4.4. If q is an odd prime and 1 <__ m < q + 1, then

2" qmPm(q_ 1)/2(k) -= (- 1)(mq+m- 2)/2(k 1)m(q- 3)/2 (mod q).

Theorems 4.3 and 4.4 tell us that if 1 _< m < q + 1, then m(q 1)/2 is the
smallest value of n such that P,(k) has at least one coefficient with denominator
divisible by exactly qm. Furthermore, the coefficients of P,,(q_l)/2(k) having this
divisibility property are the coefficients of k for all r such that 0 <= r <= m(q 3)/2
and

(m(q-r3’/2)
is not divisible by q.
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At times Theorem 4.3 is an improvement on Carlitz’s result that (1.9) has
integral coefficients. For example (1.9) says

28. 3 5. 52. 72. 11.13Ps(k

has integral coefficients while Theorem 4.3 says

2.35. 52. 7.11Ps(k

has integral coefficients. We can combine the two results in the following way.
Let q be an odd prime and let

3m+3 ao + a q + + a,,q",
m+ bo + bx q + + b,,q",

S ao + a + + a,,,
S2=bo+b + +b,.

Define

f(m + 1)=

+ 21q-
if S>S,

2m+2-S -[-S2 if $2 <S

Then qf(m+ 1)Pm + l(k) has coefficients that are integral (mod q).

O<-ai<q,

O<-bi< q,

5. Formulas for P’,,+ 1(1) and W+ 1(1). It follows from (1.7) that

p(m+ tl"
(m + 1)(m + 1 r)’ iT(r)"m+l-r),! r(2m + r + 2)! 2re+r+2,

where p(m+ 1-
--m+X )(1) is the m + -r derivative Of Pro+ (k) evaluated at k i.

Unfortunately it seems to be a very tedious procedure to find explicit formulas for
U() from (3.12) In this section we use another method to find P,+ (1) and2re+r+2

P/ x(1). The following recurrence formula, which is due to Liron, will be useful"

(-1)"[k(2n 2m + 1)- 1] n + 1
(5.1) Sin(k) [k(2n + 3) 1].

m-O (2n- 2m + 1)! (2n + 3)!

Let m > 1. By (1.5) and (5.1),

3k + 2 (5k + 4)k(5;2) Pm+ (k + 1)= Pm(k + 1)-
3! 5! Pm- (k + 1) + k2g(k),

where g(k) is a polynomial in k with rational coefficients. We rewrite (5.2) in the
form

3k + 2 (5k + 4)k
(5.3) n,,+ ,(k + 1)= n,,(k + 1)-

3! 5 Pro- (k + 1) (mod k2).
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Using (1.6) we then have

1pP+ l(k + 1) - .,(k + 1) + -,
2 lm--- -)- GI + ) + -&) Im

3
q- (-) (m + 1)k (mod k2).

This implies that for m > 0

(5.4)

Similarly for m > 2,

p, 2(,),. (m + 1)m+(1) =,

3k+2 (5k+4)k
P+(k+ 1)=--P(k+ 1)-

3! 5!

(7k + 6)k2

+ 7! P- 2(k + 1)

P_ (k + )

+ (m + 1)k

+ - 42m2

This implies that for m > 1,

(5.5) P" lm-1 2+1(1) (g) (42m2 + 43m + 1)

+ 43m + 1) (mod k3).

6. P.,+ (k) for 0 __< m =< 4. In this section we list the first five polynomials
P,,+ l(k). We note that Pl(k), P2(k) and P3(k) were computed by Liron.

P(k) 1/2k 6’

P2(k) =-k2. 3k + b,
P3(k l_k 4 2

Y07k + --07k 945’

P4(k 17h4 8 3 11 2

p5(k 31 323 k4 422 k3 2k 3i115 + 93,555 --k + k 93,555"

We conjecture that the signs of the coefficients alternate; i.e.,

(- 1)m+ l+A > 0m+l,r

for r=0,...,m+ 1. We can verify this by our computations in 3 for
r=0,...,4 and r=m, r=m+ by using the following properties of the
Bernoulli numbers [3, pp. 24246]

(--1)n+ 1B2n > O, rl > O,

24(2n + 1)(2n + 2)
(2re)4

(2n + 1)(2n + 2)
(2re)2
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7. An analogous problem and concluding remarks. We note that the methods
of this paper could be used on the polynomial Tm(k defined by

Tin(k) - Z [J2 2m- 2,

where /3, runs through the roots of k cot/ +/ 0. Both Liron and Carlitz
discuss this polynomial. To use the method of this paper, define G,(k) by

2k(e + 1) x(e l)
G,,(k) ...

n=O

It can be shown that formulas analogous to (2.9) and (2.14) hold. It does not
appear that any new information is obtained by using this method, however.
A recurrence formula for the coefficients can be derived, but it is equivalent to
formula (2.5) in ].

In conclusion we remark that many of the properties of the numbers H,(k)
discussed in this paper are not really necessary to prove the new results concerning
Pro+ l(k) For example, if we define Hzm(k by means of (2.10), then (2.14) follows
from (1.7), and (2.9) follows from Carlitz’s work. This is all that is necessary to
prove (3.2) and (3.4). Also formula (5.1) can be used to prove the theorems in 4,
with the possible exception of the fact that 2P,,+l(k) has coefficients that are
integral (mod 2). As indicated by the results in 2, however, the numbers H,(k)
are closely related to the Bernoulli and van der Pol numbers, and therefore may
be of some interest in their own right. The writer hopes they are an interesting
alternate approach to the study of P+ (k).
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GENERALIZED INVERSES IN REPRODUCING KERNEL SPACES"
AN APPROACH TO REGULARIZATION OF

LINEAR OPERATOR EQUATIONS*
M. Z. NASHEDS" AND GRACE WAHBA$

Abstract. In this paper a study of generalized inverses of linear operators in reproducing kernel
Hilbert spaces (RKHS) is initiated. Explicit expressions for generalized inverses and minimal-norm
solutions of linear operator equations in RKHS are obtained in several forms. The relation between
the regularization operator of the equation Af= g and the generalized inverse of the operator A in
RKHS is demonstrated. In particular, it is shown that they are the same if the range of the operator
is closed in an appropriate RKHS. Finally, properties of the regularized pseudosolutions in this setting
are studied.

It is shown that this approach provides a natural and effective setting for regularization problems
when the operator maps one RKHS into another.

1. Introduction. Let X and Y be Hilbert spaces and let A be a linear operator
on a domain (A) = X into Y. The operator A is said to have a generalized inverse
A on a domain (A*) Y if for each ye(A*), inf{llAx-yll’xX}

[[AA*y y[ and [A*y[[ is smaller than the norm of any other element u X
at which the preceding infimum is attained. It is well known and can be easily
shown that if A is a bounded operator, or if A is a densely defined closed operator,
then A exists on (A) (A)+/-, where (A) is the range of A. The domain
(A *) in this case is a dense subset of Y and A* is unbounded unless (A) is
closed in Y A compact operator with infinite-dimensional range is a prototype of
an operator for which (A) is not closed.

To impart continuity to A* when (A) is not closed in Y, one.might consider
subsets X’, Y’ of X, Y, respectively, equipped with topologies which are not equiva-
lent to those of X and Y, and such that the generalized inverse of A, when viewed
as an operator from Y’ to X’, exists and is bounded. The topologies of X’ and Y’
are required to be induced by inner products, and must be amenable to the original
setting of the operator equation Ax y, so that questions of least squares solv-
ability and related approximation schemes are still meaningful in a wide context.

One objective of this paper is to show, when X and Y are -spaces of square-
integrable real-valued functions, that the topology of reproducing kernel spaces is
an appropriate topology for the goal stated above, and thereby to initiate a
systematic study of generalized inverses of linear operators acting between two
reproducing kernel Hilbert spaces. This study has strong interface with the problem
of regularization of (ill-posed or poorly-conditioned) linear operator equations.
This brings us to another objective of this paper, which is to provide a new approach
to regularization in the context of RKHS.

At present there are several approaches to the investigation and regularization
of ill-posed problems. These are discussed briefly in our report [10], which forms
an earlier draft of this paper and contains an extensive bibliography on these

Received by the editors August 1, 1972, and in revised form November 16, 1973. This work
was sponsored by the United States Army under Contract DA-31-124-ARO-D-462.

" School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.

:1: Department of Statistics, University of Wisconsin, Madison, Wisconsin 53706.

974



GENERALIZED INVERSES IN RK SPACES 975

approaches. In this paper we present another approach to regularization based
on the notion of least squares solution of minimal norm and on regularization
operators in RKHS. Our approach coincides in philosophy with some ofthe known
approaches cited in [5], [16], [lOq (in the sense that we change the notion of the
solution and consider the problem in new spaces), even though it differs sharply
in technical details. We exploit (in an optimal way) the geometry of RKHS and
obtain results which are the best possible in this context. The basic results of this
paper are stated in Theorems 3.1, 4.1, 4.2, 5.1, 5.2 and 6.1. Applications of this
approach to rates of convergence of approximate solutions will appear elsewhere
Vl], V23.

To our knowledge this is the first time that generalized inverses of linear
operators and reproducing kernels are used simultaneously in the same context.
It is befitting to mention here that the concepts of a generalized inverse (of a matrix)
and RKHS both go back to the work of E. H. Moore [7].

2. Generalized inverses, reproducing kernel spaces, and pseudosolutions, of
linear operator equations. Let X and Y be two Hilbert spaces over the real scalars
and let A be a linear operator on (A)c X into Y. Let (A), U(A) and A*
denote, respectively, the range, nullspace and adjoint of A. The orthogonal
compliment of a subspace S is denoted by S+/-; the closure of S is denoted by
and the orthogonal projector on a closed subspace ///is denoted by Pu.

We consider the linear operator equation

(2.1) Ax y.

DEFINITION 2.1. An element u X is said to be a least squares solution of
(2.1) ifinf {llAx yll "x x} IlAu yll. If the set Sy of all least squares solutions
of (2.1) for a given y Y has an element v of minimal norm, then v is called a
pseudosolution of (2.1).

DEFINITION 2.2. The operator equation (2.1) is said to be well-posed (relative to
the spaces X and Y) if for each y Y, (2.1) has a unique pseudosolution which
depends continuously on y; otherwise the equation is said to be ill-posed.

Obviously (2.1) has a least squares solution for a given y Y if and only if
there exists an element w (A) which is closest to y. From this it follows im-
mediately that (2.1) has a least squares solution if and only if P--)y (A),
or equivalently y (A) (A). For such y, it is easy to see that the set Sy
has a unique element of minimal norm if and only if Py-fu V(A) for some
u Sy (in which case this is also true for each x S). Thus a pseudosolution of
(2.1) exists if and only if

(2.2) y A((A) VI U(A)+/-) (A)+/-.

In what follows we shall primarily be interested in the cases when A is a
closed linear operator on a dense domain (A) c X, or when A is a bounded
linear operator on X. In either of these cases, since V(A) is closed, condition
(2.2) reduces to the condition

(2.3) y e (A) ( (A)+/-.

The (linear) map which associated with each y satisfying (2.3) a unique
pseudosolution defines the generalized inverse of A, which is denoted by At.
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For each y e (A*), we thus have Sy A*y 4/(A). Note that in our setting,
A is a densely defined operator.

We summarize in the following proposition equivalent properties of the
generalized inverse (see Nashed [8]).

PROPOSITION 2.1. Each of the following sets of conditions characterizes the
generalized inverse A ofa bounded or a densely defined closed operator:

(a) AA*A A on (A), A*AA A on (A*), AA P I(Ar) and
A tA Pr(A)+/-I@(A), where the vertical bar denotes the restriction of the projector
to the indicated domain.

(b) A is the unique linear extension of {A[’(A)+/-} -1 to (A) (A)+/-

so that U(A ) N(A)+/-.
(c) For y (A) (R) N(A)+/-, A *y is the unique solution of minimal norm of the

"normal" equation A*Ax A’y, provided (A) c (A*).
(d) For y (A) @N(A)+/-, A *y is the unique solution of minimal norm of the

"projectional" equation Ax
PROPOSITION 2.2 Thefollowing statements are equivalent for A as above:
(a) The operator equation (2.1) is well-posed in (X, Y).
(b) A has a closed range in Y.
(c) A is a bounded operator on Y into X.
Proof (a) implies that (A) Y and thus from (2.3), N(A) (A). State-

ment (c) follows from (b) using Proposition 2.1(b) and the closed graph theorem.
That (c) implies (a) is obvious.

Convention 2.1. In this paper we encounter on several occasions a composition
of two operators, say A and B, where B is unbounded and densely defined but
AB is bounded. In all such cases we shall assume that AB has already been extended
as usual (i.e., by continuity) to the closure of the domain of B. An example is the
composition AA when N(A) is a nonclosed subspace. Then (A ) is dense, but
AA is bounded and can be extended to N(A) N(A)+/-, even though A cannot
(see also part (a) of Proposition 2.1).

When N(A) is not closed, the problem of finding least squares solutions of
(2.1) is ill-posed relative to the spaces X, Y. An ill-posed problem relative to (X, Y)
may be recast in some cases as a well-posed problem relative to new spaces
X’ c X and Y’ Y, with topologies on X’ and Y’ which are different respectively
from the topologies on X and Y. From the point of regularization, the topologies
on X’ and Y’ should not be too restrictive and must lend themselves to require-
ments which are satisfied by a wide class of admissible solutions of pseudosolutions.
This is precisely the point which we exploit in connection with the topologies on
reproducing kernel Hilbert spaces.

A Hilbert space of real-valued functions defined on a set S is said to be a
reproducing kernel Hilbert space (RKHS) if all the evaluation functionals f f(s)
for f e and se S are continuous. In this case there exists, by the Riesz repre-
sentation theorem, a unique element in g (call it Qs) such that

(2.4) (f, Qs} f(s), f e 2/g.

The reproducing kernel (RK) is defined by

(2.5) Q(s, s’)’= (Qs, Q;), s, s’ e s.
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Let denote the RKHS with reproducing kernel Q, and denote the inner product
and norm in 3/go by ( .,. )o. and II" 112, respectively. Note that Q(s, s’) (=Qs(s’)) is a
nonnegative definite symmetric kernel on S S, and that {Qs, s S} spans 2
since (Qs, f)Q 0, s S, implies f(s) 0. For properties of reproducing kernel
spaces, see Aronszajn [1], Shapiro [15, Chap. 6] and Parzen [13].

If S is a bounded interval (or if S is an unbounded interval but ’j" Q2(s, s’) ds ds’
< ), and Q(s, s’) is continuous on S S (the only case we shall consider here),
then it is easy to show that /gQ is a space of continuous functions. Note also that
52[S] is not an RKHS since the evaluation functionals are not continuous.

An RKHS We with RK Q determines a self-adjoint Hilbert-Schmidt operator
(also denoted by Q) on 92ES to 52[S] by

(2.6) (Qf) (s) fs Q(s, s’)f(s’) ds’, f 52[S].

Since Q(s, s’) is assumed to be continuous, then by the theorems of Mercer,
Hilbert and Schmidt [14, pp. 242-246], the operator Q has an 52[S]-complete

4 and corresponding eigenvaluesorthonormal system of eigenfunctions i}i=l
{2,}i1 with 2 >= 0 and = 2 < o (thus Q is a trace-class operator; see
2, Chap. XI.9 or 3, Chap. 2]) also Q(s, s’) has the uniformly convergent Fourier
expansions

i=1
and

(2.7) Qf , 2i(f dPi)2tsC/)i,
i=1

where (.,.)e2ts is the inner product in
It is well known (see, for example, [17]) that

)2e {f’f e 2’2[S], 2-l(f i), :[S] < (3(3 },
i=1

where the notational convention 0/0 0 is being adopted, and

The operator Q has a well-defined symmetric square root Q1/2 which is a Hilbert-
Schmidt operator ([14, pp. 242-246] or [3, Chap. 2])"

(2.8) Q1/2f Z (f,, (/)i)2ez[Sld/)i
i=1

Thus, since I/(Q) dl/(Q/2),

We Qa/(q2IS]) Q/2(2[S] @ dU(Q)).
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(Qx/2), has the representation

(2.9) (Q/2),f (/),(f, qS,)_tSlb
i=1

on @ Yge (2_ in 2[S]), where, for 0 a real number, O* O- 0 O; O* O,
0 O. Similarly Q has the representation

(2.10) Q if= Z 2i*( i)2[S]i
i=1

on its domain.
For any operator Q on 2[S] induced by an RK Q(s, s’), as in (2.6) we shall

adopt the notational conventions

(2.11) Q-1/2 .=(Q1/2), and Q-X "= Q*.
We have the relations

Ilfll< inf {llpllts, P ’z[S], f QX/Zp}, f
(fl’ f2)o (Q-1/2fl, Q-1/2f2)2[s], fl, f2

and, if f o and f2 0 with f2 QP for some p 2[S], then

(2.12) (fl, f2)o (f, P)zts.
3. Relationship between generaliz inverses RKHS and 2-spaces. We are

now ready to explore properties of the generalized inverse of a linear operator
between two RK spaces. In the remainder of this paper we let X [S] and
Y [T] denote the Hilbert spaces of square-integrable real-valued functions
on the closed, bounded intervals S and % respectively. Let A be a linear operator
from X into E Let denote point set inclusion only, and suppose that A has the
following properties"

(3.1) o (A)= X,

where is an RKHS with continuous RK on S x S"

(3.2) A(Wo) = W, = Y,

where and are RKHS with continuous RK’s on T x T" and

(3.3) W(A) in o is closed in

We emphasize in particular that the space is not necessarily closed in the
topology of.

Let A[x,r denote the generalized inverse of A, when A is considered as a map
from X into and let A denote the generalized inverse of A when A is con-
sidered as a map from o into . Now the topologies in (X, Y) are not the same
as the topologies in (o’ W)" Thus the generalized inverses A[x,r and A[o,
have distinct continuity properties in general. We shall now develop the relation
between A[O,R and certain (X, Y) and (L Y) generalized inverses. In the sequel,
the operators R" Y Y and R 1/2. y y are defined from the RK ofW analogous
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to Q and Q1/2.; see (2.7) and (2.8). We continue the notational convention of (2.11),
that is, R- R* Rr,r and R- /2 (R1/Z)r,r).

THEOREM 3.1. Under assumptions (3.1)-(3.3), let y (AQ,R)), i.e., y /g
(2_ in 1). Then

y (Qa/Z(R-a/ZAQX/Z)[x,r)R- x/z)(3.4)
and

(3.5) A[Q,mY Qx/2(R- X/2AQ x/2#,(x,r)R- 1/2y.

Proof The (maximal) domain of Ae,g) is t (2_ in g). Denote the
operator Q1/Z(R-X/ZAQX/Z)x,r)R-x/2 by L. We first show that @(Ae,R)) c @(L).
Let , R-1/2AQ1/2. The operator is defined over all of X since (Q1/2) x,
Qx/Z(x) Q, (A) /gO.’ A(Q)= c R and n (R-1/2). Also
(A-) ,(X) R-x/2(oeg) R-x/2() c Y Thus (x,r)) (A-) ()+/-
(3_ in Y), and

(Xx,y)) R-/2() @ (R-/2(og))1 (2_ in Y).

We now show

(3.6)

(3.7)

ye implies ye !(L),

y e (_t_ in g) implies y e @(L).

To prove (3.6), let y e .. Then R- X/Zy (-’t*x,n), so y (.*tx,rR- /z), which
implies ye (L) since N(J,x,.) is contained in X, the domain of Q/2. To prove (3.7),
let y e (2_ in gg). This means that y (R -x/) and (y,g)R 0 for all
g e ,. But for each g e, there exists a unique e Y U(R1/2) such that
g =/x/q. Thus (R-1/2y, R-X/z,x/2O)r 0 for all O e Y@ r(/x/z). Thus
R- /2y is orthogonal to R- x/2() in Y, so that R- 1/ey e (R- x/2(vf))+/-, 2_ in" Y,
y (,[x,r)R-1/2) and hence in (QX/2,[x,v)R-1/2).

Now we prove (3.5). For y (A(,)), let z =A[Q,y. Then z is the unique
element of minimal @norm in the set

(3.8) 5a {u: IlAu YIIR inf [lAx- YIIR}.

Let x QX/2p for p e X, and let R" X/2y. Let

W {w’ll/w 11 r inf P [1 r }.
pX

Then also

W- {w: IIR-a/2AQI/2w R-/2yll r inf IIR- X/2AQa/2p R-/2yllr
peX

(3.9) {w" AQI/2w- y[ R inf [[AQ1/2p Y[[R}"
peX

Let v be the element of minimal X-norm in I4(. Then v .x,Y)Y; =/[x,r)R- X/2y.
On the other hand, upon comparing (3.8) and (3.9) we have z= QX/2v

Q1/2XX,y)R- 1/2y. Thus z Q1/2(R- X/2AQX/2)[x,y)R-1/2y and
Ao.,my Q1/2(R- X/2AQX/2)x,rR-

which is the desired result.
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COROLLARY 3.1. IfA(Q) R, then AO.,R) is bounded.
Proof This follows from Proposition 2.2, or directly from (3.4)-(3.5).
It should be noted that an operator A may satisfy the assumption of Corollary

3.1 while failing to have a closed range in the space Y. This is, for example, the case
if A is a Hilbert-Schmidt linear integral operator (with nondegenerate kernel)
on X. It is this observation which makes RKHS useful in the context of regulariza-
tion and approximation of ill-posed linear operator equations. An application of
Theorem 3.1 is given in 5.

4. Explicit representations of minimal-norm solutions of linear operator
equations in reproducing kernel spaces. We assume that e is chosen so that

(4.1) the linear functionals {gt’t T} defined by

gt f (Af) (t) are continuous in

Then by the Riesz representation theorem, there exists {r/t, T} e such that

(4.2) (Af) (t) (r/t, f)e’ e T, f

By (2.4), r/t is explicitly given by

(4.3) r/t(s) (r/t, Q> (AQ) (t).

(r/t(s) is readily obtained in a more explicit form from (4.3) if A is a differential
or integral operator.)

Let R(t, t’) be the nonnegative definite kernel on T T given by

(4.4) R(t, t’) (r/t, r/c)o,, t, t’ T.

Let )ffR be the RKHS with RK R given by (4.4). Let R be the element of

’R defined by Rt(t’)= R(t, t’), and let (., ")R be the inner product in ourR. Let
V be the closure of the span of {r/, t T} in o" Now {R,, t T} spans ,, and
by the properties of RKHS, we have

(4.5) (t, t’)o R(t, t’) (Rt, Rt,)g.

Thus there is an isometric isomorphism between the subspace V and W, generated
by the correspondence

(4.6) t e V R e WR

Then fVgWR if and only if (t,f)o=g(t)= (Rt,g)R, t i.e., if
and only if g(t)= (Af) (t), T. Thus A(Wo)= A(V)= . The nullspace of
A in Wo is f’f, Af R 0, Since

(t,f)=0, tT and fef
and f e V implies f o IIANIIv, it follows that the nullspace of A in o is
Vz (L in o)" Hence (4.1)entails that the nullspace of A "o in o is
always closed, irrespective of the topological properties of A’X

We list the following table of corresponding sets and elements, under the
correspondence of (4.6), where the entries on the left are in
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V,

(4.7)
qt Rt,

Here Pv is the projector from onto the (closed) subspace
T, and r/* AQ A(Pv Q), i.e.,

(4.8) q (t) (q,, PvQ)
We have the following theorem.

TI-IZOM 4.1. Let A and e satisfy (4.1), and let R be given by (4.5), where
is defined by (4.2). Let tl* AQ. Then,for g o,

(A[Q,R)g) (S) (q, g)R, S S.

Proof Let f be the element in of minimal vfe-norm which satisfies Af
g, that is, f A[e.,R,g. Then f V and g f. Also r/* Pv Q. Thus

f(s) <Q, f>o. (PvQs, f>o (r/*, g>R"

We next obtain another operator representation of
THEOREM 4.2. Suppose

(i) (A*) is dense in Y, where A* is the adjoint ofA considered as an operator
from X to Y’

(ii) A and o. satisfy (4.1)"
(iii) o and R A(VfO) possess continuous RK’s.

Then, jbr g ,
(A[o,mg) (s) (QA*(AQA*)[y,y)g) (s), s S.

Proof First we show that R AQA*. This follows by observing that, for
g e (A*), (4.2), (2.12), (4.7) and the isomorphism between V and give

(AQA*g)(t) (tit, QA*g)o (tit, A*g)x

(Aqt, g)r (Rt, g)r

frR(t, t’)g(t’) dt’, T.

Thus, AQA* coincides with the bounded operator R on (A*) and hence by exten-
sion on Y. We write (AQA*)[r,r)= R -1. Next, suppose g e R((A*)), and let
p R-g. Then, since g Rp, Theorem 4.1 and (2.12) give

(A/Q,R)g) (S) (r/s* g)R (r/s*, P)Y (AQ, ,O)y

(Q, A’p)x (QA*p)(s) (QA*(AQA*)[r,r)g) (s), s S.

It can be shown easily that if @(A*) is dense in Y, then R((A*)) is dense in ovg
R.

Thus (4.9) extends to all g R"
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DEFINITION 4.1. Let A:X Y. The pseudocondition number of A (relative to
the norms of X and Y) is

[[Ax[ly IlAy[[ xv(A;X, Y): sup sup

x(A) y(A*)

The equation Af g is said to be poorly conditioned in the spaces X, Y if the
number y(A ;X, Y) is much greater than one. Note that =< 7(A;X, Y); for ill-
posed problems, 7 is not finite.

Suppose o is an RKHS with o = (A), and A and 2 satisfy (4.1)with
A(Q) )eR, R given by (4.4). Then 7(A )eQ, R) 1. To see this, write x /ge
in the formx x + x2, where x2 V+/-. Then Ax Ax Yl and Ilyxl R Ilxx I1"
Thus

7(A;e, ovfR) sup
IlY, IIR, sup ][x 1.

.-,o Ix 1 ,.,,o IlYIIR
On the other hand, the number 7(A ;X, Y) may be large. Thus the casting of the
operator equation Af g in the reproducing kernel spaces , R always
leads to a well-conditioned (indeed, optimally-conditioned) problem.

5. Regularization of pseudosolutions in reproducing kernel spaces. In this
section we study properties of regularized pseudosolutions (in RKHS) f of the
operator equation Af g, where g is not necessarily in the range of the operator
A. By a regularized pseudosolution we mean a solution to the variational problem:
Find f in ovge to minimize

(5.1) dPo(f) IIg Af 12
where o is an RKHS in the domain of A, Ilolle denotes the norm in an RKHS
ge with RK P, fe c Y, qS0(f) is assigned the value + if g Af q e, and
/l > 0. We suppose A and vgQ satisfy (4.1), hence A(oVgo) OVgR, where )F, possesses
an RK. As before, A may be unbounded, invertible, or compact considered as an
operator from X(= &a2[S]) to Y(= 2[T]). It is assumed that g possesses a (not
necessarily unique) representation g go + , for some go A(o) and ovge.
may be thought of as a "disturbance."

For 2 > 0, let e be the RKHS with RK P(t, t’), where P(t, t’) is the RK
on T x T associated with p. We have e ze and

(5.2) I’" 1, 211" 2
2P"

Let R(2) R + 2P, and let R) be the RKHS with RK R(2) R(2;t, t’). Accord-
ing to Aronszajn [1, p. 352], Rtz) is the Hilbert space of functions of the form

(5.3) g go + ,
where go and e. Following Aronszajn [1], we note that this decompo-
sition is not unique unless ougg and e have no element in common except the zero
element. The norm in g) is given by

2 3/tp, go(5.4) [g R(2)2 min (llgo I1 / p go g / g},
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where, however, the go and attaining the minimum in (5.4) are easily shown to be
unique by the strict convexity of the norm.

Consider now the problem of finding fz Q to minimize co(f in (5.1),
for g YgRtZ)" Then g Afz must be in Yfp and it is obvious that fz V, the orthog-
onal complement of the nullspace of A in ocfo. For any f V, Ilfll2 IIAfIIR
by the isometric isomorphism between V and YfR, and (5.1) may be written in the
equivalent form: Find f V to minimize

2 2Afl + Ig- Afll.
Comparing (5.4) and (5.5) with the aid of (5.2), we see that go and : attaining the
minimum on the right-hand side of (5.4) are related to the solution fz, ofthe mini-
mization problem (5.5), by

go Af and g Af.
In the following theorem, we give a representation of the solution fz.

THEOREM 5.1.Suppose (A*) is dense in Y, o. c (A) and A and o. satisfy
(4.1). Suppose 2/fo., OCfR(=A((2))and /fp Y all have continuous RK’s. 7hen,
for g 2/FRtZ), the unique minimizing element fz 2/go. of the functional dpg(f) is given
by

(5.6) <q*, g>g(x) fx(s) (QA*(AQA* + 2P)/r,r)g (s), s e.S,

where tl* AQS.

Proof First, our assumptions give that AQA* + 2P(=R + 2P) is a well-
defined positive definite operator on Y. We demonstrate, for

g (AQA* + 2P)(@(A*)),
that

(5.7) fx QA*(AQA* + 2P)[r.r)g.
Now, g Afz P(AQA* + 2P)[y.r)g fp, so that this demonstration will be
effected if we show that

for any 6 e uf2, with 16 e - 0.
But

2dpo(fz + 6)= [[2P(AQA* + 2P)t,v)g[[- 22((AQA* + 2P)[r,r)g, Ab)r +
2+ IIQA*(AQA* + 2P)[r,yN 0 + 22(A*(AQA*+ 2P)[r,y)g, b)x

2

We next show that, for g e (AQA* + 2P) ((A*)), that

<q*, g>mx) (QA*(AQA* + 2P)/r,r)g (s).
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Let (AQA*+ 2P)*g--p(A*). Then using (2.12) with Q replaced by R(2)
gives

(rl*, g)R(a) (rl*, p)y (AQs, p)y (Qs, A’p)x
(QA*p)(s) (OA*(AQA* + 2P)r.r)g)(s).

Thus we have proved (5.6) for g (AQA* + 2P) ((A*)).
We next show that QA*(AQA*+ 2P)r,r =- QA*(R + 2P)- defines a

bounded linear operator from WR to (2" If g Vfm, then (R + 2p)-l/eg
-p Y ( ’(R + 2P) and

Q1/2A*(R + 2P)- g Q1/2A*(R + 2P)- /2p y,
since

Therefore

IIQ1/2A*(R + 2P)- 1/2p 1/2 /2p < Pr R (R +2P)-1 r

QA*(R + 2P)-g Wo’ g

But

[[QA*(R + 2n)-’g [o Q1/2A*(R q- 2P)-1/2p < [p[Y Y R(;O"

It can be shown that (R + 2P) (o@(A*)) is dense in /{)R(2)’ SO that the right-hand
equality in (5.6) extends to all g e Wn(), and the left-hand equality obviously
extends by the continuity of the inner product.

We call the (linear) mapping which assigns (by Theorem 5.1) to each g e
the unique minimizing element fz the regularization operator of the equation
Af g.

The most useful situations occur, of course, when Wn is strictly contained in

vfnz. For example, Wn may be a dense subset of Y in the Y-topology and
a bigger dense subset. We discuss this case further in 6. On the other hand, if

W (in Y) is not empty, then P may be chosen so that the closure of We in the
Y-topology equals W in Y. Then We f’l WR {0}, Wp and WR are orthogonal
subspaces of WR (see [1]), and the decomposition (5.3) is unique. In this case we
have the following theorem which shows that the regularization operator is indeed
a generalized inverse in an appropriate RKHS.

THEOREM 5.2. lf3pWR {0}, then the minimizing element f of (5.1) is
the solution to the problem: Find f to minimize

(5.8) Ilfllo,
where

(5.9) = f" fe We, g Af IIR) inf IIg Ah R(X)}"
h,Q

Proof. We first note that if Wp V)Wg -{0}, then also Wzp Wg -{0}
and the decomposition g- go / with go R and W,,p is unique, with

go R(R + 2P)-g and -AP(R + P)-g.

This decomposition is also independent of in this case, PR RP O, and
R(R / AP)-1 is the restriction of the projection onto dV’(R)+/- in Y to the domain
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R/ Y P/a Y. We have

IIg Afll2,- Ilgo + Afll 2

Thus since go e A(Wo), inf {llg Af R" f } 1 z and {f" f
Af go}. Hence j Ao,go OA*R-’go OA*(R + 2P)-Xg.

Remark 5.1. In our setting we have

Ao) .
Replacing W and W in (3.2) by W and Wna, respectively, we get from (3.5)"

(5.10) Ao,{z}y Q/2[(R + 2P)-/2AO/e]x,r}(R + 2n)-

for y e (Ao,R{a}); see (3.4.).
It is helpful to remember that the topology on WR is not, in general, the re-

striction of the topology of WR{a}, with the notable exception of the case Wu
{0}. In [11] the authors provide a concrete example arising in the approxi-

mate solution ofboundary value problems whereW is not a closed subspace of
If u n {0}, then WR is a closed subspace of WR, and (by Theorem

5.2)

QA*(R +(5.1 l) A{O,R{a}
Note that in this case, the generalized inverse and the regularization operator

coincide.
If WR A(WO) is not closed in Wn{a, then the regularization operator and the

generalized inverse are different. Also, the right-hand sides of (5.10) and (5.11) are
not the same" (5.11) has maximal domain WRZ, while (5.10) has maximal domain

6, Propertiesofwhen c ,Ratofconvergenceofto the eneraliz
inverse. In this section we note some properties of as Z 0 when c .
If e A(), then we have/ A}, as Z 0; here we may say some-

thin about the rate of convergence if certain additional conditions are satisfied
(compare also with Ivanov and Kudfinskii 4]). However, may not be in the
domain of 2},. This situation can occur if, for example, is dense in
In this case, lim0

.
(i) B P- ’/R ’/ is boun&d operator o Y

AQ,R,g- f), 0(2)

(iii) if o 0 and (B’B)- 1/2R- 1/2(Afo f2[T] < GO, then

AO_,R)g fa 2 0(3.)"

(iv) il" o q WR, then lim,o fl <.
Here inverses indicated by are the generalized inverses in the geometry of ’2-
spaces.
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Proof. Assertion (i) follows from the fact that FR R/e([T]) and
P/2(2’2[T]). If R c P, then R/2(’2[T]) P/2(2[T]), so that P-1/2R1/

is bounded. To prove assertions (ii) and (iii), we note that since A(e)= R,
R-/e(Afo) is a well-defined element 4 of 2[T], and after some computation,
we obtain that if 0 0, then

Ao,mg fz II II(I R’/(R + 2P)- 1R1/2) a[Tl

12(S*S + 2I)-
2[I(B*B + 2I)-’4 w

< (B*B)-
If (B’B)- XR-/2Afo)l 2[T] m < thor

thus proving assertion (ii).
Assertion (iii) follows by noting that 2(B*B + 21)- N I in the sense of positive

definiteness; thus 2(B*B + 2I)- N 2/2(B*B + 2I)-/. Hence,
2RNIIB*B + XI) 14 2[T]2 =< RIl(B*B + 21) /241

< Xl (n’n)-1/ 2[T]

giving assertion (iii).
To see (iv), we observe that

Since e p, we have P/20 for some 0 e (P); (2 in 2[T]). Then

llQ/2A*(AQA* + 2P)- P/201 ts BB*)I/2(BB* + 2I)- 101 =ts"
If {2, 4} are the eigenvalues and eigenfunctions of the bounded positive
operator BB*, then

(BB*)I/2(BB* + I) 1012 O)ts.

Since R, p1/20 is not in the domain of R-/2 and 0 is not in the domain of
B-. Thus

(nz*) ’/11t- 0)zts
v=l

and

iII(BB*)(BB* -t- I)-10 #2[s]--
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